aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/kernels/convolution/winograd/transforms/output.hpp
blob: 77cd9de513f6e6fee0eb815ca9a7347986f1f491 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#pragma once
#include "../winograd_gemm.hpp"

namespace winograd
{
/***************************************************************************/
  /* Instance-less API */
  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void OutputTransformImpl<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::execute(
    const int n_batches,
    const int output_batch_stride,
    const int n_rows,
    const int output_row_stride,
    const int n_cols,
    const int output_col_stride,
    const int n_channels,
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output
  )
  {
    // Compute the number of tiles and hence the padding required on the bottom
    // and right of the image.
    const int tile_M = iceildiv(n_rows, OutputTileRows);
    const int tile_N = iceildiv(n_cols, OutputTileCols);
    const int pad_bottom = OutputTileRows*tile_M - n_rows;
    const int pad_right = OutputTileCols*tile_N - n_cols;

    const int matrix_tile_row_stride = tile_N * matrix_row_stride;
    const int matrix_batch_stride = tile_M * matrix_tile_row_stride;

    // Perform the output transformation for each batch
    for (int batch = 0; batch < n_batches; batch++)
    {
      // Get batch offset for input and outputs.
      const T* const matrix_batch = matrix_base + batch*matrix_batch_stride;
      T* const outptr_batch = output + batch*output_batch_stride;

      // Perform the output transformation for each row of the output tensor.
      for (int tile_i = 0; tile_i < tile_M; tile_i++)
      {
        // Compute properties of this row of output tiles
        const int row_pad_bottom = (tile_i < tile_M - 1) ? 0: pad_bottom;
        const T* const matrix_tile_row = matrix_batch + tile_i * matrix_tile_row_stride;
        T* const outptr_row = outptr_batch + OutputTileRows*tile_i*output_row_stride;

        // Process the row
        process_tile_row(
          tile_N, n_channels, matrix_tile_row, matrix_stride,
          matrix_row_stride, biases,
          outptr_row, output_row_stride, output_col_stride, row_pad_bottom,
          pad_right
        );
      }
    }
  }

template <int KernelRows, int InnerTileRows, typename T>
  void OutputTransformImpl<KernelRows, 1, InnerTileRows, 1, T>::execute(
    const int n_batches,
    const int output_batch_stride,
    const int n_rows,
    const int output_row_stride,
    const int n_cols,
    const int output_col_stride,
    const int n_channels,
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output
  )
  {
    // If an Nx1 kernel then transpose and redirect to the 1xN implementation.
    OutputTransformImpl<1, KernelRows, 1, InnerTileRows, T>::execute(
        n_batches,
        output_batch_stride,
        n_cols, output_col_stride,
        n_rows, output_row_stride,
        n_channels,
        matrix_base, matrix_stride, matrix_row_stride,
        biases, output
      );
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void OutputTransformImpl<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::process_tile_row(
    const int tile_N,
    const int n_channels,
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output,
    const int output_row_stride,
    const int output_col_stride,
    const int row_pad_bottom,
    const int row_pad_right
  )
  {
    // Loop over columns of tiles
    for (int tile_j = 0; tile_j < tile_N; tile_j++)
    {
      // Properties of this tile
      const int tile_pad_right = (tile_j < tile_N - 1) ? 0 : row_pad_right;
      const T* const matrix_row = matrix_base + tile_j * matrix_row_stride;
      T* const outptr = output + OutputTileCols *tile_j*output_col_stride;

      // Perform the output transformation
      const typename Tiles::TileFn tilefn = Tiles::get_tile_specialization(row_pad_bottom, tile_pad_right);
      tilefn(
        n_channels, matrix_row, matrix_stride, biases,
        outptr, output_row_stride, output_col_stride,
        row_pad_bottom, tile_pad_right
      );
    }
  }

/***************************************************************************/
  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  OutputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::OutputTransform(
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output,
    const int n_batches,
    const int n_rows,
    const int n_cols,
    const int n_channels,
    const int out_batch_stride,
    const int out_row_stride,
    const int out_col_stride
  ) : _matrix_base(matrix_base), _biases(biases),
      _matrix_stride(matrix_stride), _matrix_row_stride(matrix_row_stride),
      _outptr(output), _n_batches(n_batches), _n_rows(n_rows), _n_cols(n_cols),
      _n_channels(n_channels), _tile_M(iceildiv(n_rows, OutputTileRows)),
      _tile_N(iceildiv(n_cols, OutputTileCols)),
      _out_col_stride(out_col_stride ? out_col_stride : n_channels),
      _out_row_stride(out_row_stride ? out_row_stride : n_cols * _out_col_stride),
      _out_batch_stride(out_batch_stride ? out_batch_stride : n_rows * _out_row_stride)
  {
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  unsigned int OutputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::get_window() const
  {
    // The final window includes the tail, all other windows will be a multiple
    // of the window block in size.
    return iceildiv(_n_channels, WINDOW_BLOCK);
  }

template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void OutputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::run(
    const unsigned int start, const unsigned int stop
  )
  {
    if (start >= get_window())
    {
      return;
    }

    // Determine the window of work to perform
    const unsigned int start_channel = start * WINDOW_BLOCK;
    const unsigned int stop_channel = std::min<const unsigned int>(
      stop * WINDOW_BLOCK, _n_channels
    );
    const unsigned int n_channels = stop_channel - start_channel;

    execute(
      _n_batches,
      _out_batch_stride,
      _n_rows,
      _out_row_stride,
      _n_cols,
      _out_col_stride,
      n_channels,
      _matrix_base + start_channel,
      _matrix_stride,
      _matrix_row_stride,
      (_biases != nullptr) ? _biases + start_channel : nullptr,
      _outptr + start_channel
    );
  }

 template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void OutputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::execute(
    const int n_batches,
    const int out_batch_stride,
    const int n_rows,
    const int out_row_stride,
    const int n_cols,
    const int out_col_stride,
    const int n_channels,
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output
  )
  {
    Transform::execute(
      n_batches, out_batch_stride,
      n_rows, out_row_stride,
      n_cols, out_col_stride, n_channels,
      matrix_base, matrix_stride, matrix_row_stride,
      biases, output
    );
  }

  template <int KernelCols, int InnerTileCols, typename T>
  typename OutputTransformImplTiles<1, KernelCols, 1, InnerTileCols, T>::TileFn
    OutputTransformImplTiles<1, KernelCols, 1, InnerTileCols, T>::
      get_tile_specialization(const int pad_bottom, const int pad_right)
  {
    (void) pad_bottom;

    if (!pad_right)
    {
      // No padding, return unpadded specialisation
      return tilefn_unpadded;
    }
    else
    {
      return tilefn_right_padded[pad_right - 1];
    }
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  typename OutputTransformImplTiles<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::TileFn
    OutputTransformImplTiles<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::
      get_tile_specialization(const int pad_bottom, const int pad_right)
  {
    if (!(pad_bottom || pad_right))
    {
      // No padding, return unpadded specialisation
      return tilefn_unpadded;
    }
    else if (pad_bottom && !pad_right)
    {
      return tilefn_bottom_padded[pad_bottom - 1];
    }
    else if (!pad_bottom && pad_right)
    {
      return tilefn_right_padded[pad_right - 1];
    }
    else
    {
      return tilefn_generic;
    }
  }
}  // namespace winograd