aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEBatchNormalizationLayerKernel.cpp
blob: 6bd30ee84540d109af1ba0252365c50fbcdd39ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEBatchNormalizationLayerKernel.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <map>

using namespace arm_compute;

namespace
{
Status
validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var,
                   const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info)
{
    ARM_COMPUTE_UNUSED(epsilon);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);

    if(act_info.enabled())
    {
        ActivationLayerInfo::ActivationFunction act = act_info.activation();
        ARM_COMPUTE_RETURN_ERROR_ON(act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU
                                    && act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU
                                    && act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
        ARM_COMPUTE_RETURN_ERROR_ON(act_info.b() > act_info.a());
    }

    if(nullptr != output)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, var);
    if(beta != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta);
    }
    if(gamma != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma);
    }
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) != mean->dimension(0));

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *mean, ITensorInfo *var, ITensorInfo *gamma, ITensorInfo *beta)
{
    if(output != nullptr)
    {
        // Output tensor auto initialization if not yet initialized
        auto_init_if_empty(*output, *input->clone());
    }

    unsigned int num_elems_processed_per_iteration = 16 / input->element_size();

    Window                 win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
    AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
    bool                   window_changed = update_window_and_padding(win, input_access);

    if(output != nullptr)
    {
        AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
        window_changed |= update_window_and_padding(win, output_access);
        output_access.set_valid_region(win, input->valid_region());
    }

    // Mean, var, gamma and beta get parallelized for the NHWC case as they follow the channel dimension, which is along the first axis
    if(input->data_layout() == DataLayout::NHWC)
    {
        AccessWindowHorizontal mean_access(mean, 0, num_elems_processed_per_iteration);
        AccessWindowHorizontal var_access(var, 0, num_elems_processed_per_iteration);
        window_changed |= update_window_and_padding(win, mean_access, var_access);

        if(gamma != nullptr)
        {
            AccessWindowHorizontal gamma_access(gamma, 0, num_elems_processed_per_iteration);
            window_changed |= update_window_and_padding(win, gamma_access);
        }
        if(beta != nullptr)
        {
            AccessWindowHorizontal beta_access(beta, 0, num_elems_processed_per_iteration);
            window_changed |= update_window_and_padding(win, beta_access);
        }
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} //namespace

template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw(const Window &window)
{
    ARM_COMPUTE_UNUSED(window);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    Iterator input(_input, window);
    Iterator output(_output, window);

    F activation_functor(_act_info);

    // Hold information about the current feature map we are iterating.
    // Only compute denominator and NEON vectors once per feature map.
    int slice = -1;

    const auto input_mean  = reinterpret_cast<const float16_t *>(_mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const float16_t *>(_var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float16_t *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
    const auto input_beta  = (_beta != nullptr) ? reinterpret_cast<const float16_t *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;

    float16x8_t       mean_vec    = vdupq_n_f16(0.0);
    float16x8_t       var_vec     = vdupq_n_f16(0.0);
    float16x8_t       gamma_vec   = vdupq_n_f16(1.0);
    float16x8_t       beta_vec    = vdupq_n_f16(0.0);
    float16x8_t       denominator = vdupq_n_f16(0.0);
    const float16x8_t epsilon_vec = vdupq_n_f16(_epsilon);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        if(slice != id.z())
        {
            // Conctruct vectors
            mean_vec = vdupq_n_f16(*(input_mean + id.z()));
            var_vec  = vdupq_n_f16(*(input_var + id.z()));
            if(input_gamma != nullptr)
            {
                gamma_vec = vdupq_n_f16(*(input_gamma + id.z()));
            }
            if(input_beta != nullptr)
            {
                beta_vec = vdupq_n_f16(*(input_beta + id.z()));
            }

            // Calculate denominator
            denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec));
            slice       = id.z();
        }

        // Calculate x bar and store results
        const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr())), mean_vec);
        const float16x8_t x_bar     = vmulq_f16(numerator, denominator);
        float16x8_t       res       = vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec));

        // Perform fused activation
        if(fused_activation)
        {
            activation_functor(res);
        }

        vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), res);
    },
    input, output);
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}

template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc(const Window &window)
{
    ARM_COMPUTE_UNUSED(window);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    Iterator input(_input, window);
    Iterator output(_output, window);

