aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/NEAsymm.h
blob: faff59563b9f8f7197962f7f716b164b711a0c2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_NEASYMM_H__
#define __ARM_COMPUTE_NEASYMM_H__

#include <arm_neon.h>

namespace arm_compute
{
using qasymm8x8_t   = uint8x8_t;   /**< 8 bit quantized asymmetric vector with 8 elements */
using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
using qasymm8x16_t  = uint8x16_t;  /**< 8 bit quantized asymmetric vector with 16 elements */

/** Round to the nearest division by a power-of-two using exponent
 *
 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
 *
 * @param[in] x        Vector of 4 elements
 * @param[in] exponent Integer value used to round to nearest division by a power-of-two
 *
 * @return the nearest division by a power-of-two using exponent
 */
int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent);

/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
 *
 * vd*vs + vo
 *
 * @param[in] vd Input vector value in QASYMM8 format
 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
 *
 * @return A 16-component vector in QASYMM8 format, saturated to fit
 */
uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);

/** Performs final quantization step on 16 elements
 *
 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
 *
 * @param in_s32                        Input to be quantized.
 * @param result_fixedpoint_multiplier  Result multiplier parameter
 * @param result_shift                  Result shift parameter
 * @param result_offset_after_shift_s32 Result offset parameter
 * @param min_u8                        Relu lower bound
 * @param max_u8                        Relu upper bound
 *
 * @return Quantized values
 */
template <bool is_bounded_relu>
uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
                                 int          result_fixedpoint_multiplier,
                                 int32_t      result_shift,
                                 int32x4_t    result_offset_after_shift_s32,
                                 uint8x16_t   min_u8,
                                 uint8x16_t   max_u8)
{
    const static int32x4_t zero_s32 = vdupq_n_s32(0);

    // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
    in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
    in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
    in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
    in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);

    // Round to the nearest division by a power-of-two using result_shift_s32
    in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
    in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
    in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
    in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);

    // Add the offset terms
    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);

    // Saturate negative values
    in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
    in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
    in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
    in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);

    // Convert S32 to S16
    const int16x8x2_t in_s16 =
    {
        {
            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
        }
    };

    // Convert S16 to U8
    uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));

    if(is_bounded_relu)
    {
        out_u8 = vmaxq_u8(out_u8, min_u8);
        out_u8 = vminq_u8(out_u8, max_u8);
    }

    return out_u8;
}
} // namespace arm_compute
#include "arm_compute/core/NEON/NEAsymm.inl"
#endif // __ARM_COMPUTE_NEASYMM_H__