aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEDepthwiseConvolutionLayer3x3Kernel.cpp
blob: 99bdb7a70ecc9bd6426fed5bac6bb4617b62b4f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEDepthwiseConvolutionLayer3x3Kernel.h"
#include "arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/INEKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"

using namespace arm_compute;
using namespace arm_compute::detail;
using namespace arm_compute::misc::shape_calculator;
using namespace depthwise;

namespace
{
template <typename T1, typename T2, unsigned int stridex>
class convolver_3x3
{
public:
    static void convolve(const Window &window, unsigned int num_elems_written_per_iteration,
                         const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier)
    {
        const int input_offset   = -input->info()->quantization_info().offset;
        const int weights_offset = -weights->info()->quantization_info().offset;

        const int          input_stride_x  = input->info()->strides_in_bytes().x();
        const int          input_stride_y  = input->info()->strides_in_bytes().y();
        const int          input_stride_z  = input->info()->strides_in_bytes().z();
        const int          output_stride_y = output->info()->strides_in_bytes().y();
        const int          kernel_stride_y = weights->info()->strides_in_bytes().y();
        const int          kernel_stride_z = weights->info()->strides_in_bytes().z();
        const int          output_w        = output->info()->dimension(0);
        const int          output_h        = output->info()->dimension(1);
        const int          delta_input     = get_input_num_elems_processed<stridex>(num_elems_written_per_iteration);
        const unsigned int conv_stride_y   = std::get<1>(conv_info.stride());
        const unsigned int conv_pad_x      = conv_info.pad_left();
        const unsigned int conv_pad_y      = conv_info.pad_top();

        // setup output window for the iterator
        Window window_out = window;
        window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
        window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));

        // setup input window for the iterator
        Window window_in = window;
        // we just want execute_window_loop to iterate over the dimensions > 2, so we set the first 2 dimensions to 0
        window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
        window_in.set(Window::DimY, Window::Dimension(0, 0, 0));

        Window window_k = calculate_max_window(*weights->info(), Steps(1u));

        Iterator in(input, window_in);
        Iterator out(output, window_out);
        Iterator w(weights, window_k);

        const uint8_t *weights_ptr = w.ptr();

        execute_window_loop(window_out, [&](const Coordinates & id)
        {
            int ih = 0;
            int oh = 0;

            const uint8_t *input_ptr        = in.ptr() - conv_pad_x * input_stride_x - conv_pad_y * input_stride_y - (id.z() - id.z() / depth_multiplier) * input_stride_z;
            const uint8_t *ptr_weights_base = weights_ptr + id.z() * kernel_stride_z;

            const auto ptr_weights_r0 = reinterpret_cast<const T1 *>(ptr_weights_base);
            const auto ptr_weights_r1 = reinterpret_cast<const T1 *>(ptr_weights_base + kernel_stride_y);
            const auto ptr_weights_r2 = reinterpret_cast<const T1 *>(ptr_weights_base + kernel_stride_y * 2);
            const auto vw_r0          = load_matrix_row(ptr_weights_r0, weights_offset);
            const auto vw_r1          = load_matrix_row(ptr_weights_r1, weights_offset);
            const auto vw_r2          = load_matrix_row(ptr_weights_r2, weights_offset);

            for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
            {
                auto in_top = reinterpret_cast<const T1 *>(input_ptr + (ih + 0) * input_stride_y);
                auto in_mid = reinterpret_cast<const T1 *>(input_ptr + (ih + 1) * input_stride_y);
                auto in_low = reinterpret_cast<const T1 *>(input_ptr + (ih + 2) * input_stride_y);
                auto p_out  = reinterpret_cast<T2 *>(out.ptr() + oh * output_stride_y);

                for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
                    in_top += delta_input, in_mid += delta_input, in_low += delta_input,
                    p_out += num_elems_written_per_iteration)
                {
                    auto vres = convolve_3x3<stridex>(in_top, in_mid, in_low, vw_r0, vw_r1, vw_r2, input_offset);
                    store_results<stridex>(p_out, vres);
                }
            }
        },
        in, out);
    }
};

