aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuDirectConv2dKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/CpuDirectConv2dKernel.cpp')
-rw-r--r--src/cpu/kernels/CpuDirectConv2dKernel.cpp425
1 files changed, 29 insertions, 396 deletions
diff --git a/src/cpu/kernels/CpuDirectConv2dKernel.cpp b/src/cpu/kernels/CpuDirectConv2dKernel.cpp
index f3560156bd..a4cdddee5e 100644
--- a/src/cpu/kernels/CpuDirectConv2dKernel.cpp
+++ b/src/cpu/kernels/CpuDirectConv2dKernel.cpp
@@ -22,26 +22,14 @@
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuDirectConv2dKernel.h"
+#include "src/cpu/kernels/directconv2d/list.h"
-#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
-#include "src/core/NEON/wrapper/wrapper.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/IAccessWindow.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/AccessWindowStatic.h"
#include "src/core/CPP/Validate.h"
-#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
-#include <algorithm>
-
using namespace arm_compute::detail;
namespace arm_compute
@@ -50,8 +38,25 @@ namespace cpu
{
namespace kernels
{
-namespace
+static const std::vector<CpuDirectConv2dKernel::DirectConv2dKernel> available_kernels =
{
+ {
+ "neon_fp32_nhwc_directconv2d",
+ [](const DataTypeDataLayoutISASelectorData & data) { return data.dt == DataType::F32 && data.dl == DataLayout::NHWC; },
+ REGISTER_FP32_NEON(arm_compute::cpu::kernels::neon_fp32_nhwc_directconv2d)
+ },
+ {
+ "neon_fp32_nchw_directconv2d",
+ [](const DataTypeDataLayoutISASelectorData & data) { return data.dt == DataType::F32 && data.dl == DataLayout::NCHW; },
+ REGISTER_FP32_NEON(arm_compute::cpu::kernels::neon_fp32_nchw_directconv2d)
+ },
+ {
+ "neon_fp16_nchw_directconv2d",
+ [](const DataTypeDataLayoutISASelectorData & data) { return data.dt == DataType::F16 && data.dl == DataLayout::NCHW && data.isa.fp16; },
+ REGISTER_FP16_NEON(arm_compute::cpu::kernels::neon_fp16_nchw_directconv2d)
+ },
+};
+
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
@@ -99,346 +104,6 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITenso
return std::make_pair(err, win);
}
-bool have_zero_x_internal_padding(ITensorInfo *src, const ITensorInfo *weights)
-{
- return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 && weights->padding().right == 0);
-}
-
-} // namespace
-
-template <typename T>
-void CpuDirectConv2dKernel::convolve_nhwc_optimized(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
-{
- // This function assumes that input and weights have not padding in channel
-
- // Declare useful types
- using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
- using vector_type = typename vtype::type;
- using tag_type = typename vtype::tag_type;
-
- // Scalar quantities
- const int element_size = src->info()->element_size();
- const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
- const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
- const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
- const int input_dim_w = src->info()->dimension(1);
- const int input_dim_h = src->info()->dimension(2);
-
- const int output_stride_c = dst->info()->strides_in_bytes().x();
-
- const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
- const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
- const int kernel_dim_w = weights->info()->dimension(1);
- const int kernel_dim_h = weights->info()->dimension(2);
-
- const int conv_pad_top = _conv_info.pad_top();
- const int conv_pad_left = _conv_info.pad_left();
- const int conv_stride_w = std::get<0>(_conv_info.stride());
- const int conv_stride_h = std::get<1>(_conv_info.stride());
-
- // Setup input window for the output iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- // Setup input window for the weights iterator
- Window window_w = calculate_max_window(*weights->info(), Steps());
- window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
-
- Iterator out(dst, window_out);
- Iterator wei(weights, window_w);
-
- constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
- /*
- * This implementation parallelize the full WC plane of input and weights by
- * treating them as series of elements. So for example, a 3x3 weights and
- * floating point vector operations of 4 elements per time, the first 3
- * channel elements of the first row would be taken and additionally the first
- * element of the second row. The 9 elements in each single WC weight plane
- * would require 2 4-element vector operations and a last single element operation.
- *
- * This works since when we create the input vector to multiply with the weights,
- * the exact required elements are loaded in the same order. Therefore the
- * multiplication works on the correct input/weight elements.
- */
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- /*
- * In here we create theoretical indexes which then we validate for both
- * inputs and weights.
- * As a reminder, this loop take each output point in NHW, C is treated
- * in the weights loop.
