aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_4x4_3x3_fp16_fp16_integers.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_4x4_3x3_fp16_fp16_integers.cpp')
-rw-r--r--src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_4x4_3x3_fp16_fp16_integers.cpp255
1 files changed, 255 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_4x4_3x3_fp16_fp16_integers.cpp b/src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_4x4_3x3_fp16_fp16_integers.cpp
new file mode 100644
index 0000000000..37b890d1bc
--- /dev/null
+++ b/src/core/NEON/kernels/convolution/winograd/winograd_transforms/output_4x4_3x3_fp16_fp16_integers.cpp
@@ -0,0 +1,255 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+#include "arm.hpp"
+#include "output.hpp"
+
+namespace winograd
+{
+
+template <>
+void winograd::OutputTransform<3, 3, 6, 6, __fp16, __fp16, winograd::WinogradRoots::Integers>::transform_tile(
+ const int n_channels,
+ const __fp16* inptr,
+ const int matrix_stride,
+ const __fp16* bptr,
+ __fp16* const output,
+ const int output_row_stride,
+ const int output_col_stride,
+ const __fp16 output_min,
+ const __fp16 output_max
+)
+{
+ // Construct a map to the output cells
+ __fp16 *outptrs[output_tile_rows][output_tile_cols];
+ for (int i = 0; i < output_tile_rows; i++)
+ {
+ for (int j = 0; j < output_tile_cols; j++)
+ {
+ outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
+ }
+ }
+
+ // For each channel of the output
+ int channels_remaining = n_channels;
+
+#ifdef __aarch64__
+ for (; channels_remaining >= 8; channels_remaining -= 8)
+ {
+ // Matrices used and computed during this transform
+ float16x8_t F[6][6], FZ[6][4], f[4][4], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1q_f16(inptr + m*matrix_stride);
+ }
+ }
+ inptr += 8;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vaddq_f16(vaddq_f16(vaddq_f16(F[i][0], F[i][1]), vaddq_f16(F[i][2], F[i][3])), F[i][4]);
+
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][1] = vaddq_f16(vsubq_f16(F[i][1], F[i][2]), vmulq_f16(vsubq_f16(F[i][3], F[i][4]), vdupq_n_f16(2.0f)));
+
+ // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][2] = vaddq_f16(vaddq_f16(F[i][1], F[i][2]), vmulq_f16(vaddq_f16(F[i][3], F[i][4]), vdupq_n_f16(4.0f)));
+
+ // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ FZ[i][3] = vaddq_f16(vaddq_f16(vsubq_f16(F[i][1], F[i][2]), vmulq_f16(vsubq_f16(F[i][3], F[i][4]), vdupq_n_f16(8.0f))), F[i][5]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vaddq_f16(vaddq_f16(vaddq_f16(FZ[0][j], FZ[1][j]), vaddq_f16(FZ[2][j], FZ[3][j])), FZ[4][j]);
+
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[1][j] = vaddq_f16(vsubq_f16(FZ[1][j], FZ[2][j]), vmulq_f16(vsubq_f16(FZ[3][j], FZ[4][j]), vdupq_n_f16(2.0f)));
+
+ // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[2][j] = vaddq_f16(vaddq_f16(FZ[1][j], FZ[2][j]), vmulq_f16(vaddq_f16(FZ[3][j], FZ[4][j]), vdupq_n_f16(4.0f)));
+
+ // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ f[3][j] = vaddq_f16(vaddq_f16(vsubq_f16(FZ[1][j], FZ[2][j]), vmulq_f16(vsubq_f16(FZ[3][j], FZ[4][j]), vdupq_n_f16(8.0f))), FZ[5][j]);
+ }
+
+ // Write out the output tile
