aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl')
-rw-r--r--src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl522
1 files changed, 522 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl b/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
new file mode 100644
index 0000000000..e1131d5573
--- /dev/null
+++ b/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
@@ -0,0 +1,522 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "types.h"
+
+/*
+ *The criteria for lost tracking is that the spatial gradient matrix has:
+ * - Determinant less than DETERMINANT_THR
+ * - or minimum eigenvalue is smaller then EIGENVALUE_THR
+ *
+ * The thresholds for the determinant and the minimum eigenvalue is
+ * defined by the OpenVX spec
+ *
+ * Note: Also lost tracking happens when the point tracked coordinate is outside
+ * the image coordinates
+ *
+ * https://www.khronos.org/registry/vx/specs/1.0/html/d0/d0c/group__group__vision__function__opticalflowpyrlk.html
+ */
+
+/* Internal Lucas-Kanade Keypoint struct */
+typedef struct InternalKeypoint
+{
+ float x; /**< The x coordinate. */
+ float y; /**< The y coordinate. */
+ float tracking_status; /**< A zero indicates a lost point. Initialized to 1 by corner detectors. */
+ float dummy;
+} InternalKeypoint;
+
+/** Threshold for the determinant. Used for lost tracking criteria */
+#define DETERMINANT_THR 1.0e-07f
+
+/** Thresholds for minimum eigenvalue. Used for lost tracking criteria */
+#define EIGENVALUE_THR 1.0e-04f
+
+/** Constants used for Lucas-Kanade Algorithm */
+#define W_BITS (14)
+#define FLT_SCALE (1.0f / (float)(1 << 20))
+#define D0 ((float)(1 << W_BITS))
+#define D1 (1.0f / (float)(1 << (W_BITS - 5)))
+
+/** Initializes the internal new points array when the level of pyramid is NOT equal to max.
+ *
+ * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
+ * @param[in,out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
+ * @param[in] scale Scale factor to apply for the new_point coordinates.
+ */
+__kernel void init_level(
+ __global float4 *old_points_internal,
+ __global float4 *new_points_internal,
+ const float scale)
+{
+ int idx = get_global_id(0);
+
+ // Get old and new keypoints
+ float4 old_point = old_points_internal[idx];
+ float4 new_point = new_points_internal[idx];
+
+ // Scale accordingly with the pyramid_scale
+ old_point.xy *= (float2)(2.0f);
+ new_point.xy *= (float2)(2.0f);
+
+ old_points_internal[idx] = old_point;
+ new_points_internal[idx] = new_point;
+}
+
+/** Initializes the internal new points array when the level of pyramid is equal to max.
+ *
+ * @param[in] old_points An array of key points that are defined at the old_images high resolution pyramid.
+ * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
+ * @param[out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
+ * @param[in] scale Scale factor to apply for the new_point coordinates.
+ */
+__kernel void init_level_max(
+ __global Keypoint *old_points,
+ __global InternalKeypoint *old_points_internal,
+ __global InternalKeypoint *new_points_internal,
+ const float scale)
+{
+ int idx = get_global_id(0);
+
+ Keypoint old_point = old_points[idx];
+
+ // Get old keypoint to track
+ InternalKeypoint old_point_internal;
+ old_point_internal.x = old_point.x * scale;
+ old_point_internal.y = old_point.y * scale;
+ old_point_internal.tracking_status = 1.f;
+
+ // Store internal keypoints
+ old_points_internal[idx] = old_point_internal;
+ new_points_internal[idx] = old_point_internal;
+}
+
+/** Initializes the new_points array when the level of pyramid is equal to max and if use_initial_estimate = 1.
+ *
+ * @param[in] old_points An array of key points that are defined at the old_images high resolution pyramid.
+ * @param[in] new_points_estimates An array of estimate key points that are defined at the old_images high resolution pyramid.
+ * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
+ * @param[out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
+ * @param[in] scale Scale factor to apply for the new_point coordinates.