    F activation_functor(_act_info);

    const auto input_mean  = reinterpret_cast<const float16_t *>(_mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const float16_t *>(_var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float16_t *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
    const auto input_beta  = (_beta != nullptr) ? reinterpret_cast<const float16_t *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;

    const float16x8_t epsilon_vec = vdupq_n_f16(_epsilon);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        // Conctruct vectors
        const float16x8_t mean_vec  = vld1q_f16(input_mean + id.x());
        const float16x8_t var_vec   = vld1q_f16(input_var + id.x());
        const float16x8_t gamma_vec = (input_gamma != nullptr) ? vld1q_f16(input_gamma + id.x()) : vdupq_n_f16(1.0);
        const float16x8_t beta_vec  = (input_beta != nullptr) ? vld1q_f16(input_beta + id.x()) : vdupq_n_f16(0.0);
        // Calculate denominator
        const float16x8_t denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec));

        // Calculate x bar and store results
        const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr())), mean_vec);
        const float16x8_t x_bar     = vmulq_f16(numerator, denominator);
        float16x8_t       res       = vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec));

        // Perform fused activation
        if(fused_activation)
        {
            activation_functor(res);
        }

        vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), res);
    },
    input, output);
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}

template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw(const Window &window)
{
    Iterator input(_input, window);
    Iterator output(_output, window);

    F activation_functor(_act_info);

    // Hold information about the current feature map we are iterating.
    // Only compute denominator and NEON vectors once per feature map.
    int slice = -1;

    const auto input_mean  = reinterpret_cast<const float *>(_mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const float *>(_var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
    const auto input_beta  = (_beta != nullptr) ? reinterpret_cast<const float *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;

    float32x4_t       mean_vec    = vdupq_n_f32(0.0);
    float32x4_t       var_vec     = vdupq_n_f32(0.0);
    float32x4_t       gamma_vec   = vdupq_n_f32(1.0);
    float32x4_t       beta_vec    = vdupq_n_f32(0.0);
    float32x4_t       denominator = vdupq_n_f32(0.0);
    const float32x4_t epsilon_vec = vdupq_n_f32(_epsilon);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        if(slice != id.z())
        {
            // Conctruct vectors
            mean_vec = vdupq_n_f32(*(input_mean + id.z()));
            var_vec  = vdupq_n_f32(*(input_var + id.z()));
            if(input_gamma != nullptr)
            {
                gamma_vec = vdupq_n_f32(*(input_gamma + id.z()));
            }
            if(input_beta != nullptr)
            {
                beta_vec = vdupq_n_f32(*(input_beta + id.z()));
            }

            // Calculate denominator
            denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec));
            slice       = id.z();
        }

        // Calculate x bar
        const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast<const float *>(input.ptr())), mean_vec);
        const float32x4_t x_bar     = vmulq_f32(numerator, denominator);
        float32x4_t       res       = vmlaq_f32(beta_vec, x_bar, gamma_vec);

        // Perform fused activation
        if(fused_activation)
        {
            activation_functor(res);
        }

        // Store results
        vst1q_f32(reinterpret_cast<float *>(output.ptr()), res);
    },
    input, output);
}

template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc(const Window &window)
{
    Iterator input(_input, window);
    Iterator output(_output, window);

    F activation_functor(_act_info);

    const auto input_mean  = reinterpret_cast<const float *>(_mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const float *>(_var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
    const auto input_beta  = (_beta != nullptr) ? reinterpret_cast<const float *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;

    const float32x4_t epsilon_vec = vdupq_n_f32(_epsilon);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        // Conctruct vectors
        const float32x4_t mean_vec  = vld1q_f32(input_mean + id.x());
        const float32x4_t var_vec   = vld1q_f32(input_var + id.x());
        const float32x4_t gamma_vec = (input_gamma != nullptr) ? vld1q_f32(input_gamma + id.x()) : vdupq_n_f32(1.0);
        const float32x4_t beta_vec  = (input_beta != nullptr) ? vld1q_f32(input_beta + id.x()) : vdupq_n_f32(0.0);
        // Calculate denominator
        const float32x4_t denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec));

