aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels')
-rw-r--r--src/core/NEON/kernels/NEFillBorderKernel.cpp26
-rw-r--r--src/core/NEON/kernels/NEFillBorderKernel.h14
-rw-r--r--src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h4
-rw-r--r--src/core/NEON/kernels/NEPoolingLayerKernel.cpp2612
-rw-r--r--src/core/NEON/kernels/NEPoolingLayerKernel.h229
-rw-r--r--src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp269
-rw-r--r--src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h116
7 files changed, 32 insertions, 3238 deletions
diff --git a/src/core/NEON/kernels/NEFillBorderKernel.cpp b/src/core/NEON/kernels/NEFillBorderKernel.cpp
index 488079062b..10384d4176 100644
--- a/src/core/NEON/kernels/NEFillBorderKernel.cpp
+++ b/src/core/NEON/kernels/NEFillBorderKernel.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -33,12 +33,8 @@
#include "src/core/NEON/kernels/NEFillBorderKernel.h"
#include "src/core/helpers/WindowHelpers.h"
-#include <algorithm>
-#include <cstdint>
-
namespace arm_compute
{
-class Coordinates;
namespace
{
inline void fill_constant_value_single_channel_special(ITensor *tensor, const Window &window, unsigned int right, unsigned int bottom, const PixelValue &constant_border_value)
@@ -100,20 +96,26 @@ NEFillBorderKernel::NEFillBorderKernel()
void NEFillBorderKernel::configure(ITensor *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(tensor);
+ _tensor = tensor;
+ configure(tensor->info(), border_size, border_mode, constant_border_value);
+}
+
+void NEFillBorderKernel::configure(ITensorInfo *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(tensor);
//Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
- ARM_COMPUTE_ERROR_ON(tensor->info()->data_type() == DataType::UNKNOWN);
+ ARM_COMPUTE_ERROR_ON(tensor->data_type() == DataType::UNKNOWN);
- _tensor = tensor;
_border_size = border_size;
_mode = border_mode;
_constant_border_value = constant_border_value;
- _border_size.limit(tensor->info()->padding());
+ _border_size.limit(tensor->padding());
Window win;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
win.set(Window::DimY, Window::Dimension(0, 1, 1));
- win.use_tensor_dimensions(_tensor->info()->tensor_shape(), Window::DimZ);
+ win.use_tensor_dimensions(tensor->tensor_shape(), Window::DimZ);
INEKernel::configure(win);
}
@@ -156,6 +158,12 @@ void NEFillBorderKernel::run(const Window &window, const ThreadInfo &info)
}
}
+void NEFillBorderKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ _tensor = tensors.get_tensor(TensorType::ACL_SRC_DST);
+ run(window, info);
+}
+
void NEFillBorderKernel::fill_replicate_single_channel(const Window &window)
{
uint8_t *const start_valid_region = _tensor->ptr_to_element(_tensor->info()->valid_region().anchor);
diff --git a/src/core/NEON/kernels/NEFillBorderKernel.h b/src/core/NEON/kernels/NEFillBorderKernel.h
index 65908bebee..2c851583ed 100644
--- a/src/core/NEON/kernels/NEFillBorderKernel.h
+++ b/src/core/NEON/kernels/NEFillBorderKernel.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -65,9 +65,21 @@ public:
*
*/
void configure(ITensor *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value = PixelValue());
+ /** Initialise the function.
+ *
+ * @note This kernel fills the borders within the XY-planes.
+ *
+ * @param[in,out] tensor Tensor info to process. Data types supported: All.
+ * @param[in] border_size Size of the border to fill in elements.
+ * @param[in] border_mode Border mode to use for the convolution.
+ * @param[in] constant_border_value (Optional) Constant value to use for borders if border_mode is set to CONSTANT.
+ *
+ */
+ void configure(ITensorInfo *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value = PixelValue());
// Inherited methods overridden:
void run(const Window &window, const ThreadInfo &info) override;
+ void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
private:
void fill_replicate_single_channel(const Window &window);
diff --git a/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h b/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h
index 8cdfe2b953..f42272826c 100644
--- a/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h
+++ b/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -56,7 +56,7 @@ public:
*
* @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @param[in] indices Tensor containing the offset to store the input elements in the output tensor.
- * @ref NEPoolingLayerKernel with indices should precede this function in order to
+ * @ref cpu::kernels::CpuPoolingKernel with indices should precede this function in order to
* properly reconstruct the output tensor.
* The tensor shape of this tensor has to be equal to the input tensor shape. Data type supported: U32.
* @param[out] output Destination tensor. Data types supported: Same as @p input.
diff --git a/src/core/NEON/kernels/NEPoolingLayerKernel.cpp b/src/core/NEON/kernels/NEPoolingLayerKernel.cpp
deleted file mode 100644
index b46843badd..0000000000
--- a/src/core/NEON/kernels/NEPoolingLayerKernel.cpp
+++ /dev/null
@@ -1,2612 +0,0 @@
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NEPoolingLayerKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/AccessWindowStatic.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/NEON/NEAsymm.h"
-#include "src/core/NEON/NEFixedPoint.h"
-#include "src/core/NEON/NEMath.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-#include "support/ToolchainSupport.h"
-
-#include "src/core/NEON/wrapper/wrapper.h"
-#include <algorithm>
-#include <arm_neon.h>
-#include <cmath>
-#include <limits>
-#include <set>
-#include <string>
-#include <tuple>
-
-namespace arm_compute
-{
-using namespace misc::shape_calculator;
-
-namespace
-{
-template <typename T>
-inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
-quantize(float val, const UniformQuantizationInfo &info)
-{
- return quantize_qasymm8_signed(val, info);
-}
-
-template <typename T>
-inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
-quantize(float val, const UniformQuantizationInfo &info)
-{
- return quantize_qasymm8(val, info);
-}
-
-inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
- const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
- const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
- int start_x = id[idx_width] * stride_x - pad_x;
- int start_y = id[idx_height] * stride_y - pad_y;
-
- const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
- const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
- if(exclude_padding)
- {
- start_x = std::max(0, start_x);
- start_y = std::max(0, start_y);
- }
- return 1.f / ((end_y - start_y) * (end_x - start_x));
-}
-
-template <typename T, typename TVec>
-inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step,
- const int pool_size, const int upper_bound_w, const int upper_bound_h,
- const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
- int start_x = (id.x() + id_offset) * stride_x - pad_x;
- int start_y = id.y() * stride_y - pad_y;
- const int end_y = std::min(start_y + pool_size, upper_bound_h);
- if(exclude_padding)
- {
- start_y = std::max(0, start_y);
- }
-
- std::array<T, 8> elems =
- {
- {
- wrapper::vgetlane(v, 0),
- wrapper::vgetlane(v, 1),
- wrapper::vgetlane(v, 2),
- wrapper::vgetlane(v, 3),
- wrapper::vgetlane(v, 4),
- wrapper::vgetlane(v, 5),
- wrapper::vgetlane(v, 6),
- wrapper::vgetlane(v, 7),
- }
- };
-
- for(auto &el : elems)
- {
- int c_start_x = start_x;
- const int end_x = std::min(c_start_x + pool_size, upper_bound_w);
- if(exclude_padding)
- {
- c_start_x = std::max(0, c_start_x);
- }
- float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
- el *= scale;
- start_x += step * stride_x;
- }
-
- v = wrapper::vsetlane(elems[0], v, 0);
- v = wrapper::vsetlane(elems[1], v, 1);
- v = wrapper::vsetlane(elems[2], v, 2);
- v = wrapper::vsetlane(elems[3], v, 3);
- v = wrapper::vsetlane(elems[4], v, 4);
- v = wrapper::vsetlane(elems[5], v, 5);
- v = wrapper::vsetlane(elems[6], v, 6);
- v = wrapper::vsetlane(elems[7], v, 7);
-}
-
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info,
- unsigned int &pooled_w, unsigned int pooled_h, const ITensorInfo *indices, Size2D pool_size)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- PoolingType pool_type = pool_info.pool_type;
- const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
- std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
-
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
- if(indices)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
- }
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(input->data_type()));
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(input->data_type()) && !pool_info.exclude_padding && (pool_info.pool_type == PoolingType::AVG) && pool_info.pad_stride_info.has_padding()
- && (input->data_layout() == DataLayout::NHWC),
- "exclude_padding equal false is not supported for AVG Pooling with padding on quantized types");
-
- if(output->total_size() != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
- ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
- || (output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
-
- if(indices)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
- ARM_COMPUTE_RETURN_ERROR_ON((indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
- || (indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
- }
- }
-
- return Status{};
-}
-
-Status validate_arguments_pool_info(const unsigned int pool_size_x, const unsigned int pool_size_y)
-{
- ARM_COMPUTE_RETURN_ERROR_ON(pool_size_x == 0);
- ARM_COMPUTE_RETURN_ERROR_ON(pool_size_y == 0);
-
- return Status{};
-}
-
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *indices, const PoolingLayerInfo &pool_info,
- unsigned int &num_elems_processed_per_iteration,
- BorderSize &border_size,
- unsigned int pooled_w, unsigned int pooled_h, int pool_size_x, int pool_size_y)
-{
- // Output auto inizialitation if not yet initialized
- auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, pool_info)));
- if(indices)
- {
- // Indices auto inizialitation if not yet initialized
