aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp
blob: 2b004c23dbed9cd6ee75410d70e75df7a5094745 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"

#include <set>
#include <string>

namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;

namespace
{
using ElementsProcessed = Steps;

inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float beta,
                                 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
    ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input0);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((fp_mixed_precision && (input0->data_type() != DataType::F16)), "Mixed precision floating point is supported only for F16 data");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 2 && reshape_info.reinterpret_input_as_3d(), "The input1 tensor cannot have more than 2 dimensions if input0 has to be reinterpreted as 3D");

    const bool is_beta_one = std::abs(1.0f - beta) < 0.00001f;
    const bool has_vec_c   = input2 != nullptr && beta != 0.f;
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(has_vec_c && !is_beta_one, "Adding input2 is only supported for beta equal to 1");

    if(!is_interleaved_transposed)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));

        if(has_vec_c)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input2);
            ARM_COMPUTE_RETURN_ERROR_ON_MSG(input2->num_dimensions() > 1, "input2 must be a 1D tensor");
            ARM_COMPUTE_RETURN_ERROR_ON_MSG(input2->dimension(0) != input1->dimension(0), "Length of Vector C must match the number of columns of matrix B");
        }
    }
    else
    {
        GEMMRHSMatrixInfo rhs_info;
        GEMMLHSMatrixInfo lhs_info;
        const int         m                         = reshape_info.m();
        const int         n                         = reshape_info.n();
        const int         k                         = reshape_info.k();
        const int         mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
        const int         mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
        rhs_info.n0                                 = 16 / input1->element_size();
        rhs_info.k0                                 = 1;
        rhs_info.h0                                 = mult_transpose1xW_width;
        rhs_info.interleave                         = false;
        rhs_info.transpose                          = false;
        lhs_info.m0                                 = 4;
        lhs_info.k0                                 = 4;
        lhs_info.v0                                 = mult_interleave4x4_height;
        lhs_info.interleave                         = true;
        lhs_info.transpose                          = true;

        TensorShape tensor_shape0{ input0->tensor_shape() };
        tensor_shape0.set(0, k);
        tensor_shape0.set(1, m);

        TensorShape tensor_shape1{ input1->tensor_shape() };
        tensor_shape1.set(0, n);
        tensor_shape1.set(1, k);

        const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
        const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);

        const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_lhs_reshaped_shape(tensor_info0, lhs_info));
        const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);

        if(has_vec_c)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input2);
            ARM_COMPUTE_RETURN_ERROR_ON_MSG(input2->num_dimensions() > 1, "input2 must be a 1D tensor");
        }
    }

    if(output->total_size() != 0)
    {
        const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info));
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
    }

    return Status{};
}

inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output,
                                                               float beta, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target,
                                                               ElementsProcessed &num_elements_processed)
{
    ARM_COMPUTE_UNUSED(beta);
    bool   window_changed = false;
    Window win{};
    Window win_out{};

    const DataType data_type                           = input0->data_type();
    unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
    unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
    bool           reinterpret_input_as_3d             = reshape_info.reinterpret_input_as_3d();
    bool           reinterpret_output_as_3d            = (reshape_info.depth_output_gemm3d() != 0);
    const bool     has_vec_c                           = input2 != nullptr && beta != 0.f;

    // In case both input and output have to be reinterpreted as 3D tensors,
    // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
    if(reinterpret_input_as_3d == reinterpret_output_as_3d)
    {
        reinterpret_input_as_3d  = false;
        reinterpret_output_as_3d = false;
    }

    // Output tensor auto inizialitation if not yet initialized
    auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info)));

    TensorInfo tmp_info(*output);

    if(reinterpret_output_as_3d)
    {
        // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
        // the window needs to be constructed on the 2D collapsed version of the tensor
        TensorShape tmp_shape(output->tensor_shape());
        tmp_shape.collapse(2U, 1U);
        tmp_info.set_tensor_shape(tmp_shape);
    }

    if(is_interleaved_transposed)
    {
        // reinterpret_input_as_3d is not supported if is_interleaved_transposed is set
        ARM_COMPUTE_ERROR_ON(reshape_info.reinterpret_input_as_3d());

        // Configure kernel window
        num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
        num_elems_processed_per_iteration_y = 4;

        // Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
        // The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
        const int m          = reshape_info.m();
        const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;

        win     = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
        win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

        AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), input0->dimension(1));
        AccessWindowStatic input1_access(input1, 0, 0,
                                         ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
                                         ceil_to_multiple(input1->dimension(1), num_elems_processed_per_iteration_y));
        AccessWindowStatic output_access(output, 0, 0,
                                         ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
                                         output->dimension(1) + bottom_pad);

        window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
                         update_window_and_padding(win_out, output_access);              // window used to update the padding requirements of output tensor
        if(has_vec_c)
        {
            AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_x);
            window_changed = window_changed || update_window_and_padding(win, input2_access);
        }

        output_access.set_valid_region(win_out, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
    }
    else // The input tensors have not been reshaped
    {
        // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor. num_elems_processed_per_iteration_x is set up for the default case.
        num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
        num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 4);

        // Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
        // The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
        const int m          = reinterpret_input_as_3d ? input0->tensor_shape()[1] * input0->tensor_shape()[2] : input0->tensor_shape()[1];
        const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;

        // Create kernels according to the architecture, data type and input size.
        GPUTarget arch_target = get_arch_from_target(gpu_target);
        if(arch_target == GPUTarget::BIFROST && data_type == DataType::F32)
        {
            num_elems_processed_per_iteration_x = (input1->dimension(0) <= 1000 && input0->num_dimensions() == 1) ? 2 : 4;
        }

        // Configure window
        win     = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
        win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

        AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), input0->dimension(1) + bottom_pad);
        AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
        AccessWindowStatic output_access(output, 0, 0,
                                         ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
                                         output->dimension(1) + bottom_pad);

        window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
                         update_window_and_padding(win_out, output_access);              // window used to update the padding requirements of output tensor
        if(has_vec_c)
        {
            AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_x);
            window_changed = window_changed || update_window_and_padding(win, input2_access);
        }

        Coordinates coord;
        coord.set_num_dimensions(output->num_dimensions());
        output_access.set_valid_region(win_out, ValidRegion(coord, output->tensor_shape()));
    }

    // Collapse along the Z direction
    // This collapse needs to be here in order to tune the Z dimension of LWS
    Window             collapsed             = win;
    const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
    collapsed                                = win.collapse(win, dimension_to_collapse);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, collapsed);
}
} // namespace

CLGEMMMatrixMultiplyKernel::CLGEMMMatrixMultiplyKernel()
    : _input0(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false), _has_vec_c(false)
{
}

void CLGEMMMatrixMultiplyKernel::configure(const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha, float beta,
                                           bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);

    // Perform validate step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), (input2 != nullptr) ? input2->info() : nullptr, output->info(), beta,
                                                  is_interleaved_transposed, reshape_info, fp_mixed_precision));

    _input0                   = input0;
    _input1                   = input1;
    _input2                   = input2;
    _output                   = output;
    _reinterpret_input_as_3d  = reshape_info.reinterpret_input_as_3d();
    _reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 0);

    // In case both input and output have to be reinterpreted as 3D tensors,
    // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
    if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
    {
        _reinterpret_input_as_3d  = false;
        _reinterpret_output_as_3d = false;
    }

    // Check if we need to slide the matrix B
    const unsigned int num_dimensions_input0 = _reinterpret_input_as_3d ? _input0->info()->num_dimensions() - 1 : _input0->info()->num_dimensions();

    _slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);

    const DataType data_type = input0->info()->data_type();

    // Get target architecture
    GPUTarget gpu_target = get_target();

    ElementsProcessed num_elements_processed{};

    // Configure kernel window
    auto win_config = validate_and_configure_window(input0->info(), input1->info(), (input2 != nullptr) ? input2->info() : nullptr, output->info(), beta, is_interleaved_transposed, reshape_info,
                                                    gpu_target, num_elements_processed);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    ICLKernel::configure_internal(win_config.second);

    // Create build options
    CLBuildOptions build_opts;

    // Only define ALPHA when alpha is not 1.0f. This avoids performing unnecessary multiplications.
    if(std::abs(1.0f - alpha) > 0.00001f)
    {
        build_opts.add_option("-DALPHA=" + float_to_string_with_full_precision(alpha));
    }
    build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
    build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
    build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
    build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));

    // Do not slide matrix B if _slide_matrix_b = false
    build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));

    const bool is_bifrost = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;

    _has_vec_c = input2 != nullptr && beta != 0.f;

    std::string kernel_name;
    if(is_interleaved_transposed)
    {
        const int mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
        const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();

        build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(input1->info()->dimension(0)));
        build_opts.add_option("-DMULT_TRANSPOSE1XW_WIDTH=" + support::cpp11::to_string(mult_transpose1xW_width));
        build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));

        if(is_data_type_float(data_type) && is_bifrost)
        {
            kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type)) + "_bifrost";
        }
        else
        {
            kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type));
            if(fp_mixed_precision && data_type == DataType::F16)
            {
                // currently wider accumulator is only supported for fp16 kernels.
                kernel_name += "_acc32";
            }
        }
    }
    else // The input tensors have not been reshaped
    {
        build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(input0->info()->dimension(0)));
        build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));

