aboutsummaryrefslogtreecommitdiff
path: root/src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp')
-rw-r--r--src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp472
1 files changed, 472 insertions, 0 deletions
diff --git a/src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp b/src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp
new file mode 100644
index 0000000000..5df4438afe
--- /dev/null
+++ b/src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp
@@ -0,0 +1,472 @@
+/*
+ * Copyright (c) 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "ClTemplatePool2d.h"
+
+#include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h"
+#include "src/dynamic_fusion/sketch/gpu/components/cl/ClComponentDirectConv2d.h"
+
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include "support/StringSupport.h"
+
+namespace arm_compute
+{
+namespace experimental
+{
+namespace dynamic_fusion
+{
+namespace
+{
+// Shape indexes for NHWC Datalayout
+constexpr static int32_t batch_idx = 3;
+constexpr static int32_t height_idx = 2;
+constexpr static int32_t width_idx = 1;
+constexpr static int32_t channel_idx = 0;
+}
+ClTemplatePool2d::ClTemplatePool2d(ComponentId id,
+ const ArgumentPack<ITensorInfo> &tensors,
+ const Attributes &attributes,
+ const Settings &settings)
+ : IGpuTemplateComponentWriter{ id, tensors },
+ _src{},
+ _dst{},
+ _attributes{ attributes },
+ _settings{ settings }
+{
+ _src = this->tensors().get_const_tensor(TensorType::ACL_SRC_0);
+ _dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(_src, _dst);
+}
+
+std::string ClTemplatePool2d::get_name() const
+{
+ return "pool2d";
+}
+
+std::string ClTemplatePool2d::get_component_code(const ComponentGroup &comp_group) const
+{
+ ARM_COMPUTE_UNUSED(comp_group);
+
+ // Condition to use 2x2 optimized kernel
+ if(_attributes.pool_size() == Size2D(2, 2))
+ {
+ return get_2x2_kernel_code();
+ }
+ else
+ {
+ return get_MxN_kernel_code();
+ }
+}
+
+std::string ClTemplatePool2d::get_MxN_kernel_code() const
+{
+ const auto pool_type = _attributes.pool_type();
+ const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && _settings.mixed_precision() && pool_type != PoolingType::MAX;
+
+ // Define pool op macro.
+ std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_" : R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_";
+
+ // Kernel start
+ // Note: If C is not multiple of N0, we shift back of PARTIAL_N0 elements to compute the leftover elements for get_global_id(0) == 0
+ // Note: If C is less than N0, N0 should be SHRINKED to the closest smaller N0. This operation is performed on the host side
+ std::string code = R"_(
+//------------------ START KERNEL {{meta_kernel_id}} ---------------------
+// IN_0(src) {{src}}
+// OUT(dst, accum) {{dst}}
+
+{
+ const int idx_out_c = g_ind_0;
+ const int idx_out_w = g_ind_1;
+)_";
+
+ // Add macro for POOL_OP
+ code += "\n" + pool_op + "\n";
+
+ code += R"_(
+ const int idx_out_h = g_ind_2 % {{DST_HEIGHT}};
+ const int idx_out_n = g_ind_2 / {{DST_HEIGHT}};
+)_";
+
+ // Define common variables.
+ code += R"_(
+ __global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w;
+
+ __global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n * {{dst}}_stride_w;
+
+ VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
+ res0 = {{INITIAL_VALUE}};
+
+ const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}};
+ const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}};
+
+ const int pool_x_s = max((int)0, -idx_in_w);
+ const int pool_x_e = min((int){{POOL_SIZE_X}}, (int){{SRC_WIDTH}} - idx_in_w);
+ const int pool_y_s = max((int)0, -idx_in_h);
+ const int pool_y_e = min((int){{POOL_SIZE_Y}}, (int){{SRC_HEIGHT}} - idx_in_h);
+)_";
+
+ // Determine filter size depending on if padding is excluded or not
+ if(_attributes.exclude_padding())
+ {
+ code += R"_(
+ const int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
+)_";
+ }
+ else
+ {
+ code += R"_(
+ const int filter_size = {{POOL_SIZE_X}} * {{POOL_SIZE_Y}};
+)_";
+ }
+
+ // Loop through pool size
+ // if global pooling
+ if(_attributes.pool_size().x() == _src->dimension(width_idx) && _attributes.pool_size().y() == _src->dimension(height_idx))
+ {
+ // Begin loop
+ code += R"_(
+ // Global pooling path
+ for(int y = 0; y < {{POOL_SIZE_Y}}; ++y)
+ {
+ #pragma unroll 8
+ for(int x = 0; x < {{POOL_SIZE_X}}; ++x)
+ {
+ VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
+ data0;
+)_";
+ }
+ else // if local pooling size
+ {
+ code += R"_(
+ for(int y = pool_y_s; y < pool_y_e; ++y)
+ {
+ #pragma unroll 8
+ for(int x = pool_x_s; x < pool_x_e; ++x)
+ {
+ VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
+ data0;
+)_";
+ } // end else
+
+ // if condition inside loop - use 32bit acc if mixed_precision.