- auto_init_if_empty(*indices, (input->clone()->set_tensor_shape(compute_pool_shape(*input,
- pool_info)))
- .set_data_type(DataType::U32) /* we store the offset to the element */);
- }
- const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
- unsigned int num_elems_read_per_iteration = 0;
- unsigned int num_elems_horizontal_window = 0;
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
- const int input_width = input->dimension(idx_width);
- const int input_height = input->dimension(idx_height);
- const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
- std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
- const int pool_pad_right = pad_stride_info.pad_right();
- const int pool_pad_top = pad_stride_info.pad_top();
- const int pool_pad_left = pad_stride_info.pad_left();
- const int pool_pad_bottom = pad_stride_info.pad_bottom();
- const bool is_square = pool_size_x == pool_size_y;
-
- // Check output dimensions
- std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
- input->dimension(idx_height),
- pool_size_x,
- pool_size_y,
- pad_stride_info);
-
- //If it's not squared and optimized will be executed the MxN
- num_elems_read_per_iteration = 1;
- num_elems_processed_per_iteration = 1;
- num_elems_horizontal_window = 1;
-
- if(is_square)
- {
- switch(input->data_type())
- {
- case DataType::QASYMM8:
- case DataType::QASYMM8_SIGNED:
- switch(pool_size_x)
- {
- case 2:
- num_elems_read_per_iteration = 16;
- num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
- num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
- break;
- case 3:
- num_elems_read_per_iteration = 16;
- num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
- num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
- break;
- default:
- break;
- }
- break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- switch(pool_size_x)
- {
- case 2:
- case 3:
- num_elems_read_per_iteration = 4;
- num_elems_processed_per_iteration = 1;
- num_elems_horizontal_window = 1;
- break;
- default:
- break;
- }
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- switch(pool_size_x)
- {
- case 2:
- num_elems_read_per_iteration = 2;
- break;
- case 3:
- num_elems_read_per_iteration = 4; // We use vload4 for pooling3
- break;
- case 7:
- num_elems_read_per_iteration = 8; // We use vload8 for pooling7
- break;
- default:
- break;
- }
- num_elems_processed_per_iteration = 1;
- num_elems_horizontal_window = 1;
- break;
- default:
- ARM_COMPUTE_ERROR("Element size not supported");
- break;
- }
- }
-
- bool window_changed = false;
- Window win{};
- if(data_layout == DataLayout::NCHW)
- {
- // Number of iterations in X dimension
- const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
- // Upper limit for the number of right/bottom border elements that are accessed
- const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width;
- const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - input_height;
- border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
- border_size.right = std::max(upper_bound_w, pool_pad_right);
- border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
- TensorShape output_shape{ input->tensor_shape() };
- output_shape.set(0, pooled_w);
- output_shape.set(1, pooled_h);
- TensorInfo output_info(input->clone()->set_tensor_shape(output_shape));
- win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration));
- AccessWindowStatic input_access(input, -pool_pad_left, -pool_pad_top, input_width + border_size.right, input_height + border_size.bottom);
- AccessWindowHorizontal output_access(output, 0, num_elems_horizontal_window);
- if(indices)
- {
- AccessWindowHorizontal indices_access(indices, 0, num_elems_horizontal_window);
- window_changed = update_window_and_padding(win, input_access, output_access, indices_access);
- }
- else
- {
- window_changed = update_window_and_padding(win, input_access, output_access);
- }
- output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
- }
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
-}
-
-template <typename T>
-inline T vcvtq_q32_f32(float32x4_t values);
-
-template <>
-inline uint32x4_t vcvtq_q32_f32(float32x4_t values)
-{
- return vcvtq_u32_f32(values);
-}
-
-template <>
-inline int32x4_t vcvtq_q32_f32(float32x4_t values)
-{
- return vcvtq_s32_f32(values);
-}
-
-template <typename T>
-inline float32x4_t vcvtq_f32_q32(T values);
-
-template <>
-inline float32x4_t vcvtq_f32_q32(uint32x4_t values)
-{
- return vcvtq_f32_u32(values);
-}
-
-template <>
-inline float32x4_t vcvtq_f32_q32(int32x4_t values)
-{
- return vcvtq_f32_s32(values);
-}
-
-template <typename Tout>
-inline Tout vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset);
-
-template <>
-inline uint8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
-{
- const float new_scale = quant_rescale / scale_pooling;
- return vquantize(acc, UniformQuantizationInfo(new_scale, new_offset));
-}
-
-template <>
-inline int8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
-{
- const float new_scale = quant_rescale / scale_pooling;
- return vquantize_signed(acc, UniformQuantizationInfo(new_scale, new_offset));
-}
-
-template <typename Tin, typename Tout>
-inline Tout vrequantize_pooling(Tin vec1, Tin vec2, const UniformQuantizationInfo &requant_qinfo);
-
-template <>
-inline uint8x16_t vrequantize_pooling(uint8x8_t vec1, uint8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
-{
- const float32x4x4_t acc =
- {
- {
- vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec1))))),
- vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec1))))),
- vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec2))))),
- vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec2))))),
- }
- };
- return vquantize(acc, requant_qinfo);
-}
-
-template <>
-inline int8x16_t vrequantize_pooling(int8x8_t vec1, int8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
-{
- const float32x4x4_t acc =
- {
- {
- vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec1))))),
- vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec1))))),
- vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec2))))),
- vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec2))))),
- }
- };
- return vquantize_signed(acc, requant_qinfo);
-}
-
-template <typename T>
-inline T vrequantize_pooling(T &vec, const UniformQuantizationInfo &requant_qinfo);
-
-template <>
-inline uint8x8_t vrequantize_pooling(uint8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
-{
- const float32x4x2_t acc =
- {
- {
- vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec))))),
- vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec))))),
- }
- };
- return vquantize(acc, requant_qinfo);
-}
-
-template <>
-inline int8x8_t vrequantize_pooling(int8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
-{
- const float32x4x2_t acc =
- {
- {
- vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec))))),
- vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec))))),
- }
- };
- return vquantize_signed(acc, requant_qinfo);
-}
-
-} // namespace
-
-NEPoolingLayerKernel::NEPoolingLayerKernel()
- : _func(nullptr), _input(nullptr), _output(nullptr), _indices(nullptr), _pool_info(), _data_layout(DataLayout::UNKNOWN), _num_elems_processed_per_iteration(0), _border_size(0), _is_square(false)
-{
-}
-
-BorderSize NEPoolingLayerKernel::border_size() const
-{
- return _border_size;
-}
-
-void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info, ITensor *indices)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
- const bool is_global_pooling = pool_info.is_global_pooling;
- const int pool_stride_x = pad_stride_info.stride().first;
-
- // Get data layout
- const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->info()->data_layout() : pool_info.data_layout;
- const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
- // Update pool size in case of global pooling
- const Size2D pool_size(
- is_global_pooling ? input->info()->dimension(idx_width) : pool_info.pool_size.width,
- is_global_pooling ? input->info()->dimension(idx_height) : pool_info.pool_size.height);
-
- // Validate pool info before calling scaled_dimensions
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(pool_size.x(), pool_size.y()));
-
- // Check output dimensions
- unsigned int pooled_w;
- unsigned int pooled_h;
- std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(idx_width),
- input->info()->dimension(idx_height),
- pool_size.x(),
- pool_size.y(),
- pad_stride_info);
-
- // Perform validation step
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, pooled_w, pooled_h, (indices) ? indices->info() : nullptr, pool_size));
-
- // Set instance variables
- _input = input;
- _output = output;
- _indices = indices;
- _pool_info = pool_info;
- _data_layout = input->info()->data_layout();
- _is_square = (pool_size.x() == pool_size.y());
-
- // Get data type
- const DataType data_type = input->info()->data_type();
- const bool is_nchw = _data_layout == DataLayout::NCHW;
-
- if(data_type == DataType::QASYMM8)
- {
- if(!is_nchw)
- {
- _func = &NEPoolingLayerKernel::poolingMxN_q8_nhwc<uint8_t>;
- }
- else
- {
- if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
- {
- _func = &NEPoolingLayerKernel::pooling2_q8_nchw<uint8_t>;
- }
- else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
- {
- _func = &NEPoolingLayerKernel::pooling3_q8_nchw<uint8_t>;
- }
- else
- {
- _func = &NEPoolingLayerKernel::poolingMxN_q8_nchw<uint8_t>;
- }
- }
- }
- else if(data_type == DataType::QASYMM8_SIGNED)
- {
- if(!is_nchw)
- {
- _func = &NEPoolingLayerKernel::poolingMxN_q8_nhwc<int8_t>;
- }
- else
- {
- if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
- {
- _func = &NEPoolingLayerKernel::pooling2_q8_nchw<int8_t>;
- }
- else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
- {
- _func = &NEPoolingLayerKernel::pooling3_q8_nchw<int8_t>;
- }
- else
- {
- _func = &NEPoolingLayerKernel::poolingMxN_q8_nchw<int8_t>;
- }
- }
- }
- else if(data_type == DataType::F16)
- {
- if(!is_nchw)
- {
