aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/kernels/convolution/winograd/transforms/input.hpp
blob: b813bbb25c9610dd4a020d7c289b19b633838e6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#pragma once
#include "../winograd_gemm.hpp"

namespace winograd
{
  /***************************************************************************/
  /* Instance-less API */
  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void InputTransformImpl<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::execute(
    const T* const input,        /** Input tensor data */
    const int n_batches,         /** Number of batches in input tensor. */
    const int in_batch_stride,   /** Stride between batches of the input. */
    const int n_rows,            /** Number of rows in input tensor. */
    const int in_row_stride,     /** Stride between rows of the input. */
    const int n_cols,            /** Number of columns in input tensor. */
    const int in_col_stride,     /** Stride between columns of the input. */
    const int n_channels,        /** Number of channels in input tensor. */
    const PaddingType padding,   /** Padding type. */
    const int tile_M,
    const int tile_N,
    T* const output,             /** Base of output matrices. */
    const int matrix_stride,     /** Stride between output matrices. */
    const int matrix_batch_stride,  /** Stride between batches within the matrix. */
    const int matrix_row_stride  /** Stride within matrices. */
  )
  {
    // Compute the padding required on each edge of the image
    const int pad_top = (padding == PADDING_SAME) ? (KernelRows - 1) / 2 : 0;
    const int pad_left = (padding == PADDING_SAME) ? (KernelCols - 1) / 2 : 0;

    // Compute striding values (assuming NHWC ordered data)
    const int output_col_stride = matrix_row_stride;
    const int output_row_stride = tile_N * output_col_stride;

    // Loop over batches
    for (int batch = 0; batch < n_batches; batch++)
    {
      // Pointer to the batch
      const T* const input_base_batch = input + batch * in_batch_stride;
      T* const outptr_base_batch = output + batch * matrix_batch_stride;

      // Loop over rows of tiles
      for (int tile_i = 0; tile_i < tile_M; tile_i++)
      {
        // Padding (top + bottom) for the row
        const int row_top = tile_i*(InnerTileRows - overlap_rows) - pad_top;
        const int row_bottom = row_top + InnerTileRows;
        const int row_pad_top = std::max(0, pad_top - tile_i*(InnerTileRows - overlap_rows));
        const int row_pad_bottom = (row_bottom <= n_rows) ? 0 : row_bottom - n_rows;

        // Pointer to the row
        const int row_offset = std::min(0, row_pad_top - pad_top);
        const T* const input_base_row = (
          input_base_batch + ((InnerTileRows - overlap_rows)*tile_i + row_offset)*in_row_stride
        );
        T* const outptr_base_row = outptr_base_batch + tile_i*output_row_stride;

        // Process the row
        process_tile_row(
          tile_N, n_channels,
          input_base_row, in_row_stride, in_col_stride,
          outptr_base_row, matrix_stride, matrix_row_stride,
          row_pad_top, pad_left, row_pad_bottom, n_cols
        );
      }
    }
  }


