aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/cs_shaders/dropout.cs
blob: 54e08b1306285ce3e8a9111bc7f435be778b350d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;

#include "helpers.h"

layout(std140) uniform shader_params
{
    TENSOR3D_PARAM_DECLARATION(src);
    TENSOR3D_PARAM_DECLARATION(mask);
    TENSOR3D_PARAM_DECLARATION(dst);
};

uint hash(uint x)
{
    x += (x << 10u);
    x ^= (x >> 6u);
    x += (x << 3u);
    x ^= (x >> 11u);
    x += (x << 15u);
    return x;
}

uint hash(uvec3 v)
{
    return hash(v.x ^ hash(v.y) ^ hash(v.z));
}

float float_construct(uint m)
{
    const uint ieee_mantissa = 0x007FFFFFu;
    const uint ieee_one      = 0x3F800000u;

    m &= ieee_mantissa;
    m |= ieee_one;

    float f = uintBitsToFloat(m);
    return f - 1.0;
}

float rand(vec3 v, float seed)
{
    return float_construct(hash(floatBitsToUint(v + seed)));
}

#ifdef DATA_TYPE_FP32

precision highp float;

BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(mask, 2, float, );
BUFFER_DECLARATION(dst, 3, float, writeonly);

/** Dropout is used to improve over-fit on neural networks.
 *
 * @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
 *
 * @param[in]  src_ptr                            Pointer to the source tensor. Supported data types: F32
 * @param[in]  src_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                         src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] mask_ptr                           Pointer to the mask tensor. Supported data types: same as @p src_ptr
 * @param[in]  mask_stride_x                      Stride of the mask tensor in X dimension (in bytes)
 * @param[in]  mask_step_x                        mask_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  mask_stride_y                      Stride of the mask tensor in Y dimension (in bytes)
 * @param[in]  mask_step_y                        mask_stride_y * number of elements along y processed per workitem(in bytes)
 * @param[in]  mask_stride_z                      Stride of the mask tensor in Z dimension (in bytes)
 * @param[in]  mask_step_z                        mask_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  mask_offset_first_element_in_bytes The offset of the first element in the mask tensor
 * @param[out] dst_ptr                            Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                         dst_stride_y * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_stride_z                       Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 */
void main(void)
{
    Tensor3D src  = GC_CONVERT_TO_TENSOR3D_STRUCT(src);
    Tensor3D mask = GC_CONVERT_TO_TENSOR3D_STRUCT(mask);
    Tensor3D dst  = GC_CONVERT_TO_TENSOR3D_STRUCT(dst);

    float random  = 0.f;
    float inputv  = 0.f;
    float maskv   = 0.f;
    float outputv = 0.f;

#ifdef FORWARD
    random = rand(vec3(gl_GlobalInvocationID.xyz), SEED);
    maskv  = (random > RATIO) ? 1.f : 0.f;
    GC_STORE1_3D_OFFSET(maskv, mask, 0, 0, 0);
#else  /* FORWARD */
    GC_LOAD1_3D_OFFSET(maskv, mask, 0, 0, 0);
#endif /* FORWARD */

    GC_LOAD1_3D_OFFSET(inputv, src, 0, 0, 0);
    outputv = maskv * inputv * float(SCALE);
    GC_STORE1_3D_OFFSET(outputv, dst, 0, 0, 0);
}

#elif defined(DATA_TYPE_FP16)

precision mediump float;

BUFFER_DECLARATION(src, 1, uint, readonly);
BUFFER_DECLARATION(mask, 2, uint, );
BUFFER_DECLARATION(dst, 3, uint, writeonly);

/** Dropout is used to improve over-fit on neural networks.
 *
 * @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
 *
 * @param[in]  src_ptr                            Pointer to the source tensor. Supported data types: F16
 * @param[in]  src_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                         src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] mask_ptr                           Pointer to the mask tensor. Supported data types: same as @p src_ptr
 * @param[in]  mask_stride_x                      Stride of the mask tensor in X dimension (in bytes)
 * @param[in]  mask_step_x                        mask_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  mask_stride_y                      Stride of the mask tensor in Y dimension (in bytes)
 * @param[in]  mask_step_y                        mask_stride_y * number of elements along y processed per workitem(in bytes)
 * @param[in]  mask_stride_z                      Stride of the mask tensor in Z dimension (in bytes)
 * @param[in]  mask_step_z                        mask_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  mask_offset_first_element_in_bytes The offset of the first element in the mask tensor
 * @param[out] dst_ptr                            Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                         dst_stride_y * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_stride_z                       Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 */
void main(void)
{
    Tensor3D src  = GC_CONVERT_TO_TENSOR3D_STRUCT(src);
    Tensor3D mask = GC_CONVERT_TO_TENSOR3D_STRUCT(mask);
    Tensor3D dst  = GC_CONVERT_TO_TENSOR3D_STRUCT(dst);

    float random1    = 0.f;
    float random2    = 0.f;
    uint  inputv     = uint(0);
    uint  outputv    = uint(0);
    uint  maskv      = uint(0);
    vec2  input_vec  = vec2(0, 0);
    vec2  output_vec = vec2(0, 0);
    vec2  mask_vec   = vec2(0, 0);

#ifdef FORWARD
    random1          = rand(vec3(gl_GlobalInvocationID.xyz), SEED);
    random2          = rand(vec3(float(gl_GlobalInvocationID.x) + 0.5f, gl_GlobalInvocationID.yz), SEED);
    mask_vec.x       = (random1 > RATIO) ? 1.f : 0.f;
    mask_vec.y       = (random2 > RATIO) ? 1.f : 0.f;
    maskv            = packHalf2x16(mask_vec);
    GC_STORE1_3D_OFFSET(maskv, mask, 0, 0, 0);
#else  /* FORWARD */
    GC_LOAD1_3D_OFFSET(maskv, mask, 0, 0, 0);
    mask_vec = unpackHalf2x16(maskv);
#endif /* FORWARD */

    GC_LOAD1_3D_OFFSET(inputv, src, 0, 0, 0);

    input_vec  = unpackHalf2x16(inputv);
    output_vec = mask_vec * input_vec * float(SCALE);
    outputv    = packHalf2x16(output_vec);

    GC_STORE1_3D_OFFSET(outputv, dst, 0, 0, 0);
}

#else /* DATA_TYPE_FP32 */

#endif /* DATA_TYPE_FP32 */