aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/GEMMFixture.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/validation/fixtures/GEMMFixture.h')
-rw-r--r--tests/validation/fixtures/GEMMFixture.h500
1 files changed, 500 insertions, 0 deletions
diff --git a/tests/validation/fixtures/GEMMFixture.h b/tests/validation/fixtures/GEMMFixture.h
index ac8ab2a949..b36bb99246 100644
--- a/tests/validation/fixtures/GEMMFixture.h
+++ b/tests/validation/fixtures/GEMMFixture.h
@@ -153,6 +153,506 @@ protected:
SimpleTensor<T> _reference{};
};
+template <typename TensorType, typename AccessorType, typename T, typename GEMMFunctionType>
+class GEMMMatrixMultiplyValidationFixture : public framework::Fixture
+{
+public:
+ template <typename...>
+ void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, bool broadcast_bias, bool fp16_mixed_precision, const ActivationLayerInfo &act_info,
+ DataType data_type, GPUTarget gpu_arch)
+ {
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+ const TensorShape bias_shape(n,
+ broadcast_bias ? 1 : m,
+ broadcast_bias ? 1 : batch_size);
+
+ _target = compute_target(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, broadcast_bias, fp16_mixed_precision, act_info, gpu_arch);
+ _reference = compute_reference(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, broadcast_bias, act_info);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
+ library->fill(tensor, distribution, i);
+
+ // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
+ std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
+ library->fill_borders_with_garbage(tensor, distribution_inf, i);
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
+ bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
+ TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
+ TensorType dst;
+
+ const unsigned int m = lhs_shape[1];
+ const unsigned int n = rhs_shape[0];
+ const unsigned int k = lhs_shape[0];
+ GEMMReshapeInfo reshape_info(m, n, k, 1, 1, 0, false, broadcast_bias);
+
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ GEMMFunctionType gemm;
+ gemm.configure(gpu_arch, &lhs, &rhs, &bias, &dst, alpha, beta, false, reshape_info, fp16_mixed_precision, act_info);
+
+ ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ bias.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+ fill(AccessorType(bias), 2);
+
+ // Compute GEMM
+ gemm.run();
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
+ const ActivationLayerInfo &act_info)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape[0] = rhs_shape[0];
+ dst_shape[1] = lhs_shape[1];
+
+ // Create reference
+ SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<T> bias{ dst_shape, data_type, 1 };
+
+ const int n = rhs_shape[0];
+ const int m = lhs_shape[1];
+ const int batch_size = lhs_shape[2];
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+ fill(bias, 2);
+
+ if(broadcast_bias)
+ {
+ // In case of broadcast, we need simply copy the first into the following "M" ones
+ for(int i = 1; i < m * batch_size; i++)
+ {
+ memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
+ }
+ }
+
+ return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
+ }
+
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
+template <typename TensorType, typename AccessorType, typename T, typename GEMMFunctionType>
+class GEMMMatrixMultiply3DValidationFixture : public framework::Fixture
+{
+public:
+ template <typename...>
+ void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, bool broadcast_bias, bool fp16_mixed_precision,
+ const ActivationLayerInfo &act_info, DataType data_type, GPUTarget gpu_arch)
+ {
+ // In case of GEMM3D, m is the product between m_w and m_h
+ const unsigned int m = m_w * m_h;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+ const TensorShape bias_shape(n, 1, 1);
+
+ _target = compute_target(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, m_h, fp16_mixed_precision, act_info, gpu_arch);
+ _reference = compute_reference(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, m_h, act_info);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
+ library->fill(tensor, distribution, i);
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
+ bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
+ TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
+ TensorType dst;
+
+ const unsigned int m = lhs_shape[1];
+ const unsigned int n = rhs_shape[0];
+ const unsigned int k = lhs_shape[0];
+ GEMMReshapeInfo reshape_info(m, n, k, 1, 1, m_h, false, true);
+
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ GEMMFunctionType gemm;
+ gemm.configure(gpu_arch, &lhs, &rhs, &bias, &dst, alpha, beta, false, reshape_info, fp16_mixed_precision, act_info);
+
+ ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ bias.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+ fill(AccessorType(bias), 2);
+
+ // Compute GEMM
+ gemm.run();
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
+ const ActivationLayerInfo &act_info)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape.set(0, rhs_shape[0]);
+ dst_shape.set(1, lhs_shape[1] / m_h);
+ dst_shape.set(2, m_h);
+ dst_shape.set(3, lhs_shape[2]);
+
+ // Create reference
+ SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<T> bias{ dst_shape, data_type, 1 };
+
+ const int n = rhs_shape[0];
+ const int m = lhs_shape[1];
+ const int batch_size = lhs_shape[2];
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+ fill(bias, 2);
+
+ // In case of broadcast, we need simply copy the first into the following "M" ones
+ for(int i = 1; i < m * batch_size; i++)
+ {
+ memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
+ }
+
+ return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
+ }
+
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
+template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
+class GEMMMatrixMultiplyInterleavedTransposedValidationFixture : public framework::Fixture
+{
+public:
+ template <typename...>
+ void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, unsigned int v0, unsigned int h0, bool broadcast_bias, bool fp16_mixed_precision,
+ const ActivationLayerInfo &act_info, DataType data_type, GPUTarget gpu_arch)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = 4;
+ lhs_info.k0 = 4;
+ lhs_info.v0 = v0;
+ lhs_info.interleave = true;