+ */
+__kernel void init_level_max_initial_estimate(
+ __global Keypoint *old_points,
+ __global Keypoint *new_points_estimates,
+ __global InternalKeypoint *old_points_internal,
+ __global InternalKeypoint *new_points_internal,
+ const float scale)
+{
+ int idx = get_global_id(0);
+
+ Keypoint old_point = old_points[idx];
+ Keypoint new_point_estimate = new_points_estimates[idx];
+ InternalKeypoint old_point_internal;
+ InternalKeypoint new_point_internal;
+
+ // Get old keypoint to track
+ old_point_internal.x = old_point.x * scale;
+ old_point_internal.y = old_point.y * scale;
+ old_point_internal.tracking_status = 1.f;
+
+ // Get new keypoint to track
+ new_point_internal.x = new_point_estimate.x * scale;
+ new_point_internal.y = new_point_estimate.y * scale;
+ new_point_internal.tracking_status = new_point_estimate.tracking_status;
+
+ // Store internal keypoints
+ old_points_internal[idx] = old_point_internal;
+ new_points_internal[idx] = new_point_internal;
+}
+
+/** Truncates the coordinates stored in new_points array
+ *
+ * @param[in] new_points_internal An array of estimate key points that are defined at the new_images high resolution pyramid.
+ * @param[out] new_points An array of internal key points that are defined at the new_images high resolution pyramid.
+ */
+__kernel void finalize(
+ __global InternalKeypoint *new_points_internal,
+ __global Keypoint *new_points)
+{
+ int idx = get_global_id(0);
+
+ // Load internal keypoint
+ InternalKeypoint new_point_internal = new_points_internal[idx];
+
+ // Calculate output point
+ Keypoint new_point;
+ new_point.x = round(new_point_internal.x);
+ new_point.y = round(new_point_internal.y);
+ new_point.tracking_status = new_point_internal.tracking_status;
+
+ // Store new point
+ new_points[idx] = new_point;
+}
+
+/** Computes A11, A12, A22, min_eig, ival, ixval and iyval at level 0th of the pyramid. These values will be used in step 1.
+ *
+ * @param[in] old_image_ptr Pointer to the input old image. Supported data types: U8
+ * @param[in] old_image_stride_x Stride of the input old image in X dimension (in bytes)
+ * @param[in] old_image_step_x old_image_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] old_image_stride_y Stride of the input old image in Y dimension (in bytes)
+ * @param[in] old_image_step_y old_image_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] old_image_offset_first_element_in_bytes The offset of the first element in the input old image
+ * @param[in] old_scharr_gx_ptr Pointer to the input scharr x image. Supported data types: S16
+ * @param[in] old_scharr_gx_stride_x Stride of the input scharr x image in X dimension (in bytes)
+ * @param[in] old_scharr_gx_step_x old_scharr_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] old_scharr_gx_stride_y Stride of the input scharr x image in Y dimension (in bytes)
+ * @param[in] old_scharr_gx_step_y old_scharr_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] old_scharr_gx_offset_first_element_in_bytes The offset of the first element in the input scharr x image
+ * @param[in] old_scharr_gy_ptr Pointer to the input scharr y image. Supported data types: S16
+ * @param[in] old_scharr_gy_stride_x Stride of the input scharr y image in X dimension (in bytes)
+ * @param[in] old_scharr_gy_step_x old_scharr_gy_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] old_scharr_gy_stride_y Stride of the input scharr y image in Y dimension (in bytes)
+ * @param[in] old_scharr_gy_step_y old_scharr_gy_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] old_scharr_gy_offset_first_element_in_bytes The offset of the first element in the input scharr y image
+ * @param[in] old_points An array of key points. Those key points are defined at the old_images high resolution pyramid
+ * @param[in, out] new_points An output array of key points. Those key points are defined at the new_images high resolution pyramid
+ * @param[out] coeff It stores | A11 | A12 | A22 | min_eig | for each keypoint