        // Calculate x bar
        const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast<const float *>(input.ptr())), mean_vec);
        const float32x4_t x_bar     = vmulq_f32(numerator, denominator);
        float32x4_t       res       = vmlaq_f32(beta_vec, x_bar, gamma_vec);

        // Perform fused activation
        if(fused_activation)
        {
            activation_functor(res);
        }

        // Store results
        vst1q_f32(reinterpret_cast<float *>(output.ptr()), res);
    },
    input, output);
}

void NEBatchNormalizationLayerKernel::configure_non_fused()
{
    const bool is_nhwc = _input->info()->data_layout() == DataLayout::NHWC;
    switch(_input->info()->data_type())
    {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            _func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<false, ::detail::dummy<float16_t, 8>> :
                    &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<false, ::detail::dummy<float16_t, 8>>;
            break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F32:
            _func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<false, ::detail::dummy<float, 4>> :
                    &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<false, ::detail::dummy<float, 4>>;
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }
}

void NEBatchNormalizationLayerKernel::configure_fused()
{
    // NCHW Fused Batched Normalization with activation functions : FP32
    static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nchw =
    {
        { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<true, ::detail::relu<float, 4>> },
        { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<true, ::detail::brelu<float, 4>> },
        { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<true, ::detail::lubrelu<float, 4>> }
    };
    // NHWC Fused Batched Normalization with activation functions : FP32
    static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nhwc =
    {
        { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<true, ::detail::relu<float, 4>> },
        { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<true, ::detail::brelu<float, 4>> },
        { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<true, ::detail::lubrelu<float, 4>> }
    };
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    // NCHW Fused Batched Normalization with activation functions : FP16
    static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nchw =
    {
        { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<true, ::detail::relu<float16_t, 8>> },
        { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<true, ::detail::brelu<float16_t, 8>> },
        { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<true, ::detail::lubrelu<float16_t, 8>> }
    };
    // NHWC Fused Batched Normalization with activation functions : FP16
    static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nhwc =
    {
        { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<true, ::detail::relu<float16_t, 8>> },
        { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<true, ::detail::brelu<float16_t, 8>> },
        { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<true, ::detail::lubrelu<float16_t, 8>> }
    };
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

    switch(_input->info()->data_type())
    {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            _func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f16_nhwc[_act_info.activation()] : bn_fused_map_f16_nchw[_act_info.activation()];
            break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F32:
            _func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f32_nhwc[_act_info.activation()] : bn_fused_map_f32_nchw[_act_info.activation()];
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }
}

NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon(), _act_info()
{
}

void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output,
                                                const ITensor *mean, const ITensor *var,
                                                const ITensor *beta, const ITensor *gamma,
                                                float epsilon, ActivationLayerInfo act_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, mean, var);

    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr,
                                                  mean->info(), var->info(),
                                                  (beta != nullptr) ? beta->info() : nullptr,
                                                  (gamma != nullptr) ? gamma->info() : nullptr,
                                                  epsilon, act_info));

    _input    = input;
    _output   = input;
    _mean     = mean;
    _var      = var;
    _gamma    = gamma;
    _beta     = beta;
    _epsilon  = epsilon;
    _act_info = act_info;

    const bool run_in_place = (output == nullptr) || (output == input);
    if(!run_in_place)
    {
        _output = output;
    }

    // Configure activation function to run
    if(_act_info.enabled())
    {
        configure_fused();
    }
    else
    {
        configure_non_fused();
    }

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), (run_in_place) ? nullptr : output->info(), mean->info(), var->info(), (gamma != nullptr) ? gamma->info() : nullptr,
                                                    (beta != nullptr) ? beta->info() : nullptr);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

Status NEBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output,
                                                 const ITensorInfo *mean, const ITensorInfo *var,
                                                 const ITensorInfo *beta, const ITensorInfo *gamma,
                                                 float epsilon, ActivationLayerInfo act_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output ? output->clone().get() : nullptr, mean->clone().get(), var->clone().get(),
                                                              (gamma != nullptr) ? gamma->clone().get() : nullptr, (beta != nullptr) ? beta->clone().get() : nullptr)
                                .first);

    return Status{};
}

void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (this->*_func)(window);
}