- _func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
- }
- else
- {
- if(_is_square)
- {
- switch(pool_size.x())
- {
- case 2:
- {
- _func = &NEPoolingLayerKernel::pooling2_f16_nchw;
- }
- break;
- case 3:
- {
- _func = &NEPoolingLayerKernel::pooling3_f16_nchw;
- }
- break;
- default:
- {
- _func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
- break;
- }
- }
- }
- else
- {
- _func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
- }
- }
- }
- else if(data_type == DataType::F32)
- {
- if(!is_nchw)
- {
- _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
- }
- else
- {
- if(_is_square)
- {
- switch(pool_size.x())
- {
- case 2:
- {
- _func = &NEPoolingLayerKernel::pooling2_f32_nchw;
- break;
- }
- case 3:
- {
- _func = &NEPoolingLayerKernel::pooling3_f32_nchw;
- break;
- }
- case 7:
- {
- _func = &NEPoolingLayerKernel::pooling7_f32_nchw;
- break;
- }
- default:
- {
- _func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
- break;
- }
- }
- }
- else
- {
- _func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
- }
- }
- }
-
- if(!is_nchw)
- {
- // Configure kernel window
- Window win = calculate_max_window(*output->info(), Steps());
- Coordinates coord;
- coord.set_num_dimensions(output->info()->num_dimensions());
- output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
- INEKernel::configure(win);
- }
- else
- {
- // Configure kernel window
- auto win_config = validate_and_configure_window(input->info(), output->info(), (indices) ? indices->info() : nullptr,
- pool_info, _num_elems_processed_per_iteration, _border_size, pooled_w, pooled_h, pool_size.x(), pool_size.y());
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
- INEKernel::configure(win_config.second);
- }
-}
-
-template <typename T>
-inline uint32_t offset_no_padding(uint32_t padded_offset, const Coordinates &id, const ITensorInfo &info, int pool_stride_x, int pool_stride_y)
-{
- const int pad_left = info.padding().left;
- const int pad_right = info.padding().right;
- const int pad_top = info.padding().top;
- const int pad_bottom = info.padding().bottom;
- const int in_stride_y = static_cast<int>(info.strides_in_bytes().y());
- const int in_stride_w = static_cast<int>(info.strides_in_bytes()[3]);
- const int pad_horiz = pad_left + pad_right;
- const int pad_vert = pad_top + pad_bottom;
-
- if(info.data_layout() == DataLayout::NCHW)
- {
- const uint32_t offset_base = padded_offset
- - sizeof(T) * pad_horiz * id.y() * pool_stride_y /* subtract padding elems per row */
- - pad_top * sizeof(T) /* top padding */
- - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() - pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
- - in_stride_w * id[3];
-
- return offset_base;
- }
- else
- {
- const uint32_t offset_base = padded_offset
- - sizeof(T) * pad_horiz * id.y() * pool_stride_x // subtract padding elems per row
- - pad_top * sizeof(T) // top padding
- - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() * pool_stride_y // for each Z plane there are width*pad_right padding elems
- - in_stride_w * id[3];
-
- return offset_base;
- }
-}
-
-template <typename T>
-void NEPoolingLayerKernel::pooling2_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- /** NEON vector types */
- using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
- using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
- using q8x8x2_t = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
- using q16_t = typename wrapper::traits::promote_t<T>;
- using q16x4_t = typename wrapper::traits::neon_vector<q16_t, 4>::type;
- using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
- using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
-
- constexpr int pool_size = 2;
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const T *const input_top_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
- const T *const input_bottom_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
-
- const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
-
- const UniformQuantizationInfo input_qinfo = _input->info()->quantization_info().uniform();
- const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
- const bool have_different_qinfo = input_qinfo != output_qinfo;
-
- const float requant_scale = output_qinfo.scale / input_qinfo.scale;
- const int32_t requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
- const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto top_data = wrapper::vloadq(input_top_ptr + input.offset());
- const auto bottom_data = wrapper::vloadq(input_bottom_ptr + input.offset());
- q8x8_t lower_res = {};
- q8x8_t upper_res = {};
-
- if(pooling_type != PoolingType::MAX)
- {
- const q16x8x2_t top_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
- const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
-
- // Add rows
- const q16x8x2_t vrsum =
- {
- {
- wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
- wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
- }
- };
-
- // Pair-wise add row data
- const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
- const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
-
- q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
-
- // Scale lower result
- scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_lower, id, 0, scale_step_x,
- pool_size, upper_bound_w, upper_bound_h,
- pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- lower_res = wrapper::vmovn(res_lower);
-
- // Compute upper result for stride_x == 1
- if(pool_stride_x == 1)
- {
- // Shifted row sum
- const q16x8x2_t vrsum_shifted =
- {
- {
- wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
- wrapper::vext_1(vrsum.val[1], vrsum.val[1])
- }
- };
-
- // Pair-wise add shifted row
- q16x8_t res_upper = wrapper::vcombine(
- wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
- wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1])));
-
- // Scale upper result
- scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_upper, id, 1, 2,
- pool_size, upper_bound_w, upper_bound_h,
- pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- upper_res = wrapper::vmovn(res_upper);
- }
- }
- else
- {
- const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
- lower_res = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
- if(pool_stride_x == 1)
- {
- const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
- upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
- }
- }
-
- if(have_different_qinfo)
- {
- const auto requantized_output = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
- lower_res = wrapper::vgetlow(requantized_output);
- upper_res = wrapper::vgethigh(requantized_output);
- }
-
- // Store result
- if(pool_stride_x == 1)
- {
- const q8x8x2_t res = { { lower_res, upper_res } };
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()), res);
- }
- else
- {
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()), lower_res);
- }
- },
- input, output);
-}
-
-void NEPoolingLayerKernel::pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- ARM_COMPUTE_UNUSED(pooling_type);
- ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- constexpr const int pool_size = 3;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
- const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
- float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(input_middle_ptr + input.offset()));
- float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
- float16x4_t res = {};
-
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- top_data = vmul_f16(top_data, top_data);
- middle_data = vmul_f16(middle_data, middle_data);
- bottom_data = vmul_f16(bottom_data, bottom_data);
- }
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- const float16x4_t scale_v = vdup_n_f16(scale);
- // Perform pooling
- const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
- res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
- res = vmul_f16(vpadd_f16(res, res), scale_v);
- }
- else
- {
- const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
- res = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
- res = vpmax_f16(res, res);
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- res = vinv_f16(vinvsqrt_f16(res));
- }
-
- *(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
- },
- input, output);
-#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- ARM_COMPUTE_UNUSED(window_input);
- ARM_COMPUTE_UNUSED(window);
- ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-template <typename T>
-inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
-f16_to_f32(float16x4_t input)
-{
- float32x2_t output = { static_cast<float>(vget_lane_f16(input, 0)), static_cast<float>(vget_lane_f16(input, 1)) };
- return output;
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-template <typename T>
-inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
-f16_to_f32(float32x2_t input)
-{
- return input;
-}
-
-template <typename T>
-void NEPoolingLayerKernel::pooling2_nchw_maxpool_indices(const Window &window_input, const Window &window)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
- Iterator indices(_indices, window);
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
- const int pad_left = _input->info()->padding().left;
- const int pad_right = _input->info()->padding().right;
- const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- auto top_data = wrapper::vload(reinterpret_cast<const T *>(input_top_ptr + input.offset()));
- auto bottom_data = wrapper::vload(reinterpret_cast<const T *>(input_bottom_ptr + input.offset()));
- float32x2_t top_data_f32 = f16_to_f32<T>(top_data);
- float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
-
- // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
- const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32);
- const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32);
- const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
- *(reinterpret_cast<T *>(output.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
-
- // Calculate max data indice, which will be used in max unpool.