+ // End loop through pooling section.
+ if(fp_mixed_precision)
+ {
+ // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
+ code += R"_(
+ data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
+ res0 = POOL_OP(res0, data0);
+ }
+ }
+)_";
+ }
+ else // load data, compute result and end loop
+ {
+ code += R"_(
+ data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z));
+ res0 = POOL_OP(res0, data0);
+ }
+ }
+)_";
+ }
+
+ // For Pool AVG ONLY, divide pool output by filter size
+ if(pool_type == PoolingType::AVG)
+ {
+ code += R"_(
+ res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size;
+)_";
+ }
+
+ // If mixed precision convert datatype before storing. Then end kernel.
+ if(fp_mixed_precision)
+ {
+ code += R"_(
+ VEC_DATA_TYPE({{DATA_TYPE}}, N0)
+ res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0));
+ STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
+)_";
+ }
+ else
+ {
+ // Store data
+ code += R"_(
+ STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
+)_";
+ }
+
+ code += R"_(
+//------------------ END KERNEL {{meta_kernel_id}} ---------------------
+}
+)_";
+
+ return code;
+}
+
+std::string ClTemplatePool2d::get_2x2_kernel_code() const
+{
+ const auto pool_type = _attributes.pool_type();
+ const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && _settings.mixed_precision() && pool_type != PoolingType::MAX;
+ std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_" : R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_";
+
+ std::string code = R"_(
+//------------------ START KERNEL {{meta_kernel_id}} ---------------------
+// IN_0(src) {{src}}
+// OUT(dst, accum) {{dst}}
+
+#define SELECT_TYPE SELECT_VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
+
+{
+ const int idx_out_c = g_ind_0;
+ const int idx_out_w = g_ind_1;
+)_";
+
+ // Add pool op macro
+ code += "\n" + pool_op + "\n";
+
+ // If batch size != 1, the batch size dimension is collapsed over the height dimension
+ code += R"_(
+ const int idx_out_h = g_ind_2 % {{DST_HEIGHT}};
+ const int idx_out_n = g_ind_2 / {{DST_HEIGHT}};
+)_";
+
+ code += R"_(
+ const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}};
+ const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}};
+
+ __global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w;
+ __global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n *
+ {{dst}}_stride_w;
+ const int pool_x_s = max((int)0, -idx_in_w);
+ const int pool_x_e = min((int)2, (int){{SRC_WIDTH}} - idx_in_w);
+ const int pool_y_s = max((int)0, -idx_in_h);
+ const int pool_y_e = min((int)2, (int){{SRC_HEIGHT}} - idx_in_h);
+
+ const int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);
+ const int x0 = pool_x_s + idx_in_w;
+ const int y0 = pool_y_s + idx_in_h;
+ const int x1 = pool_x_e - 1 + idx_in_w;
+ const int y1 = pool_y_e - 1 + idx_in_h;
+
+ REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0), data, 0);
+)_";
+
+ if(fp_mixed_precision)
+ {
+ // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
+ code += R"_(
+ data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
+ data1 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
+ data2 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
+ data3 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
+)_";
+ }
+ else
+ {
+ code += R"_(
+ data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z));
+ data1 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z));
+ data2 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z));
+ data3 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z));
+)_";
+ }
+
+ if(pool_type != PoolingType::MAX)
+ {
+ // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
+ code += R"_(
+ if(filter_size != 4)
+ {
+ SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
+ SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)({{SRC_WIDTH}} - 1);
+ SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
+ SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)({{SRC_HEIGHT}} - 1);
+
+ data0 = select(data0, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_s));
+ data1 = select(data1, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_s));
+ data2 = select(data2, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_e));
+ data3 = select(data3, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_e));
+ }
+)_";
+ }
+
+ code += R"_(
+ VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
+ res0 = data0;
+ res0 = POOL_OP(res0, data1);
+ res0 = POOL_OP(res0, data2);
+ res0 = POOL_OP(res0, data3);
+)_";
+
+ if(pool_type == PoolingType::AVG)
+ {
+ // If avg pooling divide result accordingly.