  template <int KernelRows, int InnerTileRows, typename T>
  void InputTransformImpl<KernelRows, 1, InnerTileRows, 1, T>::execute(
    const T* const input,        /** Input tensor data */
    const int n_batches,         /** Number of batches in input tensor. */
    const int in_batch_stride,   /** Stride between batches of the input. */
    const int n_rows,            /** Number of rows in input tensor. */
    const int in_row_stride,     /** Stride between rows of the input. */
    const int n_cols,            /** Number of columns in input tensor. */
    const int in_col_stride,     /** Stride between columns of the input. */
    const int n_channels,        /** Number of channels in input tensor. */
    const PaddingType padding,   /** Padding type. */
    const int tile_M,
    const int tile_N,
    T* const output,             /** Base of output matrices. */
    const int matrix_stride,     /** Stride between output matrices. */
    const int matrix_batch_stride,  /** Stride between batches within the matrix. */
    const int matrix_row_stride  /** Stride within matrices. */
  )
  {
    // If an Nx1 kernel then transpose and redirect to the 1xN implementation
    InputTransformImpl<1, KernelRows, 1, InnerTileRows, T>::execute(
      input,
      n_batches, in_batch_stride,
      n_cols, in_col_stride,
      n_rows, in_row_stride,
      n_channels, padding,
      tile_N, tile_M,
      output, matrix_stride, matrix_batch_stride, matrix_row_stride
    );
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void InputTransformImpl<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::process_tile_row(
    const int tile_N,
    int n_channels,
    const T* const input_base,
    const int input_row_stride,
    const int input_col_stride,
    T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const int pad_top,
    const int row_pad_left,
    const int pad_bottom,
    const int n_cols
  )
  {
    // Loop over columns of tiles
    for (int tile_j = 0; tile_j < tile_N; tile_j++)
    {
      // Padding (left + right) for the tile
      const int t_start = tile_j*(InnerTileCols - overlap_cols) - row_pad_left;
      const int t_end = t_start + InnerTileCols;
      const int t_pad_left = std::max(0, row_pad_left - tile_j*(InnerTileCols - overlap_cols));
      const int t_pad_right = (t_end <= n_cols) ? 0 : t_end - n_cols;

      // Get pointers into the inputs and outputs
      const int col_offset = std::min(0, t_pad_left - row_pad_left);
      const T* const input_base_col = (
        input_base + ((InnerTileCols - overlap_cols)*tile_j + col_offset)*input_col_stride
      );
      T* const outptr = matrix_base + tile_j*matrix_row_stride;

      // Apply the specific tile processing function
      const typename Tiles::TileFn tilefn = Tiles::get_tile_specialization(
        pad_top, t_pad_left, pad_bottom, t_pad_right
      );

      tilefn(
        n_channels,
        input_base_col, input_row_stride, input_col_stride,
        outptr, matrix_stride,
        pad_top, t_pad_left, pad_bottom, t_pad_right
      );
    }
  }

  /***************************************************************************/
  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::InputTransform(
    const T* const input,        /** Input tensor data */
    const int n_batches,         /** Number of batches in input tensor. */
    const int n_rows,            /** Number of rows in input tensor. */
    const int n_cols,            /** Number of columns in input tensor. */
    const int n_channels,        /** Number of channels in input tensor. */
    const PaddingType padding,   /** Padding type. */
    T* const output,             /** Base of output matrices. */
    const int matrix_stride,     /** Stride between output matrices. */
    const int matrix_row_stride, /** Stride within matrices. */
    const int in_batch_stride,   /** Stride between input batches. */
    const int in_row_stride,     /** Stride between input rows. */
    const int in_col_stride      /** Stride between input columns. */
  ) : _inptr(input), _outptr(output),
      _n_batches(n_batches), _n_rows(n_rows), _n_cols(n_cols), _n_channels(n_channels),
      _matrix_stride(matrix_stride), _matrix_row_stride(matrix_row_stride),
      _tiles_M(iceildiv((padding == PADDING_SAME) ? n_rows : n_rows - KernelRows + 1,
                        InnerTileRows - KernelRows + 1)),
      _tiles_N(iceildiv((padding == PADDING_SAME) ? n_cols : n_cols - KernelCols + 1,
                        InnerTileCols - KernelCols + 1)),
      _in_col_stride(in_col_stride ? in_col_stride : n_channels),
      _in_row_stride(in_row_stride ? in_row_stride : n_cols * _in_col_stride),
      _in_batch_stride(in_batch_stride ? in_batch_stride : n_rows * _in_row_stride),
      _padding_type(padding)
  {
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  unsigned int InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::get_window() const
  {
    // The final window includes the tail, all other windows will be a multiple
    // of the window block in size.
    return iceildiv(_n_channels, WINDOW_BLOCK);
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::run(
    const unsigned int start, const unsigned int stop
  )
  {
    if (start >= get_window())
    {
      return;
    }

    // Determine the window of work to perform
    const unsigned int start_channel = start * WINDOW_BLOCK;
    const unsigned int stop_channel = std::min<const unsigned int>(
      stop * WINDOW_BLOCK, _n_channels
    );
    const unsigned int n_channels = stop_channel - start_channel;