- const uint32_t offset_base = offset_no_padding<T>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
- const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
- const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
- const uint32x2_t voffset_top = { offset_top, offset_top + 1u };
- const uint32x2_t voffset_bottom = { offset_bottom, offset_bottom + 1u };
- const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
- const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
- *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
- },
- input, output, indices);
-}
-
-void NEPoolingLayerKernel::pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- ARM_COMPUTE_UNUSED(pooling_type);
- ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- if(pooling_type == PoolingType::MAX && _indices)
- {
- pooling2_nchw_maxpool_indices<float16_t>(window_input, window);
- }
- else
- {
- Iterator input(_input, window_input);
- Iterator output(_output, window);
- constexpr int pool_size = 2;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x, pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
- float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
- float16x4_t res = {};
-
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- top_data = vmul_f16(top_data, top_data);
- bottom_data = vmul_f16(bottom_data, bottom_data);
- }
-
- if(pooling_type != PoolingType::MAX)
- {
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- const float16x4_t scale_v = vdup_n_f16(scale);
-
- const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
- res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
- }
- else
- {
- const float16x4_t max_data = vmax_f16(top_data, bottom_data);
- res = vpmax_f16(max_data, max_data);
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- res = vinv_f16(vinvsqrt_f16(res));
- }
-
- // Store result
- *(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
- },
- input, output);
- }
-#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- ARM_COMPUTE_UNUSED(window_input);
- ARM_COMPUTE_UNUSED(window);
- ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-template <typename T>
-void NEPoolingLayerKernel::pooling3_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- /** NEON vector types */
- using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
- using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
- using q8x8x2_t = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
- using q16_t = typename wrapper::traits::promote_t<T>;
- using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
- using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
-
- constexpr int pool_size = 3;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const UniformQuantizationInfo &input_qinfo = _input->info()->quantization_info().uniform();
- const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
-
- const float requant_scale = output_qinfo.scale / input_qinfo.scale;
- const int32_t requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
- const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
-
- const T *const input_top_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
- const T *const input_middle_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
- const T *const input_bottom_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto top_data = wrapper::vloadq(input_top_ptr + input.offset());
- const auto middle_data = wrapper::vloadq(input_middle_ptr + input.offset());
- const auto bottom_data = wrapper::vloadq(input_bottom_ptr + input.offset());
- q8x8_t fres = {};
- q8x16_t fqres = {};
-
- if(pooling_type == PoolingType::AVG)
- {
- // Convert data to u16
- const q16x8x2_t top_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
- const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } };
- const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
-
- // Calculate row sums
- const q16x8x2_t vrsum =
- {
- {
- wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
- wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
- }
- };
- const q16x8x2_t vrsum_shifted_1 =
- {
- {
- wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
- wrapper::vext_1(vrsum.val[1], vrsum.val[1])
- }
- };
- const q16x8x2_t vrsum_shifted_2 =
- {
- {
- wrapper::vext_2(vrsum.val[0], vrsum.val[1]),
- wrapper::vext_2(vrsum.val[1], vrsum.val[1])
- }
- };
- // Calculate final sum
- q16x8x2_t final_sum =
- {
- {
- wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
- wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
- }
- };
- if(pool_stride_x == 2)
- {
- q16x8_t res =
- {
- wrapper::vgetlane(final_sum.val[0], 0),
- wrapper::vgetlane(final_sum.val[0], 2),
- wrapper::vgetlane(final_sum.val[0], 4),
- wrapper::vgetlane(final_sum.val[0], 6),
- wrapper::vgetlane(final_sum.val[1], 0),
- wrapper::vgetlane(final_sum.val[1], 2),
- wrapper::vgetlane(final_sum.val[1], 4),
- wrapper::vgetlane(final_sum.val[1], 6),
- };
-
- scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res, id, 0, 1,
- pool_size, upper_bound_w, upper_bound_h,
- pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- fres = wrapper::vmovn(res);
- }
- else
- {
- // Scale lower result
- scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[0], id, 0, 1,
- pool_size, upper_bound_w, upper_bound_h,
- pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- // Scale lower result
- scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[1], id, 8, 1,
- pool_size, upper_bound_w, upper_bound_h,
- pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
- }
- }
- else
- {
- const q8x16_t max_data = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
- const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
- const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
- const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
-
- if(pool_stride_x == 2)
- {
- const q8x8x2_t table = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } };
- static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
- fres = wrapper::vtbl(table, lookup_val);
- }
- else
- {
- fqres = final_max;
- }
- }
-
- // Store result
- if(pool_stride_x == 1)
- {
- if(input_qinfo != output_qinfo)
- {
- fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo);
- }
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()), fqres);
- }
- else
- {
- if(input_qinfo != output_qinfo)
- {
- fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
- }
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()), fres);
- }
- },
- input, output);
-}
-
-void NEPoolingLayerKernel::poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- ARM_COMPUTE_UNUSED(pooling_type);
- ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
- const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float16_t res = 0.0f;
- float16x8_t vres = vdupq_n_f16(0.0f);
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-
- // Perform pooling
-
- for(int y = 0; y < pool_size_y; ++y)
- {
- int x = 0;
- for(; x <= (pool_size_x - 8); x += 8)
- {
- const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) +
- (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
-
- // Get power of 2 in case of l2 pooling and accumulate
- if(pooling_type == PoolingType::L2)
- {
- vres = vaddq_f16(vres, vmulq_f16(data, data));
- }
- else
- {
- vres = vaddq_f16(vres, data);
- }
- }
-
- // Leftover for loop
- for(; x < pool_size_x; ++x)
- {
- float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x())
- + (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
-
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- data *= data;
- }
-
- res += data;
- }
- }
-
- // Reduction
- float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
- res += vget_lane_f16(tmp, 0);
- res += vget_lane_f16(tmp, 1);
- res += vget_lane_f16(tmp, 2);
- res += vget_lane_f16(tmp, 3);
-
- // Divide by scale
- res *= scale;
- }
- else
- {
- float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
- res = std::numeric_limits<float>::lowest();
-
- for(int y = 0; y < pool_size_y; ++y)
- {
- int x = 0;
- for(; x <= (pool_size_x - 8); x += 8)
- {
- const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) +
- (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
- vres = vmaxq_f16(vres, data);
- }
-
- // Leftover for loop
- for(; x < pool_size_x; ++x)
- {
- const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x())
- + (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
- res = std::max(res, data);
- }
- }
-
- float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
- res = std::max(res, vget_lane_f16(tmp, 0));
- res = std::max(res, vget_lane_f16(tmp, 1));
- res = std::max(res, vget_lane_f16(tmp, 2));
- res = std::max(res, vget_lane_f16(tmp, 3));
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- res = std::sqrt(res);
- }
-
- // Store result
- *(reinterpret_cast<float16_t *>(output.ptr())) = res;
- },
- input, output);
-
-#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- ARM_COMPUTE_UNUSED(window_input);
- ARM_COMPUTE_UNUSED(window);
- ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-void NEPoolingLayerKernel::pooling2_f16_nhwc_maxpool_indices(const Window &window_input, const Window &window)
-{
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 8;
-
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input(_input, window_input);
- Iterator output(_output, window_out);
- Iterator indices(_indices, window_out);
-
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
-
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-
- const int pad_right = _input->info()->padding().right;
- const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
- const int in_stride_z = static_cast<int>(_input->info()->strides_in_bytes().z());
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const int idx_width = id.y() * pool_stride_x;
- const int idx_height = id.z() * pool_stride_y;
- const int pool_limit_y = pool_pad_top - idx_height;
- const int pool_limit_x = pool_pad_left - idx_width;
-
- const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
- const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
- const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
- const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
- const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
- const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
-
- int x_off = window_start_x;
- for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
- {
- const auto in_x0_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x0_offset) + x_off;
- const auto in_x1_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x1_offset) + x_off;
- const auto in_x2_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x2_offset) + x_off;
- const auto in_x3_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x3_offset) + x_off;
- const auto v_x0 = vld1q_f16(in_x0_ptr);
- const auto v_x1 = vld1q_f16(in_x1_ptr);
- const auto v_x2 = vld1q_f16(in_x2_ptr);
- const auto v_x3 = vld1q_f16(in_x3_ptr);
- float16x8_t vres = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
- // Store result
- vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()) + x_off, vres);
-
- const uint32_t offset_base = offset_no_padding<float16_t>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
- const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off;
- const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
- const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _input->info()->tensor_shape()[1];
- const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
- const uint32x4_t voffset_x0_0 = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
- const uint32x4_t voffset_x0_1 = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 };
- const uint16x8_t voffset_x0 = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
- const uint32x4_t voffset_x1_0 = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
- const uint32x4_t voffset_x1_1 = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 };
- const uint16x8_t voffset_x1 = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
- const uint32x4_t voffset_x2_0 = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
- const uint32x4_t voffset_x2_1 = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 };