+ if(_attributes.exclude_padding())
+ {
+ code += R"_(
+ res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size;
+)_";
+ }
+ else
+ {
+ code += R"_(
+ res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))4;
+)_";
+ }
+ }
+
+ // Store result
+ if(fp_mixed_precision)
+ {
+ code += R"_(
+ VEC_DATA_TYPE({{DATA_TYPE}}, N0)
+ res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0));
+ STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
+)_";
+ }
+ else
+ {
+ code += R"_(
+ STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
+)_";
+ }
+
+ code += R"_(
+ //------------------ END KERNEL {{meta_kernel_id}} ---------------------
+}
+#undef SELECT_TYPE
+)_";
+
+ return code;
+}
+
+void ClTemplatePool2d::declare_variables(GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
+{
+ vtable.declare_variable(
+ comp_group,
+ _src,
+ GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer),
+ "src");
+
+ vtable.declare_variable(
+ comp_group,
+ _dst,
+ GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer),
+ "dst");
+}
+
+TagLUT ClTemplatePool2d::get_tag_lut(const GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
+{
+ ARM_COMPUTE_UNUSED(comp_group);
+
+ TagLUT lut{};
+ // Arguments and global shared variables
+ lut["src"] = vtable.get_variable(_src);
+ lut["dst"] = vtable.get_variable(_dst);
+
+ // Local build options
+ lut["meta_kernel_id"] = id();
+
+ // Retrieve relevant data
+ const auto padding = _attributes.pad();
+ const auto stride = _attributes.stride();
+ const auto pool_size = _attributes.pool_size();
+ const auto data_type = _src->data_type();
+ const auto use_fp_mixed_precision = (_src->data_type() == DataType::F16) && _settings.mixed_precision() && _attributes.pool_type() != PoolingType::MAX;
+
+ // pool specific
+ lut["STRIDE_X"] = stride.x();
+ lut["STRIDE_Y"] = stride.y();
+ lut["PAD_X"] = padding.left;
+ lut["PAD_Y"] = padding.top;
+ lut["POOL_SIZE_X"] = pool_size.width;
+ lut["POOL_SIZE_Y"] = pool_size.height;
+
+ // Datatypes and variables
+ lut["ACC_DATA_TYPE"] = get_cl_type_from_data_type((use_fp_mixed_precision) ? (DataType::F32) : (data_type)); // Type of accumulators to use.
+ lut["DATA_TYPE"] = get_cl_type_from_data_type(data_type);
+ lut["SRC_WIDTH"] = _src->dimension(width_idx);
+ lut["SRC_HEIGHT"] = _src->dimension(height_idx);
+ lut["INITIAL_VALUE"] = (_attributes.pool_type() == PoolingType::MAX) ? float_to_string_with_full_precision(std::numeric_limits<float>::lowest()) : std::string("0");
+
+ // Tensor specific data
+ lut["DST_HEIGHT"] = _dst->dimension(height_idx);
+
+ return lut;
+}
+
+CLBuildOptions ClTemplatePool2d::get_build_options(const ComponentGroup &comp_group) const
+{
+ const auto root_window = comp_group.get_root_component()->template_writer()->get_window();
+ const unsigned int n0 = root_window.x().step();
+ const unsigned int partial_store_n0 = _dst->dimension(0) % n0;
+
+ CLBuildOptions build_opts{};
+ build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
+ build_opts.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0));
+
+ return build_opts;
+}
+
+std::string ClTemplatePool2d::get_config_id() const
+{
+ const DataType data_type = _src->data_type();
+ const DataLayout data_layout = _src->data_layout();
+
+ std::string config_id{};
+ config_id += "pooling_layer_2d_";
+ config_id += lower_string(string_from_data_type(data_type));
+ config_id += "_";
+ config_id += lower_string(string_from_data_layout(data_layout));
+ config_id += "_";
+ config_id += support::cpp11::to_string(_dst->dimension(width_idx));
+ config_id += "_";
+ config_id += support::cpp11::to_string(_dst->dimension(height_idx));
+ config_id += "_";
+ config_id += support::cpp11::to_string(_dst->dimension(channel_idx));
+
+ return config_id;
+}
+
+std::set<std::string> ClTemplatePool2d::get_headers_list() const
+{
+ return std::set<std::string>{ "helpers.h", "tile_helpers.h", "repeat.h" };
+}
+
+Window ClTemplatePool2d::get_window() const
+{
+ ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized");
+ const auto output_shape = _dst->tensor_shape();
+ const unsigned int vec_size = adjust_vec_size(((_dst->data_type() == DataType::F32) ? 2 : 4), _dst->dimension(0));
+
+ // Create and configure kernel window
+ auto win = calculate_max_window(output_shape, Steps(vec_size));
+ win = win.collapse_if_possible(win, Window::DimZ); // collapse window on batch size.
+ return win;
+}
+
+} // namespace dynamic_fusion
+} // namespace experimental
+} // namespace arm_compute