    // Perform the work
    execute(
      _inptr + start_channel,
      _n_batches, _in_batch_stride,
      _n_rows, _in_row_stride,
      _n_cols, _in_col_stride,
      n_channels,
      _padding_type,
      _tiles_M,
      _tiles_N,
      _outptr + start_channel,
      _matrix_stride,
      _matrix_row_stride * _tiles_M * _tiles_N,
      _matrix_row_stride
    );
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  void InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::execute(
    const T* const input,        /** Input tensor data */
    const int n_batches,         /** Number of batches in input tensor. */
    const int in_batch_stride,   /** Stride between batches of the input. */
    const int n_rows,            /** Number of rows in input tensor. */
    const int in_row_stride,     /** Stride between rows of the input. */
    const int n_cols,            /** Number of columns in input tensor. */
    const int in_col_stride,     /** Stride between columns of the input. */
    const int n_channels,        /** Number of channels in input tensor. */
    const PaddingType padding,   /** Padding type. */
    const int tile_M,
    const int tile_N,
    T* const output,             /** Base of output matrices. */
    const int matrix_stride,     /** Stride between output matrices. */
    const int matrix_batch_stride,  /** Stride between batches within the matrix. */
    const int matrix_row_stride  /** Stride within matrices. */
  )
  {
    Transform::execute(
      input, n_batches, in_batch_stride, n_rows, in_row_stride, n_cols,
      in_col_stride, n_channels, padding, tile_M, tile_N, output,
      matrix_stride, matrix_batch_stride, matrix_row_stride
    );
  }

  template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
  typename InputTransformImplTiles<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::TileFn
    InputTransformImplTiles<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::
      get_tile_specialization(
        const int pad_top,
        const int pad_left,
        const int pad_bottom,
        const int pad_right
      )
  {
    if (!(pad_top || pad_left || pad_bottom || pad_right))
    {
      // No padding, return unpadded specialisation
      return tilefn_unpadded;
    }
    else if (pad_top && !(pad_left || pad_bottom || pad_right))
    {
      // Top padding only
      const int index = (pad_top - min_pad_top) / (InnerTileRows - overlap_rows);
      return tilefn_top_padded[index];
    }
    else if (!(pad_top) && pad_left && !(pad_bottom || pad_right))
    {
      // Left padding only
      const int index = (pad_left - min_pad_left) / (InnerTileCols - overlap_cols);
      return tilefn_left_padded[index];
    }
    else if (!(pad_top || pad_left) && pad_bottom && !(pad_right))
    {
      // Bottom padding only
      return tilefn_bottom_padded[pad_bottom - 1];
    }
    else if (!(pad_top || pad_left || pad_bottom) && pad_right)
    {
      // Right padding only
      return tilefn_right_padded[pad_right - 1];
    }
    else
    {
      // Combination of paddings, return an unspecialised method
      return tilefn_generic;
    }
  }

  template <int KernelCols, int InnerTileCols, typename T>
  typename InputTransformImplTiles<1, KernelCols, 1, InnerTileCols, T>::TileFn
    InputTransformImplTiles<1, KernelCols, 1, InnerTileCols, T>::
      get_tile_specialization(
        const int pad_top,
        const int pad_left,
        const int pad_bottom,
        const int pad_right
      )
  {
    (void) pad_top;
    (void) pad_bottom;

    if (!(pad_left || pad_right))
    {
      // No padding, return unpadded specialisation
      return tilefn_unpadded;
    }
    else if (pad_left && !pad_right)
    {
      // Left padding only
      const int index = (pad_left - min_pad_left) / (InnerTileCols - overlap_cols);
      return tilefn_left_padded[index];
    }
    else if (!pad_left && pad_right)
    {
      // Right padding only
      return tilefn_right_padded[pad_right - 1];
    }
    else
    {
      // Combination of paddings, return an unspecialised method
      return tilefn_generic;
    }
  }
}