template <typename T1, typename T2>
inline void convolve_3x3(const Window &window, unsigned int num_elems_written_per_iteration,
                         const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier)
{
    const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
    switch(conv_stride_x)
    {
        case 1:
            convolver_3x3<T1, T2, 1>::convolve(window, num_elems_written_per_iteration, input, weights, output, conv_info, depth_multiplier);
            break;
        case 2:
            convolver_3x3<T1, T2, 2>::convolve(window, num_elems_written_per_iteration, input, weights, output, conv_info, depth_multiplier);
            break;
        case 3:
            convolver_3x3<T1, T2, 3>::convolve(window, num_elems_written_per_iteration, input, weights, output, conv_info, depth_multiplier);
            break;
        default:
            ARM_COMPUTE_ERROR("Not implemented");
    }
}

Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, bool is_optimized)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);

    const DataLayout   data_layout = input->data_layout();
    const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != 3 || weights->dimension(height_idx) != 3);

    if(!is_optimized)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1 || conv_info.stride().first > 3);
    }

    if(output->total_size() != 0)
    {
        const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);

        if(is_data_type_quantized_asymmetric(input->data_type()))
        {
            ARM_COMPUTE_RETURN_ERROR_ON(output->data_type() != DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        }
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, bool is_optimized,
                                                        IDepthwiseConvolution *convolver = nullptr)
{
    Window win;
    bool   window_changed = false;

    if(is_optimized)
    {
        if(convolver != nullptr)
        {
            auto win_last = convolver->get_window();
            win.set(Window::DimX, Window::Dimension(0, win_last, 1));

            // Auto-configure output
            bool        same_padding = conv_info.has_padding();
            TensorShape output_shape{ input->tensor_shape() };

            output_shape.set(1, convolver->output_size(output_shape.y(), same_padding)); // Set width
            output_shape.set(2, convolver->output_size(output_shape.z(), same_padding)); // Set height

            const DataType output_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();

            // Output auto inizialitation if not yet initialized
            auto_init_if_empty(*output, input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_data_type(output_dt));

            // Configure window (optimised)
            // Set padding in channels
            const int num_channels = weights->dimension(0);
            if((num_channels >= 128) && (num_channels % 16 == 0))
            {
                input->extend_padding(PaddingSize(0, 4, 0, 0));
                weights->extend_padding(PaddingSize(0, 4, 0, 0));
                output->extend_padding(PaddingSize(0, 4, 0, 0));
            }
        }
    }
    else
    {
        // Get convolved dimensions
        const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
        const DataType    output_dt    = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();

        // Output auto inizialitation if not yet initialized
        auto_init_if_empty(*output, input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_data_type(output_dt));

        // Configure kernel window (generic)
        const unsigned int conv_stride_x = conv_info.stride().first;
        const unsigned int conv_stride_y = conv_info.stride().second;
        const unsigned int conv_pad_top  = conv_info.pad_top();
        const unsigned int conv_pad_left = conv_info.pad_left();

        unsigned int num_elems_written_per_iteration = 16 >> conv_stride_x;
        unsigned int num_elems_read_per_iteration    = 0;

        switch(input->data_type())
        {
            case DataType::QASYMM8:
                num_elems_read_per_iteration = 16;
                break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
                num_elems_read_per_iteration = 24;
                break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F32:
                num_elems_read_per_iteration = 12;
                break;
            default:
                ARM_COMPUTE_ERROR("Data type not supported.");
        }

        // Configure kernel window
        win = calculate_max_window(*output, Steps(num_elems_written_per_iteration));

        AccessWindowRectangle  input_access(input, -conv_pad_left, -conv_pad_top, num_elems_read_per_iteration, 3, conv_stride_x, conv_stride_y);
        AccessWindowStatic     weights_access(weights, 0, 0, 3, 3);
        AccessWindowHorizontal output_access(output, 0, num_elems_written_per_iteration);

        window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
        output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