+ if (bptr != nullptr)
+ {
+ b = vld1q_f16(bptr);
+ bptr += 8;
+ }
+ else
+ {
+ b = vdupq_n_f16(0.0f);
+ }
+ for (int i = 0; i < output_tile_rows; i++)
+ {
+ for (int j = 0; j < output_tile_cols; j++)
+ {
+ const auto y =
+ vmaxq_f16(vminq_f16(vaddq_f16(f[i][j], b), vdupq_n_f16(output_max)),
+ vdupq_n_f16(output_min));
+ vst1q_f16(outptrs[i][j], y);
+ outptrs[i][j] += 8;
+ }
+ }
+ }
+#endif // __aarch64__
+#ifdef __arm_any__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
+ {
+ // Matrices used and computed during this transform
+ float16x4_t F[6][6], FZ[6][4], f[4][4], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1_f16(inptr + m*matrix_stride);
+ }
+ }
+ inptr += 4;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vadd_f16(vadd_f16(vadd_f16(F[i][0], F[i][1]), vadd_f16(F[i][2], F[i][3])), F[i][4]);
+
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][1] = vadd_f16(vsub_f16(F[i][1], F[i][2]), vmul_f16(vsub_f16(F[i][3], F[i][4]), vdup_n_f16(2.0f)));
+
+ // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][2] = vadd_f16(vadd_f16(F[i][1], F[i][2]), vmul_f16(vadd_f16(F[i][3], F[i][4]), vdup_n_f16(4.0f)));
+
+ // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ FZ[i][3] = vadd_f16(vadd_f16(vsub_f16(F[i][1], F[i][2]), vmul_f16(vsub_f16(F[i][3], F[i][4]), vdup_n_f16(8.0f))), F[i][5]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vadd_f16(vadd_f16(vadd_f16(FZ[0][j], FZ[1][j]), vadd_f16(FZ[2][j], FZ[3][j])), FZ[4][j]);
+
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[1][j] = vadd_f16(vsub_f16(FZ[1][j], FZ[2][j]), vmul_f16(vsub_f16(FZ[3][j], FZ[4][j]), vdup_n_f16(2.0f)));
+
+ // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[2][j] = vadd_f16(vadd_f16(FZ[1][j], FZ[2][j]), vmul_f16(vadd_f16(FZ[3][j], FZ[4][j]), vdup_n_f16(4.0f)));
+
+ // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ f[3][j] = vadd_f16(vadd_f16(vsub_f16(FZ[1][j], FZ[2][j]), vmul_f16(vsub_f16(FZ[3][j], FZ[4][j]), vdup_n_f16(8.0f))), FZ[5][j]);
+ }
+
+ // Write out the output tile
+ if (bptr != nullptr)
+ {
+ b = vld1_f16(bptr);
+ bptr += 4;
+ }
+ else
+ {
+ b = vdup_n_f16(0.0f);
+ }
+ for (int i = 0; i < output_tile_rows; i++)
+ {
+ for (int j = 0; j < output_tile_cols; j++)
+ {
+ const auto y =
+ vmax_f16(vmin_f16(vadd_f16(f[i][j], b), vdup_n_f16(output_max)),
+ vdup_n_f16(output_min));
+ vst1_f16(outptrs[i][j], y);
+ outptrs[i][j] += 4;
+ }
+ }
+ }
+#endif // __arm_any__
+ for (; channels_remaining; channels_remaining--)
+ {
+ // Matrices used and computed during this transform
+ __fp16 F[6][6], FZ[6][4], f[4][4], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ }
+
+ // Write out the output tile
+ if (bptr != nullptr)
+ {
+ b = *(bptr++);
+ }
+ else
+ {
+ b = 0.0f;
+ }
+ for (int i = 0; i < output_tile_rows; i++)
+ {
+ for (int j = 0; j < output_tile_cols; j++)
+ {
+ const auto y = std::max(std::min<__fp16>(f[i][j] + b, output_max), output_min);
+ *(outptrs[i][j]++) = y;
+ }
+ }
+ }
+}
+
+template class OutputTransform<3, 3, 6, 6, __fp16, __fp16, winograd::WinogradRoots::Integers>;
+
+} // namespace winograd
+#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC