aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/kernels/CLArithmeticDivisionKernel.cpp
blob: e995ba1a4190334bd4d28c05594de4e6d3ec9e77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright (c) 2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/CL/kernels/CLArithmeticDivisionKernel.h"

#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLTensor.h"

using namespace arm_compute;

namespace
{
constexpr unsigned int num_elems_processed_per_iteration = 16;

Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input1);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);

    const TensorShape out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");

    // Validate in case of configured output
    if(output->total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0),
                                        "Wrong shape for output");
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
{
    const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
    const TensorShape &out_shape    = broadcast_pair.first;
    const ValidRegion &valid_region = broadcast_pair.second;

    // Auto initialize output if not initialized
    {
        set_shape_if_empty(*output, out_shape);

        if(input1->data_type() == DataType::F16 && input2->data_type() == DataType::F16)
        {
            set_format_if_unknown(*output, Format::F16);
        }
        else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
        {
            set_format_if_unknown(*output, Format::F32);
        }
    }

    Window win        = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
    Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
    Window win_input2 = win.broadcast_if_dimension_le_one(*input2);

    AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);

    bool window_changed = update_window_and_padding(win_input1, input1_access)
                          || update_window_and_padding(win_input2, input2_access)
                          || update_window_and_padding(win, output_access);

    output_access.set_valid_region(win, valid_region);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

CLArithmeticDivisionKernel::CLArithmeticDivisionKernel()
    : _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}

void CLArithmeticDivisionKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info()));

    // Configure kernel window
    auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);

    _input1 = input1;
    _input2 = input2;
    _output = output;

    // Set kernel build options
    std::set<std::string> build_opts;
    build_opts.emplace("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->info()->data_type()));
    build_opts.emplace("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->info()->data_type()));
    build_opts.emplace("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->info()->data_type()));

    // Create kernel
    _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("arithmetic_div", build_opts));

    ICLKernel::configure_internal(win_config.second);
}

Status CLArithmeticDivisionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);

    return Status{};
}

void CLArithmeticDivisionKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);

    const TensorShape &in_shape1 = _input1->info()->tensor_shape();
    const TensorShape &in_shape2 = _input2->info()->tensor_shape();
    const TensorShape &out_shape = _output->info()->tensor_shape();

    bool can_collapse = true;
    if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
    {
        can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
        for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++)
        {
            can_collapse = (in_shape1[d] == in_shape2[d]);
        }
    }

    bool   has_collapsed = false;
    Window collapsed     = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;

    const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
    const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;

    Window slice        = collapsed.first_slice_window_3D();
    Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
    Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);

    do
    {
        unsigned int idx = 0;

        add_3D_tensor_argument(idx, _input1, slice_input1);
        add_3D_tensor_argument(idx, _input2, slice_input2);
        add_3D_tensor_argument(idx, _output, slice);

        enqueue(queue, *this, slice);

        collapsed.slide_window_slice_3D(slice_input1);
        collapsed.slide_window_slice_3D(slice_input2);
    }
    while(collapsed.slide_window_slice_3D(slice));
}

BorderSize CLArithmeticDivisionKernel::border_size() const
{
    const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
    const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
    return BorderSize(0, border, 0, 0);
}