- const uint16x8_t voffset_x2 = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
- const uint32x4_t voffset_x3_0 = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
- const uint32x4_t voffset_x3_1 = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 };
- const uint16x8_t voffset_x3 = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
- const uint16x8_t tmp_indices0 = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
- const uint16x8_t tmp_indices1 = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
- const uint16x8_t tmp_indices2 = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
- const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
- const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
- // Store indicies
- vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
- vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
- }
-
- // Left-overs loop
- for(; x_off < window_end_x; ++x_off)
- {
- const auto x0 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x0_offset) + x_off);
- const auto x1 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x1_offset) + x_off);
- const auto x2 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x2_offset) + x_off);
- const auto x3 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x3_offset) + x_off);
- float16_t res = std::max(std::max(x2, x3), std::max(x0, x1));
-
- // Store result
- *(reinterpret_cast<float16_t *>(output.ptr()) + x_off) = res;
-
- const uint32_t offset_base = offset_no_padding<float16_t>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
- const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off;
- const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
- const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _input->info()->tensor_shape()[1];
- const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
- const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
- const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
- const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
-
- // Store indices
- *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
- }
- },
- input, output, indices);
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-void NEPoolingLayerKernel::poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- ARM_COMPUTE_UNUSED(pooling_type);
- ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
- {
- pooling2_f16_nhwc_maxpool_indices(window_input, window);
- }
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 8;
-
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input(_input, window_input);
- Iterator output(_output, window_out);
-
- const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
- const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
-
- float16x8_t vres;
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const int idx_width = id.y() * pool_stride_x;
- const int idx_height = id.z() * pool_stride_y;
- const int pool_limit_y = pool_pad_top - idx_height;
- const int pool_limit_x = pool_pad_left - idx_width;
-
- const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
- const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
- const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
- const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
-
- int x_off = window_start_x;
- for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
- {
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
- const float16x8_t scale_v = vdupq_n_f16(scale);
-
- // Perform pooling
- vres = vdupq_n_f16(0.0f);
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) +
- (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().z())) + x_off);
-
- // Get power of 2 in case of l2 pooling and accumulate
- if(pooling_type == PoolingType::L2)
- {
- vres = vaddq_f16(vres, vmulq_f16(data, data));
- }
- else
- {
- vres = vaddq_f16(vres, data);
- }
- }
- }
- // Divide by scale
- vres = vmulq_f16(vres, scale_v);
- }
- else
- {
- vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
-
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) +
- (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().z())) + x_off);
- vres = vmaxq_f16(vres, data);
- }
- }
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
- vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
- }
-
- // Store result
- vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()) + x_off, vres);
- }
-
- // Left-overs loop
- for(; x_off < window_end_x; ++x_off)
- {
- float16_t res = 0.0f;
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float16_t scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
-
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
-
- // Get power of 2 in case of l2 pooling and accumulate
- if(pooling_type == PoolingType::L2)
- {
- res += data * data;
- }
- else
- {
- res += data;
- }
- }
- }
-
- // Divide by scale
- res *= scale;
- }
- else
- {
- res = std::numeric_limits<float>::lowest();
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- res = std::max(res, data);
- }
- }
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- res = std::sqrt(res);
- }
-
- // Store result
- *(reinterpret_cast<float16_t *>(output.ptr()) + x_off) = res;
- }
- },
- input, output);
-
-#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- ARM_COMPUTE_UNUSED(window_input);
- ARM_COMPUTE_UNUSED(window);
- ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-void NEPoolingLayerKernel::poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
- const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float res = 0.0f;
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-
- // Perform pooling
- float32x4_t vres = vdupq_n_f32(0.0f);
-
- for(int y = 0; y < pool_size_y; ++y)
- {
- int x = 0;
- for(; x <= (pool_size_x - 4); x += 4)
- {
- const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
-
- // Get power of 2 in case of l2 pooling and accumulate
- if(pooling_type == PoolingType::L2)
- {
- vres = vmlaq_f32(vres, data, data);
- }
- else
- {
- vres = vaddq_f32(vres, data);
- }
- }
-
- // Leftover for loop
- for(; x < pool_size_x; ++x)
- {
- float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
-
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- data *= data;
- }
-
- res += data;
- }
- }
-
-#if defined(__aarch64__)
- // Reduction operation available on 64 bit architectures only
- res += vaddvq_f32(vres);
-#else // __aarch64__
- // Reduction
- float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
- tmp = vpadd_f32(tmp, tmp);
-
- res += vget_lane_f32(tmp, 0);
-#endif // __aarch64__
- // Divide by scale
- res *= scale;
- }
- else
- {
- float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
- res = std::numeric_limits<float>::lowest();
-
- for(int y = 0; y < pool_size_y; ++y)
- {
- int x = 0;
- for(; x <= (pool_size_x - 4); x += 4)
- {
- const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
- vres = vmaxq_f32(vres, data);
- }
-
- // Leftover for loop
- for(; x < pool_size_x; ++x)
- {
- const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
- res = std::max(res, data);
- }
- }
-#if defined(__aarch64__)
- // Reduction operation available on 64 bit architectures only
- res = std::max(vmaxvq_f32(vres), res);
-#else // __aarch64__
- float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
- tmp = vpmax_f32(tmp, tmp);
-
- res = std::max(res, vget_lane_f32(tmp, 0));
-#endif // __aarch64__
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- res = std::sqrt(res);
- }
-
- // Store result
- *(reinterpret_cast<float *>(output.ptr())) = res;
- },
- input, output);
-}
-
-void NEPoolingLayerKernel::pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type,
- bool exclude_padding)
-{
- if(pooling_type == PoolingType::MAX && _indices)
- {
- pooling2_nchw_maxpool_indices<float>(window_input, window);
- }
- else
- {
- Iterator input(_input, window_input);
- Iterator output(_output, window);
- constexpr int pool_size = 2;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto in_top_ptr = reinterpret_cast<const float *>(input_top_ptr + input.offset());
- const auto in_bottom_ptr = reinterpret_cast<const float *>(input_bottom_ptr + input.offset());
- float32x2_t top_data = vld1_f32(in_top_ptr);
- float32x2_t bottom_data = vld1_f32(in_bottom_ptr);
- float32x2_t res = {};
- float final_res = 0;
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- top_data = vmul_f32(top_data, top_data);
- bottom_data = vmul_f32(bottom_data, bottom_data);
- }
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- const float32x2_t scale_v = vdup_n_f32(scale);
-
- // Perform pooling
- const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
- res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
- }
- else
- {
- const float32x2_t max_data = vmax_f32(top_data, bottom_data);
- res = vpmax_f32(max_data, max_data);
- }
- final_res = vget_lane_f32(res, 0);
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- final_res = sqrt(final_res);
- }
-
- // Store result
- *(reinterpret_cast<float *>(output.ptr())) = final_res;
- },
- input, output);
- }
-}
-
-void NEPoolingLayerKernel::pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- constexpr const int pool_size = 3;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
- const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float32x4_t top_data = vld1q_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
- float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(input_middle_ptr + input.offset()));
- float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
- float32x2_t res = {};
- float final_res = 0;
-
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- top_data = vmulq_f32(top_data, top_data);
- middle_data = vmulq_f32(middle_data, middle_data);
- bottom_data = vmulq_f32(bottom_data, bottom_data);
- }
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- const float32x2_t scale_v = vdup_n_f32(scale);
-
- // Perform pooling
- const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
- res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
- res = vmul_f32(vpadd_f32(res, res), scale_v);
- }
- else
- {
- const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
- res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
- res = vpmax_f32(res, res);
- }
- final_res = vget_lane_f32(res, 0);
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- final_res = sqrt(final_res);
- }
-
- // Store result
- *(reinterpret_cast<float *>(output.ptr())) = final_res;
- },
- input, output);
-}
-
-void NEPoolingLayerKernel::pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- constexpr const int pool_size = 7;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- std::array<const uint8_t *, pool_size> input_ptrs{ {} };
- for(int i = 0; i < pool_size; ++i)
- {
- input_ptrs[i] = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
- }
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float32x2_t res = {};
- float final_res = 0.f;
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
- const float32x2_t scale_v = vdup_n_f32(scale);
-
- // Perform pooling
- float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- data.val[0] = vmulq_f32(data.val[0], data.val[0]);
- data.val[1] = vmulq_f32(data.val[1], data.val[1]);
- }
- float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
- for(int i = 1; i < pool_size; ++i)
- {
- data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
- // Get power of 2 in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- data.val[0] = vmulq_f32(data.val[0], data.val[0]);
- data.val[1] = vmulq_f32(data.val[1], data.val[1]);
- }
- sum_data = vaddq_f32(sum_data, data.val[0]);
- sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
- }
- res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
- res = vmul_f32(vpadd_f32(res, res), scale_v);
- }
- else
- {
- float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
- for(int i = 1; i < pool_size; ++i)
- {
- const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
- max_data = vmax2q_f32(max_data, data);
- }
- res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
- res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
- res = vpmax_f32(res, res);
- }
- final_res = vget_lane_f32(res, 0);
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- final_res = sqrt(final_res);