NEDepthwiseConvolutionLayer3x3Kernel::NEDepthwiseConvolutionLayer3x3Kernel()
    : _border_size(0), _input(), _output(), _weights(), _conv_info(), _convolver(nullptr), _num_elems_written_per_iteration(0), _run_optimized(false), _depth_multiplier(1)
{
}

BorderSize NEDepthwiseConvolutionLayer3x3Kernel::border_size() const
{
    return _border_size;
}

void NEDepthwiseConvolutionLayer3x3Kernel::configure(const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
                                                     DataLayout data_layout)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);

    _input            = input;
    _output           = output;
    _weights          = weights;
    _conv_info        = conv_info;
    _depth_multiplier = depth_multiplier;
    _convolver        = nullptr;

    _run_optimized = NEDepthwiseConvolutionLayer3x3Kernel::is_optimized_execution_possible(input->info()->tensor_shape(),
                                                                                           conv_info,
                                                                                           input->info()->data_type(), depth_multiplier,
                                                                                           data_layout);

    (_run_optimized) ? configure_optimized() : configure_generic();
}

Status NEDepthwiseConvolutionLayer3x3Kernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);

    bool is_optimized = NEDepthwiseConvolutionLayer3x3Kernel::is_optimized_execution_possible(input->tensor_shape(), conv_info, input->data_type(), depth_multiplier, input->data_layout());

    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, output, conv_info, depth_multiplier, is_optimized));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(), conv_info, depth_multiplier, is_optimized).first);
    return Status{};
}

void NEDepthwiseConvolutionLayer3x3Kernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_UNUSED(info);

    (_run_optimized) ? run_optimized(window, info) : run_generic(window, info);
}

bool NEDepthwiseConvolutionLayer3x3Kernel::is_optimized_execution_possible(TensorShape input_shape, PadStrideInfo conv_info, DataType dt, unsigned int depth_multiplier, DataLayout data_layout)
{
    // Reshape input shape if in NHWC format
    TensorShape in_shape{ input_shape };
    if(data_layout == DataLayout::NHWC)
    {
        in_shape.set(Window::DimX, input_shape.y());
        in_shape.set(Window::DimY, input_shape.z());
        in_shape.set(Window::DimZ, input_shape.x());
    }

    // Check supported data type
    bool supported_datatype = is_data_type_float(dt) || is_data_type_quantized(dt);

    // Check for supported strides
    const auto &strides           = conv_info.stride();
    bool        supported_strides = (strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2));

    // Check for supported padding
    const auto    pad_top           = conv_info.pad_top();
    const auto    pad_right         = conv_info.pad_right();
    const auto    pad_bottom        = conv_info.pad_bottom();
    const auto    pad_left          = conv_info.pad_left();
    PadStrideInfo same_pad          = calculate_same_pad(in_shape, TensorShape(3U, 3U), conv_info);
    bool          is_same_padding   = (pad_top == same_pad.pad_top()) && (pad_right == same_pad.pad_right()) && (pad_bottom == same_pad.pad_bottom()) && (pad_left == same_pad.pad_left());
    bool          is_valid_padding  = (pad_top == 0) && (pad_right == 0) && (pad_bottom == 0) && (pad_left == 0);
    bool          supported_padding = is_same_padding || is_valid_padding;

    return supported_datatype && supported_strides && supported_padding && (depth_multiplier == 1);
}

void NEDepthwiseConvolutionLayer3x3Kernel::generate_convolver()
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(_input, _weights);
    ARM_COMPUTE_ERROR_ON(_weights->info()->dimension(1) != 3 || _weights->info()->dimension(2) != 3);

    _convolver = create_convolver_object(_conv_info, _weights, _input, _output, true);
    if(_convolver)
    {
        _convolver->set_offsets(-_input->info()->quantization_info().offset, -_weights->info()->quantization_info().offset);
    }
}

void NEDepthwiseConvolutionLayer3x3Kernel::configure_generic()
{
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(_input->info(), _weights->info(), _output->info(), _conv_info, _depth_multiplier, _run_optimized));