- */
- // We are computing the theoretical starting input starting points
- const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
- const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
- const int in_w_end_t = in_w_start_t + kernel_dim_w;
- const int in_h_end_t = in_h_start_t + kernel_dim_h;
-
- // We are computing the valid initial and ending input points by checking the borders
- const int in_w_start = std::max(in_w_start_t, 0);
- const int in_h_start = std::max(in_h_start_t, 0);
- const int in_w_end = std::min(in_w_end_t, input_dim_w);
- const int in_h_end = std::min(in_h_end_t, input_dim_h);
-
- // We use the input points to select the valid weight points to use
- const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w;
- const int index_h_start = in_h_start - in_h_start_t;
- const int index_wc_end = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w;
- const int index_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
-
- execute_window_loop(window_w, [&](const Coordinates & id_w)
- {
- /*
- * This is the loop in the weights, and it goes along N (the batches)
- * As a reminder, the batches of the weights are translated into the
- * channels of the output
- */
- const T *in_ptr_row = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes())
- + id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h;
- const T *weights_ptr_row = reinterpret_cast<const T *>(wei.ptr()) + index_h_start * kernel_stride_h;
- uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
-
- T out_temp = static_cast<T>(0);
- for(int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h)
- {
- const T *in_ptr_mover = in_ptr_row;
- int index_wc = index_wc_start;
- vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
- for(; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
- {
- const auto src_vec = wrapper::vloadq(in_ptr_mover);
- const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wc);
- out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
- }
- out_temp += vreduce(out_temp_vec);
- for(; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover)
- {
- const auto src_val = *(in_ptr_mover);
- const auto w_val = *(weights_ptr_row + index_wc);
- out_temp += src_val * w_val;
- }
- }
- *(reinterpret_cast<T *>(out_ptr)) = out_temp;
- },
- wei);
- },
- out);
-}
-
-template <typename T>
-void CpuDirectConv2dKernel::convolve_nhwc(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
-{
- // Declare useful types
- using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
- using vector_type = typename vtype::type;
- using tag_type = typename vtype::tag_type;
-
- // Scalar quantities
- const int element_size = src->info()->element_size();
- const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
- const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
- const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
- const int input_dim_w = src->info()->dimension(1);
- const int input_dim_h = src->info()->dimension(2);
-
- const int output_stride_c = dst->info()->strides_in_bytes().x();
-
- const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
- const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
- const int kernel_dim_w = weights->info()->dimension(1);
- const int kernel_dim_h = weights->info()->dimension(2);
-
- const int conv_pad_top = _conv_info.pad_top();
- const int conv_pad_left = _conv_info.pad_left();
- const int conv_stride_w = std::get<0>(_conv_info.stride());
- const int conv_stride_h = std::get<1>(_conv_info.stride());
-
- // Setup input window for the output iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- // Setup input window for the weights iterator
- Window window_w = calculate_max_window(*weights->info(), Steps());
- window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
-
- Iterator out(dst, window_out);
- Iterator wei(weights, window_w);
-
- constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- // We are computing the theoretical starting input starting points
- const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
- const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
- const int in_w_end_t = in_w_start_t + kernel_dim_w;
- const int in_h_end_t = in_h_start_t + kernel_dim_h;
-
- // We are computing the valid initial and ending input points by checking the borders
- const int in_w_start = std::max(in_w_start_t, 0);
- const int in_h_start = std::max(in_h_start_t, 0);
- const int in_w_end = std::min(in_w_end_t, input_dim_w);
- const int in_h_end = std::min(in_h_end_t, input_dim_h);
-
- // We use the input points to select the valid weight points to use
- const int wei_w_start = in_w_start - in_w_start_t;
- const int wei_h_start = in_h_start - in_h_start_t;
- const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end);
- const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
-
- const int index_c_end = weights->info()->dimension(0);
- const T *const in_ptr_start = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
-
- execute_window_loop(window_w, [&](const Coordinates & id_w)
- {
- const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
- uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
-
- T out_temp = static_cast<T>(0);
- for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
- {
- const T *const in_ptr_row = in_ptr_start + index_in_h * input_stride_h;
- const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h;
- for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
- {
- const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w;
- const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
- int index_c = 0;
- vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
- for(; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration)
- {
- const auto src_vec = wrapper::vloadq(in_ptr_mover);
- const auto w_vec = wrapper::vloadq(weights_ptr_mover);
- out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
- }
- out_temp += vreduce(out_temp_vec);
- for(; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover)
- {
- const auto src_val = *(in_ptr_mover);
- const auto w_val = *(weights_ptr_mover);
- out_temp += src_val * w_val;
- }
- }
- }