- }
-
- // Store result
- *(reinterpret_cast<float *>(output.ptr())) = final_res;
- },
- input, output);
-}
-
-void NEPoolingLayerKernel::poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
- {
- pooling2_f32_nhwc_maxpool_indices(window_input, window);
- }
- else
- {
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 4;
-
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input(_input, window_input);
- Iterator output(_output, window_out);
-
- const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
- const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
-
- float32x4_t vres;
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const int idx_width = id.y() * pool_stride_x;
- const int idx_height = id.z() * pool_stride_y;
- const int pool_limit_y = pool_pad_top - idx_height;
- const int pool_limit_x = pool_pad_left - idx_width;
-
- const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
- const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
- const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
- const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
-
- int x_off = window_start_x;
- for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
- {
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
- const float32x4_t scale_v = vdupq_n_f32(scale);
-
- // Perform pooling
- vres = vdupq_n_f32(0.0f);
-
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
-
- // Get power of 2 in case of l2 pooling and accumulate
- if(pooling_type == PoolingType::L2)
- {
- vres = vmlaq_f32(vres, data, data);
- }
- else
- {
- vres = vaddq_f32(vres, data);
- }
- }
- }
- // Divide by scale
- vres = vmulq_f32(vres, scale_v);
- }
- else
- {
- vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- vres = vmaxq_f32(vres, data);
- }
- }
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- float32x4_t l2_res = { static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
- static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
- static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
- static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))
- };
- vres = l2_res;
- }
-
- // Store result
- vst1q_f32(reinterpret_cast<float *>(output.ptr()) + x_off, vres);
- }
-
- // Left-overs loop
- for(; x_off < window_end_x; ++x_off)
- {
- float res = 0.0f;
-
- if(pooling_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
-
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
-
- // Get power of 2 in case of l2 pooling and accumulate
- if(pooling_type == PoolingType::L2)
- {
- res += data * data;
- }
- else
- {
- res += data;
- }
- }
- }
-
- // Divide by scale
- res *= scale;
- }
- else
- {
- res = std::numeric_limits<float>::lowest();
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- res = std::max(res, data);
- }
- }
- }
-
- // Calculate square-root in case of l2 pooling
- if(pooling_type == PoolingType::L2)
- {
- res = std::sqrt(res);
- }
-
- // Store result
- *(reinterpret_cast<float *>(output.ptr()) + x_off) = res;
- }
- },
- input, output);
- }
-}
-
-void NEPoolingLayerKernel::pooling2_f32_nhwc_maxpool_indices(const Window &window_input, const Window &window)
-{
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 4;
-
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input(_input, window_input);
- Iterator output(_output, window_out);
- Iterator indices(_indices, window_out);
-
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
-
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-
- float32x4_t vres;
- float res;
-
- const int pad_right = _input->info()->padding().right;
- const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
- const int in_stride_z = static_cast<int>(_input->info()->strides_in_bytes().z());
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const int idx_width = id.y() * pool_stride_x;
- const int idx_height = id.z() * pool_stride_y;
- const int pool_limit_y = pool_pad_top - idx_height;
- const int pool_limit_x = pool_pad_left - idx_width;
-
- const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
- const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
-
- const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
- const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
- const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
- const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z());
-
- int x_off = window_start_x;
- for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
- {
- const auto in_x0_ptr = reinterpret_cast<const float *>(input.ptr() + in_x0_offset);
- const auto in_x1_ptr = reinterpret_cast<const float *>(input.ptr() + in_x1_offset);
- const auto in_x2_ptr = reinterpret_cast<const float *>(input.ptr() + in_x2_offset);
- const auto in_x3_ptr = reinterpret_cast<const float *>(input.ptr() + in_x3_offset);
- const auto v_x0 = vld1q_f32(in_x0_ptr + x_off);
- const auto v_x1 = vld1q_f32(in_x1_ptr + x_off);
- const auto v_x2 = vld1q_f32(in_x2_ptr + x_off);
- const auto v_x3 = vld1q_f32(in_x3_ptr + x_off);
- vres = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
- // Store result
- vst1q_f32(reinterpret_cast<float *>(output.ptr()) + x_off, vres);
-
- const uint32_t offset_base = offset_no_padding<float>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
- const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float) + x_off;
- const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
- const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _input->info()->tensor_shape()[1];
- const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
- const uint32x4_t voffset_x0 = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
- const uint32x4_t voffset_x1 = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
- const uint32x4_t voffset_x2 = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
- const uint32x4_t voffset_x3 = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
- const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
- const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
- const uint32x4_t tmp_indices2 = vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
-
- // Store indices
- vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
- }
-
- // Left-overs loop
- for(; x_off < window_end_x; ++x_off)
- {
- const auto x0 = *(reinterpret_cast<const float *>(input.ptr() + in_x0_offset) + x_off);
- const auto x1 = *(reinterpret_cast<const float *>(input.ptr() + in_x1_offset) + x_off);
- const auto x2 = *(reinterpret_cast<const float *>(input.ptr() + in_x2_offset) + x_off);
- const auto x3 = *(reinterpret_cast<const float *>(input.ptr() + in_x3_offset) + x_off);
- res = std::max(std::max(x2, x3), std::max(x0, x1));
-
- // Store result
- *(reinterpret_cast<float *>(output.ptr()) + x_off) = res;
-
- const uint32_t offset_base = offset_no_padding<float>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
- const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float) + x_off;
- const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
- const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _input->info()->tensor_shape()[1];
- const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
- const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
- const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
- const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
-
- // Store indices
- *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
- }
- },
- input, output, indices);
-}
-
-template <typename T>
-void NEPoolingLayerKernel::poolingMxN_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- Iterator input(_input, window_input);
- Iterator output(_output, window);
-
- /** NEON vector types */
- using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
- using q16_t = typename wrapper::traits::promote_t<T>;
- using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
- using q32_t = typename wrapper::traits::promote_t<q16_t>;
- using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
-
- const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
- const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const UniformQuantizationInfo &input_qinfo = _input->info()->quantization_info().uniform();
- const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- T res = std::numeric_limits<T>::min();
-
- if(pooling_type != PoolingType::MAX)
- {
- q32x4_t vres = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
- q32_t sres = 0;
-
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-
- // Perform pooling
- for(int y = 0; y < pool_size_y; ++y)
- {
- int x = 0;
- for(; x <= (pool_size_x - 8); x += 8)
- {
- const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
-
- const q16x8_t data_q16 = wrapper::vmovl(data);
- vres = wrapper::vadd(vres, wrapper::vaddl(wrapper::vgethigh(data_q16), wrapper::vgetlow(data_q16)));
- }
-
- // Leftover for loop
- for(; x < pool_size_x; ++x)
- {
- T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
- sres += data;
- }
- }
-
- // Reduction
- const auto tmp = wrapper::vpadd(wrapper::vgethigh(vres), wrapper::vgetlow(vres));
- sres += wrapper::vgetlane(tmp, 0) + wrapper::vgetlane(tmp, 1);
-
- // Divide by scale
- res = static_cast<T>(support::cpp11::round(sres * scale));
- }
- else
- {
- q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
-
- for(int y = 0; y < pool_size_y; ++y)
- {
- int x = 0;
- for(; x <= (pool_size_x - 8); x += 8)
- {
- const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
- vres = wrapper::vmax(vres, data);
- }
- // Leftover for loop
- for(; x < pool_size_x; ++x)
- {
- const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().y())));
- res = std::max(res, data);
- }
- }
-
- // Reduce max
- vres = wrapper::vpmax(vres, vres);
- vres = wrapper::vpmax(vres, vres);
- vres = wrapper::vpmax(vres, vres);
-
- // Get max value
- res = std::max(res, wrapper::vgetlane(vres, 0));
- }
- // Store result
- res = (input_qinfo != output_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(Qasymm8QuantizationHelper<T>::dequantize(res, input_qinfo), output_qinfo) : res;
- *(reinterpret_cast<T *>(output.ptr())) = res;
- },
- input, output);
-}
-
-template <typename T>
-void NEPoolingLayerKernel::poolingMxN_q8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 16;
- const int window_half_step_x = window_step_x / 2;
-
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input(_input, window_input);
- Iterator output(_output, window_out);
-
- using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
- using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
- using q16_t = typename wrapper::traits::promote_t<T>;
- using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
- using q32_t = typename wrapper::traits::promote_t<q16_t>;
- using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
-
- const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
- const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
- const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
- const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
-
- const float32x4_t half_scale_v = vdupq_n_f32(0.5f);
- const UniformQuantizationInfo input_qinfo = _input->info()->quantization_info().uniform();
- const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
-
- const float quant_rescale = output_qinfo.scale / input_qinfo.scale;
- // "new_offset" doesn't have to consider the "half_scale_v" in its computation
- // With a requantization performed in a single step there won't be uncertainties introduced
- const int32_t new_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / quant_rescale);
-
- const float requant_scale = output_qinfo.scale / input_qinfo.scale;
- const int32_t requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
- const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const int idx_width = id.y() * pool_stride_x;
- const int idx_height = id.z() * pool_stride_y;
- const int pool_limit_y = pool_pad_top - idx_height;
- const int pool_limit_x = pool_pad_left - idx_width;
-
- const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
- const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
- const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
- const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