    _num_elems_written_per_iteration = 16 >> _conv_info.stride().first;
    _border_size                     = BorderSize(_conv_info.pad_top(), _conv_info.pad_right(), _conv_info.pad_bottom(), _conv_info.pad_left());

    auto win_config = validate_and_configure_window(_input->info(), _weights->info(), _output->info(), _conv_info, _depth_multiplier, false);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

void NEDepthwiseConvolutionLayer3x3Kernel::configure_optimized()
{
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(_input->info(), _weights->info(), _output->info(), _conv_info, _depth_multiplier, _run_optimized));

    _border_size = BorderSize(0, 0);
    _convolver   = create_convolver_object(_conv_info, _weights, _input, _output);

    auto win_config = validate_and_configure_window(_input->info(), _weights->info(), _output->info(), _conv_info, _depth_multiplier, true, _convolver.get());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

void NEDepthwiseConvolutionLayer3x3Kernel::run_generic(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);

    switch(_input->info()->data_type())
    {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            convolve_3x3<float16_t, float16_t>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier);
            break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F32:
            convolve_3x3<float, float>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier);
            break;
        case DataType::QASYMM8:
            convolve_3x3<uint8_t, int32_t>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier);
            break;
        default:
            ARM_COMPUTE_ERROR("Not implemented");
    }
}

void NEDepthwiseConvolutionLayer3x3Kernel::run_optimized(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON(!_convolver);

    const size_t start = window.x().start();
    const size_t end   = window.x().end();
    _convolver->run(start, end);
}

std::unique_ptr<depthwise::IDepthwiseConvolution> NEDepthwiseConvolutionLayer3x3Kernel::create_convolver_object(PadStrideInfo  conv_info,
                                                                                                                const ITensor *w,
                                                                                                                const ITensor *in,
                                                                                                                ITensor       *out,
                                                                                                                bool           setup_strides)
{
    const DataType    dt                  = in->info()->data_type();
    const TensorShape shape               = in->info()->tensor_shape();
    const int         in_rows             = shape.z();
    const int         in_cols             = shape.y();
    const int         n_batches           = shape[3];
    const int         n_channels          = shape.x();
    const bool        padding_same        = conv_info.has_padding();
    const int         weight_col_stride   = (setup_strides) ? w->info()->strides_in_bytes().y() / w->info()->element_size() : 0;
    const int         weight_row_stride   = (setup_strides) ? w->info()->strides_in_bytes().z() / w->info()->element_size() : 0;
    const int         input_col_stride    = (setup_strides) ? in->info()->strides_in_bytes().y() / in->info()->element_size() : 0;
    const int         input_row_stride    = (setup_strides) ? in->info()->strides_in_bytes().z() / in->info()->element_size() : 0;
    const int         input_batch_stride  = (setup_strides) ? in->info()->strides_in_bytes()[3] / in->info()->element_size() : 0;
    const int         output_col_stride   = (setup_strides) ? out->info()->strides_in_bytes().y() / out->info()->element_size() : 0;
    const int         output_row_stride   = (setup_strides) ? out->info()->strides_in_bytes().z() / out->info()->element_size() : 0;
    const int         output_batch_stride = (setup_strides) ? out->info()->strides_in_bytes()[3] / out->info()->element_size() : 0;