- *(reinterpret_cast<T *>(out_ptr)) = out_temp;
- },
- wei);
- },
- out);
-}
-
-template <typename T>
-void CpuDirectConv2dKernel::convolve_nchw(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
-{
- // Declare useful types
- using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
- using vector_type = typename vtype::type;
- using tag_type = typename vtype::tag_type;
-
- // Scalar quantities
- const int element_size = src->info()->element_size();
- const int input_stride_w = src->info()->strides_in_bytes()[0] / element_size;
- const int input_stride_h = src->info()->strides_in_bytes()[1] / element_size;
- const int input_stride_c = src->info()->strides_in_bytes()[2] / element_size;
- const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
-
- const int input_dim_w = src->info()->dimension(0);
- const int input_dim_h = src->info()->dimension(1);
-
- const int output_stride_c = dst->info()->strides_in_bytes()[2];
-
- const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().x() / element_size;
- const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().y() / element_size;
- const unsigned int kernel_stride_c = weights->info()->strides_in_bytes().z() / element_size;
-
- const int kernel_dim_w = weights->info()->dimension(0);
- const int kernel_dim_h = weights->info()->dimension(1);
-
- const int conv_pad_top = _conv_info.pad_top();
- const int conv_pad_left = _conv_info.pad_left();
- const int conv_stride_w = std::get<0>(_conv_info.stride());
- const int conv_stride_h = std::get<1>(_conv_info.stride());
-
- // Setup input window for the output iterator
- Window window_out = window;
- window_out.set(Window::DimZ, Window::Dimension(0, 1, 1));
-
- // Setup input window for the weights iterator
- Window window_w = calculate_max_window(*weights->info(), Steps());
- window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
-
- Iterator out(dst, window_out);
- Iterator wei(weights, window_w);
-
- constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- // We are computing the theoretical starting input starting points
- const int in_w_start_t = static_cast<int>(id.x()) * conv_stride_w - conv_pad_left;
- const int in_h_start_t = static_cast<int>(id.y()) * conv_stride_h - conv_pad_top;
- const int in_w_end_t = in_w_start_t + kernel_dim_w;
- const int in_h_end_t = in_h_start_t + kernel_dim_h;
-
- // We are computing the valid initial and ending input points by checking the borders
- const int in_w_start = std::max(in_w_start_t, 0);
- const int in_h_start = std::max(in_h_start_t, 0);
- const int in_w_end = std::min(in_w_end_t, input_dim_w);
- const int in_h_end = std::min(in_h_end_t, input_dim_h);
-
- // We use the input points to select the valid weight points to use
- const int wei_w_start = in_w_start - in_w_start_t;
- const int wei_h_start = in_h_start - in_h_start_t;
- const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
-
- const int index_c_end = weights->info()->dimension(2);
- const T *const in_ptr_start = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
- execute_window_loop(window_w, [&](const Coordinates & id_w)
- {
- const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
- uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
- T out_temp = static_cast<T>(0);
-
- for(int index_wei_c = 0, index_in_c = 0; index_wei_c < index_c_end; ++index_wei_c, ++index_in_c)
- {
- const T *const in_ptr_row_0 = in_ptr_start + index_in_c * input_stride_c;
- const T *const weights_ptr_row_0 = weights_ptr_start + index_wei_c * kernel_stride_c;
- for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
- {
- const T *in_ptr_row = in_ptr_row_0 + index_in_h * input_stride_h;
- const T *weights_ptr_row = weights_ptr_row_0 + index_wei_h * kernel_stride_h;
- int index_w = in_w_start;
- int index_wei_w = wei_w_start;
- vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
- for(; index_w <= ((in_w_end - num_elems_read_per_iteration)); index_w += num_elems_read_per_iteration, index_wei_w += num_elems_read_per_iteration)
- {
- const auto src_vec = wrapper::vloadq(in_ptr_row + index_w * input_stride_w);
- const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wei_w * kernel_stride_w);
- out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
- }
- out_temp += vreduce(out_temp_vec);
- for(; index_w < in_w_end; ++index_w, ++index_wei_w)
- {
- const auto src_val = *(in_ptr_row + index_w * input_stride_w);
- const auto w_val = *(weights_ptr_row + index_wei_w * kernel_stride_w);
- out_temp += src_val * w_val;
- }
- }
- }
- *(reinterpret_cast<T *>(out_ptr)) = out_temp;
-
- },
- wei);
- },
- out);
-}
-
void CpuDirectConv2dKernel::configure(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
@@ -484,53 +149,21 @@ void CpuDirectConv2dKernel::run_op(ITensorPack &tensors, const Window &window, c
auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
- if(_data_layout == DataLayout::NCHW)
- {
- switch(src->info()->data_type())
- {
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- {
- convolve_nchw<float16_t>(window, src, weights, dst);
- break;
- }
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- {
- convolve_nchw<float>(window, src, weights, dst);
- break;
- }
- default:
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- }
- else
- {
- switch(src->info()->data_type())
- {
- case DataType::F32:
- {
- if(have_zero_x_internal_padding(src->info(), weights->info()))
- {
- convolve_nhwc_optimized<float>(window, src, weights, dst);
- }
- else
- {
- convolve_nhwc<float>(window, src, weights, dst);
- }
- break;
- }
- default:
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- }
+ const auto *uk = CpuDirectConv2dKernel::get_implementation(DataTypeDataLayoutISASelectorData{ src->info()->data_type(), _data_layout, CPUInfo::get().get_isa() });
+ ARM_COMPUTE_ERROR_ON(uk == nullptr);
+
+ uk->ukernel(window, src, weights, dst, _conv_info);
}
const char *CpuDirectConv2dKernel::name() const
{
return "CpuDirectConvolutionLayerKernel";
}
+
+const std::vector<CpuDirectConv2dKernel::DirectConv2dKernel> &CpuDirectConv2dKernel::get_available_kernels()
+{
+ return available_kernels;
+}
+
} // namespace kernels
} // namespace cpu
} // namespace arm_compute