-
- int x_off = window_start_x;
- for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
- {
- if(pooling_type != PoolingType::MAX)
- {
- q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
- q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
- q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
- q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
-
- // Perform pooling
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
-
- const q16x8_t data_q16 = wrapper::vmovl(wrapper::vgetlow(data));
- const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
- vres1 = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
- vres2 = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
- vres3 = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
- vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
- }
- }
-
- if(input_qinfo != output_qinfo)
- {
- const float32x4x4_t vres =
- {
- {
- vcvtq_f32_q32(vres1),
- vcvtq_f32_q32(vres2),
- vcvtq_f32_q32(vres3),
- vcvtq_f32_q32(vres4),
- }
- };
- const auto requantized_output = vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
- // Store result
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, wrapper::vgetlow(requantized_output));
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off + 8, wrapper::vgethigh(requantized_output));
- }
- else
- {
- const float32x4_t scale_v = vdupq_n_f32(scale);
- // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
- vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
- vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
- vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
- vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
-
- const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
- const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
- // Store result
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, res1);
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off + 8, res2);
- }
- }
- else
- {
- q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
-
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- vres = wrapper::vmax(vres, data);
- }
- }
-
- // Store result
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, (input_qinfo != output_qinfo) ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres), wrapper::vgethigh(vres),
- requant_qinfo) :
- vres);
- }
- }
-
- if(pooling_type == PoolingType::MAX)
- {
- for(; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
- {
- q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- vres = wrapper::vmax(vres, data);
- }
- }
-
- // Store result
- wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off,
- (input_qinfo != output_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
- }
- }
-
- // Left-overs loop
- for(; x_off < window_end_x; ++x_off)
- {
- if(pooling_type != PoolingType::MAX)
- {
- q32_t res = static_cast<q32_t>(0.f);
-
- // Calculate scale
- const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
-
- // Perform pooling
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- res += data;
- }
- }
-
- if(input_qinfo != output_qinfo)
- {
- const float res_f = static_cast<float>(res);
- const float new_scale = quant_rescale / scale;
- const auto requantized_output = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
-
- // Store result
- *(reinterpret_cast<T *>(output.ptr()) + x_off) = requantized_output;
- }
- else
- {
- // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
- res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
-
- // Store result
- *(reinterpret_cast<T *>(output.ptr()) + x_off) = res;
- }
- }
- else
- {
- T res = std::numeric_limits<T>::min();
-
- for(int y = pool_start_y; y < pool_end_y; ++y)
- {
- for(int x = pool_start_x; x < pool_end_x; ++x)
- {
- const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
- (_input->info()->strides_in_bytes().z())) + x_off);
- res = std::max(res, data);
- }
- }
-
- // Store result
- if(input_qinfo != output_qinfo)
- {
- const float res_f = static_cast<float>(res);
- *(reinterpret_cast<T *>(output.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
- }
- else
- {
- *(reinterpret_cast<T *>(output.ptr()) + x_off) = res;
- }
- }
- }
-
- },
- input, output);
-}
-
-Status NEPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
-
- unsigned int pooled_w = 0;
- unsigned int pooled_h = 0;
- unsigned int num_elems_processed_per_iteration = 0;
- BorderSize border_size(0);
-
- const bool is_global_pooling = pool_info.is_global_pooling;
- unsigned int pool_size_x = 0;
- unsigned int pool_size_y = 0;
-
- // Get data layout
- const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
- const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
- pool_size_x = is_global_pooling ? input->dimension(idx_width) : pool_info.pool_size.width;
- pool_size_y = is_global_pooling ? input->dimension(idx_height) : pool_info.pool_size.height;
-
- // Validate pool info before calling scaled_dimensions
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(pool_size_x, pool_size_y));
-
- // Check output dimensions
- std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
- input->dimension(idx_height),
- pool_size_x,
- pool_size_y,
- pool_info.pad_stride_info);
-
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, pooled_w, pooled_h, indices, Size2D(pool_size_x, pool_size_y)));
- ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(),
- (indices) ? indices->clone().get() : nullptr, pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h,
- pool_size_x, pool_size_y)
- .first);
-
- return Status{};
-}
-
-void NEPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
- ARM_COMPUTE_ERROR_ON(_func == nullptr);
-
- const unsigned int pool_stride_x = _pool_info.pad_stride_info.stride().first;
- const unsigned int pool_stride_y = _pool_info.pad_stride_info.stride().second;
- const unsigned int pool_size = _pool_info.pool_size.width;
- const bool exclude_padding = _pool_info.exclude_padding;
-
- Window window_input(window);
- if(_data_layout == DataLayout::NCHW)
- {
- // Set step for input in x and y direction for the input
- unsigned int window_x_inc = 0;
- switch(_input->info()->data_type())
- {
- case DataType::QASYMM8:
- case DataType::QASYMM8_SIGNED:
- {
- window_x_inc = pool_stride_x;
- if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
- {
- window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
- }
- break;
- }
-
- case DataType::F16:
- case DataType::F32:
- {
- window_x_inc = pool_stride_x;
- break;
- }
- default:
- {
- ARM_COMPUTE_ERROR("Not supported");
- }
- }
- window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
- window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
- }
- else
- {
- window_input.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_input.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), pool_stride_x));
- window_input.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), pool_stride_y));
- }
-
- // Run function
- (this->*_func)(window_input, window, _pool_info.pool_type, exclude_padding);
-}
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/NEPoolingLayerKernel.h b/src/core/NEON/kernels/NEPoolingLayerKernel.h
deleted file mode 100644
index aa3d2f3f01..0000000000
--- a/src/core/NEON/kernels/NEPoolingLayerKernel.h
+++ /dev/null
@@ -1,229 +0,0 @@
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NEPOOLINGLAYERKERNEL_H
-#define ARM_COMPUTE_NEPOOLINGLAYERKERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** Interface for the pooling layer kernel */
-class NEPoolingLayerKernel : public INEKernel
-{
-public:
- const char *name() const override
- {
- return "NEPoolingLayerKernel";
- }
- /** Default constructor */
- NEPoolingLayerKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEPoolingLayerKernel(const NEPoolingLayerKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEPoolingLayerKernel &operator=(const NEPoolingLayerKernel &) = delete;
- /** Allow instances of this class to be moved */
- NEPoolingLayerKernel(NEPoolingLayerKernel &&) = default;
- /** Allow instances of this class to be moved */
- NEPoolingLayerKernel &operator=(NEPoolingLayerKernel &&) = default;
- /** Default destructor */
- ~NEPoolingLayerKernel() = default;
- /** Set the input and output tensors.
- *
- * @note F16 are supported for pool sizes 2 and 3 only
- *
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[out] output Destination tensor. Data types supported: Same as @p input.
- * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
- * @param[out] indices (optional) The indices of the maximal values. Data type supported: U32.
- */
- void configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info, ITensor *indices = nullptr);
- /** Static function to check if given info will lead to a valid configuration of @ref NEPoolingLayerKernel
- *
- * @note F16 are supported for pool sizes 2 and 3 only
- *
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] output Destination tensor. Data types supported: Same as @p input.
- * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
- * @param[in] indices (optional) The indices of the maximal values. Data type supported: U32.
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices = nullptr);
-
- // Inherited methods overridden:
- void run(const Window &window, const ThreadInfo &info) override;
- BorderSize border_size() const override;
-
-private:
- /** Function to perform 2x2 pooling.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform 2x2 pooling and compute the pooling indices. The indices can be used for max unpool.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- */
- void pooling2_f32_nhwc_maxpool_indices(const Window &window_input, const Window &window);
- /** Function to perform MxN pooling for 32-bit floating point values.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform MxN pooling for 32-bit floating point values (NHWC).
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform 7x7 pooling.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform 3x3 pooling.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform 2x2 pooling for float16_t.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform 2x2 pooling and compute the pooling indices for FP32/FP16. The indices can be used for max unpool.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- */
- template <typename T>
- void pooling2_nchw_maxpool_indices(const Window &window_input, const Window &window);
- /** Function to perform 2x2 pooling and compute the pooling indices. The indices can be used for max unpool.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- */
- void pooling2_f16_nhwc_maxpool_indices(const Window &window_input, const Window &window);
- /** Function to perform 3x3 pooling.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform MxN pooling for 16-bit floating point values.
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Function to perform MxN pooling for 16-bit floating point values. (NHWC)
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- void poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Template function to perform 2x2 pooling for 8bit quantized fixed point. (NCHW)
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- template <typename T>
- void pooling2_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Template function to perform 3x3 pooling for 8bit quantized fixed point. (NCHW)
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- template <typename T>
- void pooling3_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Template function to perform MxN pooling for 8-bit quantized. (NCHW)
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- template <typename T>
- void poolingMxN_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Template function to perform MxN pooling for 8-bit quantized. (NHWC)
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- template <typename T>
- void poolingMxN_q8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
- /** Common signature for all the specialised Pooling functions
- *
- * @param[in] window_input Input region on which to execute the kernel.
- * @param[in] window Output region on which to execute the kernel.
- * @param[in] pooling_type Pooling operation to be computed.
- * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
- */
- using PoolingFunction = void (NEPoolingLayerKernel::*)(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding);
-
-private:
- PoolingFunction _func;
- const ITensor *_input;
- ITensor *_output;
- ITensor *_indices;
- PoolingLayerInfo _pool_info;
- DataLayout _data_layout;
- unsigned int _num_elems_processed_per_iteration;
- BorderSize _border_size;
- bool _is_square;
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_NEPOOLINGLAYERKERNEL_H */
diff --git a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp b/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp
deleted file mode 100644
index 04406663fc..0000000000
--- a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp
+++ /dev/null
@@ -1,269 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-using namespace arm_compute::misc::shape_calculator;
-
-void NEPoolingAssemblyWrapperKernel::configure(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-
- // Output initialization if not yet initialized
- auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, info)));
-
- const bool requantize = input->quantization_info() != output->quantization_info();
-
- switch(input->data_type())
- {
- case DataType::QASYMM8:
- if(requantize)
- {
- create_arm_pooling_requant<uint8_t, uint8_t>(input, output, info, cpu_info);
- }
- else
- {
- create_arm_pooling<uint8_t, uint8_t>(input, output, info, cpu_info);
- }
- break;
- case DataType::QASYMM8_SIGNED:
- if(requantize)
- {
- create_arm_pooling_requant<int8_t, int8_t>(input, output, info, cpu_info);
- }
- else
- {
- create_arm_pooling<int8_t, int8_t>(input, output, info, cpu_info);
- }
- break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- create_arm_pooling<float16_t, float16_t>(input, output, info, cpu_info);
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- create_arm_pooling<float, float>(input, output, info, cpu_info);
- break;
- default:
- break;
- }
-
- Window win = calculate_max_window(*output, Steps());
- INEKernel::configure(win);
-}
-
-Status NEPoolingAssemblyWrapperKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &info)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-
-#ifndef __aarch64__
- ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
-#endif /* __aarch64__ */
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG((input->data_layout() != DataLayout::NHWC) || (info.data_layout != DataLayout::NHWC), "Only NHWC is supported by assembly kernels");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.pool_type != PoolingType::AVG) && (info.pool_type != PoolingType::MAX),
- "Only AVG and MAX pooling are supported by assembly kernels");
-
- if(output->total_size() > 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
-
- const auto input_qinfo = input->quantization_info().uniform();
- const auto output_qinfo = output->quantization_info().uniform();
-
- if(input_qinfo != output_qinfo)
- {
- const float multiplier = input_qinfo.scale / output_qinfo.scale;
- int32_t output_multiplier{};
- int32_t output_shift{};
- ARM_COMPUTE_RETURN_ERROR_ON(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
- }
- else
- {
- if(input->data_type() == DataType::QASYMM8)
- {
- const bool has_padding = info.pad_stride_info.has_padding();
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same input/output quantization info");
- }
- }
- }
- else
- {
- if(input->data_type() == DataType::QASYMM8)
- {
- // If output is not configured, the quantization info are the same
- const bool has_padding = info.pad_stride_info.has_padding();
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same input/output quantization info");
- }
- }
- return Status{};
-}
-
-void NEPoolingAssemblyWrapperKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_UNUSED(window);
- ARM_COMPUTE_UNUSED(info);
-
- ARM_COMPUTE_ERROR_ON(tensors.empty());
-
- const ITensor *input = tensors.get_const_tensor(TensorType::ACL_SRC);
- ITensor *output = tensors.get_tensor(TensorType::ACL_DST_0);
- ITensor *workspace = tensors.get_tensor(TensorType::ACL_DST_1);
-
- const auto in_ptr = input->buffer() + input->info()->offset_first_element_in_bytes();
- auto out_ptr = output->buffer() + output->info()->offset_first_element_in_bytes();
- auto working_space = workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
-
- const auto input_shape = input->info()->tensor_shape();
- const auto output_shape = output->info()->tensor_shape();
- const auto input_padding = input->info()->padding();
- const auto output_padding = output->info()->padding();
-
- const size_t ld_input_col = input_shape[0] + input_padding.left + input_padding.right;
- const size_t ld_input_row = ld_input_col * (input_shape[1] + input_padding.top + input_padding.bottom);
- const size_t ld_input_batch = ld_input_row * input_shape[2];
- const size_t ld_output_col = output_shape[0] + output_padding.right;
- const size_t ld_output_row = ld_output_col * (output_shape[1] + output_padding.top + output_padding.bottom);
- const size_t ld_output_batch = ld_output_row * output_shape[2];
-
- _kernel_asm->execute(in_ptr, ld_input_col, ld_input_row, ld_input_batch,
- out_ptr, ld_output_col, ld_output_row, ld_output_batch,
- working_space, info.thread_id, info.num_threads);
-}
-
-size_t NEPoolingAssemblyWrapperKernel::get_working_size(unsigned int num_threads) const
-{
- return _kernel_asm->get_working_size(num_threads);
-}
-
-bool NEPoolingAssemblyWrapperKernel::is_configured() const
-{
- return _kernel_asm != nullptr;
-}
-
-template <typename TypeInput, typename TypeOutput>
-void NEPoolingAssemblyWrapperKernel::create_arm_pooling(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
-{
- const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
-
- arm_conv::pooling::PoolingWindow window{};
- window.cols = static_cast<unsigned int>(info.pool_size.x());
- window.rows = static_cast<unsigned int>(info.pool_size.y());
-
- arm_conv::pooling::PoolingStride stride{};
- std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
-
- const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
-
- constexpr unsigned int idx_width = 1;
- constexpr unsigned int idx_height = 2;
- constexpr unsigned int idx_channels = 0;
- constexpr unsigned int idx_batches = 3;
-
- const unsigned int n_batches = input->dimension(idx_batches);
- const unsigned int input_rows = input->dimension(idx_height);
- const unsigned int input_cols = input->dimension(idx_width);
- const unsigned int n_channels = input->dimension(idx_channels);
- const unsigned int output_rows = output->dimension(idx_height);
- const unsigned int output_cols = output->dimension(idx_width);
-
- arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, input_rows, input_cols, n_channels, output_rows, output_cols, padding, nullptr);
-
- // Configure assembly pooling kernel
- auto pooling_kernel_asm = arm_conv::pooling::pooling<TypeInput, TypeOutput>(args);
- if(pooling_kernel_asm == nullptr)
- {
- // Configuration not supported: Leave function unconfigured:
- return;
- }
-
- _kernel_asm = std::move(pooling_kernel_asm);
-}
-
-template <typename TypeInput, typename TypeOutput>
-void NEPoolingAssemblyWrapperKernel::create_arm_pooling_requant(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
-{
- const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
-
- arm_conv::pooling::PoolingWindow window{};
- window.cols = static_cast<unsigned int>(info.pool_size.x());
- window.rows = static_cast<unsigned int>(info.pool_size.y());
-
- arm_conv::pooling::PoolingStride stride{};
- std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
-
- const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
-
- constexpr unsigned int idx_width = 1;
- constexpr unsigned int idx_height = 2;
- constexpr unsigned int idx_channels = 0;
- constexpr unsigned int idx_batches = 3;
-
- const unsigned int n_batches = input->dimension(idx_batches);
- const unsigned int input_rows = input->dimension(idx_height);
- const unsigned int input_cols = input->dimension(idx_width);
- const unsigned int n_channels = input->dimension(idx_channels);
- const unsigned int output_rows = output->dimension(idx_height);
- const unsigned int output_cols = output->dimension(idx_width);
-
- arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, input_rows, input_cols, n_channels, output_rows, output_cols, padding, nullptr);
-
- const auto input_qinfo = input->quantization_info().uniform();
- const auto output_qinfo = output->quantization_info().uniform();
-
- const float multiplier = input_qinfo.scale / output_qinfo.scale;
- int32_t output_multiplier{};
- int32_t output_shift{};
- quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
-
- const arm_conv::pooling::Requantize32 requant_args(input_qinfo.offset,
- output_qinfo.offset,
- output_shift, // left shift
- 0, // right shift
- output_multiplier);
-
- // Configure assembly pooling kernel with requantization
- auto pooling_kernel_asm = arm_conv::pooling::pooling<TypeInput, TypeOutput, arm_conv::pooling::Requantize32>(args, requant_args);
- if(pooling_kernel_asm == nullptr)
- {
- // Configuration not supported: Leave function unconfigured:
- return;
- }
-
- _kernel_asm = std::move(pooling_kernel_asm);
-}
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h b/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h
deleted file mode 100644
index b2fa5b5714..0000000000
--- a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h
+++ /dev/null
@@ -1,116 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_ASSEMBLY_POOLING_KERNEL_WRAPPER_KERNEL_H
-#define ARM_COMPUTE_ASSEMBLY_POOLING_KERNEL_WRAPPER_KERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-#include "src/core/NEON/kernels/assembly/pooling.hpp"
-
-#include "pool_common.hpp"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** This class is a wrapper for the assembly kernels.
- *
- * Some kernels were written in assembly and highly optimised for specific
- * CPUs like A53 or A55. The arm compute library creates an instance of
- * NEPoolingAssemblyWrapperKernel and other auxiliary data structures to
- * execute a single assembly kernel in the context of an NEFunction.
- *
- */
-class NEPoolingAssemblyWrapperKernel final : public INEKernel
-{
-public:
- /** Constructor
- */
- NEPoolingAssemblyWrapperKernel() = default;
- NEPoolingAssemblyWrapperKernel(NEPoolingAssemblyWrapperKernel &) = delete;
- NEPoolingAssemblyWrapperKernel(NEPoolingAssemblyWrapperKernel &&) = default;
- NEPoolingAssemblyWrapperKernel &operator=(NEPoolingAssemblyWrapperKernel &) = delete;
-
- const char *name() const override
- {
- return "NEPoolingAssemblyWrapperKernel";
- }
-
- /** Initialise the kernel's input and output.
- *
- * @param[in] input Input tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[out] output Output tensor to store the result of pooling. Data types supported: same as @p input.
- * @param[in] info Pooling meta-data
- */
- void configure(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
-
- /** Indicates whether or not this function can be used to process the given parameters.
- *
- * @param[in] input Input tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] output Output tensor to store the result of pooling. Data types supported: same as @p input.
- * @param[in] info Pooling meta-data
- *
- * @return a status.
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &info);
-
- // Inherited methods overridden:
- void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
-
- /** Get size of the workspace needed by the assembly kernel.
- *
- * @param[in] num_threads Maximum number of threads that are going to be spawned.
- *
- * @return size of workspace
- */
- size_t get_working_size(unsigned int num_threads) const;
-
- /** Was the asm kernel successfully configured?
- *
- * @return True if the asm kernel is configured and ready to run
- */
- bool is_configured() const;
-
-private:
- /** Helper function to create the assembly kernel.
- *
- * @param[in] input Input tensor info.
- * @param[in] output Output tensor info.
- * @param[in] info Pooling layer meta-data.
- */
- template <typename TypeInput, typename TypeOutput>
- void create_arm_pooling(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
-
- /** Helper function to create the assembly kernel with requantization support
- *
- * @param[in] input Input tensor info.
- * @param[in] output Output tensor info.
- * @param[in] info Pooling layer meta-data.
- */
- template <typename TypeInput, typename TypeOutput>
- void create_arm_pooling_requant(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
-
- std::unique_ptr<arm_conv::pooling::IPoolingCommon> _kernel_asm{ nullptr };
-};
-} // namespace arm_compute
-#endif /* ARM_COMPUTE_ASSEMBLY_POOLING_KERNEL_WRAPPER_KERNEL_H */