+ lhs_info.transpose = true;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = 16 / sizeof(T);
+ rhs_info.k0 = 1;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = false;
+ rhs_info.transpose = false;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+ const TensorShape bias_shape(n,
+ broadcast_bias ? 1 : m,
+ broadcast_bias ? 1 : batch_size);
+
+ _target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, fp16_mixed_precision, act_info, gpu_arch);
+ _reference = compute_reference(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, broadcast_bias, act_info);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
+ library->fill(tensor, distribution, i);
+
+ // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
+ std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
+ library->fill_borders_with_garbage(tensor, distribution_inf, i);
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ DataType data_type, float alpha, float beta, bool broadcast_bias, bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
+ TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
+ TensorType lhs_reshaped;
+ TensorType rhs_reshaped;
+ TensorType dst;
+
+ const unsigned int m = lhs_shape[1];
+ const unsigned int n = rhs_shape[0];
+ const unsigned int k = lhs_shape[0];
+ GEMMReshapeInfo reshape_info(m, n, k, rhs_info.h0, lhs_info.v0, 0, false, broadcast_bias);
+
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ ReshapeLHSFunctionType reshape_lhs;
+ ReshapeRHSFunctionType reshape_rhs;
+ GEMMFunctionType gemm;
+ reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
+ reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
+ gemm.configure(gpu_arch, &lhs_reshaped, &rhs_reshaped, &bias, &dst, alpha, beta, true, reshape_info, fp16_mixed_precision, act_info);
+
+ ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ lhs_reshaped.allocator()->allocate();
+ rhs_reshaped.allocator()->allocate();
+ bias.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+ fill(AccessorType(bias), 2);
+
+ // Compute GEMM
+ reshape_lhs.run();
+ reshape_rhs.run();
+ gemm.run();
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
+ const ActivationLayerInfo &act_info)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape[0] = rhs_shape[0];
+ dst_shape[1] = lhs_shape[1];
+
+ // Create reference
+ SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<T> bias{ dst_shape, data_type, 1 };
+
+ const int n = rhs_shape[0];
+ const int m = lhs_shape[1];
+ const int batch_size = lhs_shape[2];
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+ fill(bias, 2);
+
+ if(broadcast_bias)
+ {
+ // In case of broadcast, we need simply copy the first into the following "M" ones
+ for(int i = 1; i < m * batch_size; i++)
+ {
+ memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
+ }
+ }
+
+ return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
+ }
+
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
+template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
+class GEMMMatrixMultiplyInterleavedTransposed3DValidationFixture : public framework::Fixture
+{
+public:
+ template <typename...>
+ void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, unsigned int v0, unsigned int h0, bool broadcast_bias,
+ bool fp16_mixed_precision, const ActivationLayerInfo &act_info, DataType data_type, GPUTarget gpu_arch)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = 4;
+ lhs_info.k0 = 4;
+ lhs_info.v0 = v0;
+ lhs_info.interleave = true;
+ lhs_info.transpose = true;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = 16 / sizeof(T);
+ rhs_info.k0 = 1;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = false;
+ rhs_info.transpose = false;
+
+ // In case of GEMM3D, m is the product between m_w and m_h
+ const unsigned int m = m_w * m_h;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+ const TensorShape bias_shape(n, 1, 1);
+
+ _target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, m_h, fp16_mixed_precision, act_info, gpu_arch);
+ _reference = compute_reference(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, m_h, act_info);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
+ library->fill(tensor, distribution, i);
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ DataType data_type, float alpha, float beta, unsigned int m_h, bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
+ TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
+ TensorType lhs_reshaped;
+ TensorType rhs_reshaped;
+ TensorType dst;
+
+ const unsigned int m = lhs_shape[1];
+ const unsigned int n = rhs_shape[0];
+ const unsigned int k = lhs_shape[0];
+ GEMMReshapeInfo reshape_info(m, n, k, rhs_info.h0, lhs_info.v0, m_h, false, true);
+
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ ReshapeLHSFunctionType reshape_lhs;
+ ReshapeRHSFunctionType reshape_rhs;
+ GEMMFunctionType gemm;
+ reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
+ reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
+ gemm.configure(gpu_arch, &lhs_reshaped, &rhs_reshaped, &bias, &dst, alpha, beta, true, reshape_info, fp16_mixed_precision, act_info);
+
+ ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ lhs_reshaped.allocator()->allocate();
+ rhs_reshaped.allocator()->allocate();
+ bias.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+ fill(AccessorType(bias), 2);
+
+ // Compute GEMM
+ reshape_lhs.run();
+ reshape_rhs.run();
+ gemm.run();
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
+ const ActivationLayerInfo &act_info)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape.set(0, rhs_shape[0]);
+ dst_shape.set(1, lhs_shape[1] / m_h);
+ dst_shape.set(2, m_h);
+ dst_shape.set(3, lhs_shape[2]);
+
+ // Create reference
+ SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<T> bias{ dst_shape, data_type, 1 };
+
+ const int n = rhs_shape[0];
+ const int m = lhs_shape[1];
+ const int batch_size = lhs_shape[2];
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+ fill(bias, 2);
+
+ // In case of broadcast, we need simply copy the first into the following "M" ones
+ for(int i = 1; i < m * batch_size; i++)
+ {
+ memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
+ }
+
+ return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
+ }
+
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
class GEMMMatrixMultiplyReshapedValidationFixture : public framework::Fixture
{