        // Create kernels according to the architecture, data type and input size.
        if(is_data_type_float(data_type) && is_bifrost)
        {
            kernel_name = "gemm_mm_floating_point";

            if(input0->info()->num_dimensions() != 1)
            {
                kernel_name += "_" + lower_string(string_from_data_type(data_type)) + "_bifrost";
                if(fp_mixed_precision && data_type == DataType::F16)
                {
                    // currently wider accumulator is only supported for fp16 kernels.
                    kernel_name += "_acc32";
                }
            }
            else if(input1->info()->dimension(0) <= 1000 && data_type == DataType::F32)
            {
                // The first kernel is optimized for the case of 1000 or less output elements (e.g. FC8 of AlexNet and VGG-16, and
                // FC1 of Inception v3). The second kernel is optimized for the case of greater than 1000 output elements (e.g.
                // FC6 and FC7 of AlexNet and VGG-16).
                kernel_name += "_" + lower_string(string_from_data_type(data_type)) + "_bifrost_1000";
            }

            // The work-group size equal to the Bifrost quad size has been proved to be optimal for these kernels
            // via exhaustive autotuning over a range of representative layer configurations.
            set_lws_hint(cl::NDRange(4));
        }
        else // (MIDGARD and F32) or (F16)
        {
            kernel_name = "gemm_mm_floating_point";
        }
        build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_Y=" + support::cpp11::to_string(num_elements_processed.y()));
        build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_X=" + support::cpp11::to_string(num_elements_processed.x()));
    }

    // Configure matrix C addition if necessary
    build_opts.add_option_if(_has_vec_c, "-DADD_VEC_C");

    // Create kernel
    _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));

    // Set config_id for enabling LWS tuning
    _config_id = "gemm_";
    _config_id += (is_interleaved_transposed ? "reshaped_" : "");
    _config_id += (fp_mixed_precision ? "fp_mixed_" : "");
    _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
    _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
    _config_id += lower_string(string_from_data_type(input0->info()->data_type()));
    _config_id += "_";
    _config_id += support::cpp11::to_string(output->info()->dimension(1));
    _config_id += "_";
    _config_id += support::cpp11::to_string(output->info()->dimension(0));
    _config_id += "_";
    _config_id += support::cpp11::to_string(output->info()->dimension(2));
    _config_id += "_";
    _config_id += support::cpp11::to_string(output->info()->dimension(3));
    _config_id += "_";
    _config_id += (is_interleaved_transposed ? support::cpp11::to_string(input1->info()->dimension(0)) : support::cpp11::to_string(input1->info()->dimension(1)));
}

Status CLGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float alpha, float beta,
                                            bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target, bool fp_mixed_precision)
{
    // Note: num_elements_processed will be set in validate_and_configure_window()
    ElementsProcessed num_elements_processed{};
    ARM_COMPUTE_UNUSED(alpha);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, input2, output, beta, is_interleaved_transposed, reshape_info, fp_mixed_precision));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
                                                              input1->clone().get(),
                                                              (input2 != nullptr) ? input2->clone().get() : nullptr,
                                                              output->clone().get(),
                                                              beta,
                                                              is_interleaved_transposed,
                                                              reshape_info,
                                                              gpu_target,
                                                              num_elements_processed)
                                .first);

    return Status{};
}

void CLGEMMMatrixMultiplyKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);

    if(_input1->info()->num_dimensions() < 3)
    {
        // The stride_z for matrix B must be zero if we do not slice
        ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
    }

    Window slice          = window.first_slice_window_3D();
    Window slice_matrix_b = slice;

    slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
    slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));

    const unsigned int num_arguments_vec_c = (_has_vec_c) ? num_arguments_per_1D_tensor() : 0;

    if(_reinterpret_input_as_3d)
    {
        // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
        const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3 + num_arguments_vec_c;
        const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
        _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
    }

    if(_reinterpret_output_as_3d)
    {
        // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
        const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0) + num_arguments_vec_c;
        const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
        _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
    }

    do
    {
        Window slice_b = slice;
        // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
        // This scenario can happen when the matrix multiplication is used to perform a convolution operation
        if(!_slide_matrix_b)
        {
            slice_b = slice_matrix_b;
        }

        unsigned int idx = 0;
        add_2D_tensor_argument(idx, _input0, slice);
        add_2D_tensor_argument(idx, _input1, slice_b);
        if(_has_vec_c)
        {
            add_1D_tensor_argument(idx, _input2, slice);
        }
        add_2D_tensor_argument(idx, _output, slice);
        _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
        _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
        _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
        enqueue(queue, *this, slice, lws_hint());
    }
    while(window.slide_window_slice_3D(slice));
}
} // namespace arm_compute