    const auto stride_x = conv_info.stride().first;
    switch(dt)
    {
        case DataType::QASYMM8:
        {
            switch(stride_x)
            {
                case 1:
                    return arm_compute::support::cpp14::make_unique<DepthwiseConvolution<4, 4, 3, 3, 1, 1, uint8_t, int32_t>>(
                               n_batches, in_rows, in_cols, n_channels, padding_same,
                               reinterpret_cast<const uint8_t *>(w->ptr_to_element(Coordinates())),
                               in->ptr_to_element(Coordinates()),
                               reinterpret_cast<int32_t *>(out->ptr_to_element(Coordinates())), weight_col_stride,
                               weight_row_stride, input_col_stride, input_row_stride, input_batch_stride,
                               output_col_stride, output_row_stride, output_batch_stride);
                case 2:
                    return arm_compute::support::cpp14::make_unique<DepthwiseConvolution<4, 4, 3, 3, 2, 2, uint8_t, int32_t>>(
                               n_batches, in_rows, in_cols, n_channels, padding_same,
                               reinterpret_cast<const uint8_t *>(w->ptr_to_element(Coordinates())),
                               in->ptr_to_element(Coordinates()),
                               reinterpret_cast<int32_t *>(out->ptr_to_element(Coordinates())), weight_col_stride,
                               weight_row_stride, input_col_stride, input_row_stride, input_batch_stride,
                               output_col_stride, output_row_stride, output_batch_stride);
                default:
                    return nullptr;
            }
            break;
        }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
        {
            switch(stride_x)
            {
                case 1:
                    return arm_compute::support::cpp14::make_unique<DepthwiseConvolution<4, 4, 3, 3, 1, 1, float16_t, float16_t>>(
                               n_batches, in_rows, in_cols, n_channels, padding_same,
                               reinterpret_cast<const float16_t *>(w->ptr_to_element(Coordinates())),
                               reinterpret_cast<float16_t *>(in->ptr_to_element(Coordinates())),
                               reinterpret_cast<float16_t *>(out->ptr_to_element(Coordinates())), weight_col_stride,
                               weight_row_stride, input_col_stride, input_row_stride, input_batch_stride,
                               output_col_stride, output_row_stride, output_batch_stride);
                case 2:
                    return arm_compute::support::cpp14::make_unique<DepthwiseConvolution<4, 4, 3, 3, 2, 2, float16_t, float16_t>>(
                               n_batches, in_rows, in_cols, n_channels, padding_same,
                               reinterpret_cast<const float16_t *>(w->ptr_to_element(Coordinates())),
                               reinterpret_cast<float16_t *>(in->ptr_to_element(Coordinates())),
                               reinterpret_cast<float16_t *>(out->ptr_to_element(Coordinates())), weight_col_stride,
                               weight_row_stride, input_col_stride, input_row_stride, input_batch_stride,
                               output_col_stride, output_row_stride, output_batch_stride);
                default:
                    return nullptr;
            }
            break;
        }
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F32:
        {
            switch(stride_x)
            {
                case 1:
                    return arm_compute::support::cpp14::make_unique<DepthwiseConvolution<4, 4, 3, 3, 1, 1, float, float>>(
                               n_batches, in_rows, in_cols, n_channels, padding_same,
                               reinterpret_cast<const float *>(w->ptr_to_element(Coordinates())),
                               reinterpret_cast<float *>(in->ptr_to_element(Coordinates())),
                               reinterpret_cast<float *>(out->ptr_to_element(Coordinates())), weight_col_stride,
                               weight_row_stride, input_col_stride, input_row_stride, input_batch_stride,
                               output_col_stride, output_row_stride, output_batch_stride);
                case 2:
                    return arm_compute::support::cpp14::make_unique<DepthwiseConvolution<3, 3, 3, 3, 2, 2, float, float>>(
                               n_batches, in_rows, in_cols, n_channels, padding_same,
                               reinterpret_cast<const float *>(w->ptr_to_element(Coordinates())),
                               reinterpret_cast<float *>(in->ptr_to_element(Coordinates())),
                               reinterpret_cast<float *>(out->ptr_to_element(Coordinates())), weight_col_stride,
                               weight_row_stride, input_col_stride, input_row_stride, input_batch_stride,
                               output_col_stride, output_row_stride, output_batch_stride);
                default:
                    return nullptr;
            }
            break;
        }
        default:
            return nullptr;
    }
}