+ * @param[out] iold_val It stores | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
+ * @param[in] window_dimension The size of the window on which to perform the algorithm
+ * @param[in] window_dimension_pow2 The squared size of the window on which to perform the algorithm
+ * @param[in] half_window The half size of the window on which to perform the algorithm
+ * @param[in] border_limits It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
+ * @param[in] eig_const 1.0f / (float)(2.0f * window_dimension * window_dimension)
+ * @param[in] level0 It is set to 1 if level 0 of the pyramid
+ */
+void __kernel lktracker_stage0(
+ IMAGE_DECLARATION(old_image),
+ IMAGE_DECLARATION(old_scharr_gx),
+ IMAGE_DECLARATION(old_scharr_gy),
+ __global float4 *old_points,
+ __global float4 *new_points,
+ __global float4 *coeff,
+ __global short4 *iold_val,
+ const int window_dimension,
+ const int window_dimension_pow2,
+ const int half_window,
+ const float3 border_limits,
+ const float eig_const,
+ const int level0)
+{
+ int idx = get_global_id(0);
+
+ Image old_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_image);
+ Image old_scharr_gx = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gx);
+ Image old_scharr_gy = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gy);
+
+ // Get old keypoint
+ float2 old_keypoint = old_points[idx].xy - (float2)half_window;
+
+ // Get the floor value
+ float2 iold_keypoint = floor(old_keypoint);
+
+ // Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
+ if(any(iold_keypoint < border_limits.zz) || any(iold_keypoint >= border_limits.xy))
+ {
+ if(level0 == 1)
+ {
+ // Invalidate tracked point as we are at level 0
+ new_points[idx].s2 = 0.0f;
+ }
+
+ // Not valid coordinate. It sets min_eig to 0.0f
+ coeff[idx].s3 = 0.0f;
+
+ return;
+ }
+
+ // Compute weight for the bilinear interpolation
+ float2 ab = old_keypoint - iold_keypoint;
+
+ // Weight used for Bilinear-Interpolation on Scharr images
+ // w_scharr.s0 = (1.0f - ab.x) * (1.0f - ab.y)
+ // w_scharr.s1 = ab.x * (1.0f - ab.y)
+ // w_scharr.s2 = (1.0f - ab.x) * ab.y
+ // w_scharr.s3 = ab.x * ab.y
+
+ float4 w_scharr;
+ w_scharr.s3 = ab.x * ab.y;
+ w_scharr.s0 = w_scharr.s3 + 1.0f - ab.x - ab.y;
+ w_scharr.s12 = ab - (float2)w_scharr.s3;
+
+ // Weight used for Bilinear-Interpolation on Old and New images
+ // w.s0 = round(w_scharr.s0 * D0)
+ // w.s1 = round(w_scharr.s1 * D0)
+ // w.s2 = round(w_scharr.s2 * D0)
+ // w.s3 = w.s3 = D0 - w.s0 - w.s1 - w.s2
+
+ float4 w;
+ w = round(w_scharr * (float4)D0);
+ w.s3 = D0 - w.s0 - w.s1 - w.s2; // Added for matching VX implementation
+
+ // G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
+ int4 iG = (int4)0;
+
+ // Window offset
+ int window_offset = idx * window_dimension_pow2;
+
+ // Compute Spatial Gradient Matrix G
+ for(ushort ky = 0; ky < window_dimension; ++ky)
+ {
+ int offset_y = iold_keypoint.y + ky;
+ for(ushort kx = 0; kx < window_dimension; ++kx)
+ {
+ int offset_x = iold_keypoint.x + kx;
+ float4 px;
+
+ // Load values from old_image for computing the bilinear interpolation
+ px = convert_float4((uchar4)(vload2(0, offset(&old_image, offset_x, offset_y)),
+ vload2(0, offset(&old_image, offset_x, offset_y + 1))));
+
+ // old_i.s0 = ival, old_i.s1 = ixval, old_i.s2 = iyval, old_i.s3 = dummy
+ float4 old_i;
+
+ // Compute bilinear interpolation (with D1 scale factor) for ival
+ old_i.s0 = dot(px, w) * D1;
+
+ // Load values from old_scharr_gx for computing the bilinear interpolation
+ px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y)),
+ vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y + 1))));
+
+ // Compute bilinear interpolation for ixval
+ old_i.s1 = dot(px, w_scharr);
+
+ // Load values from old_scharr_gy for computing the bilinear interpolation
+ px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y)),
+ vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y + 1))));
+
+ // Compute bilinear interpolation for iyval
+ old_i.s2 = dot(px, w_scharr);
+
+ // Rounding (it could be omitted. Used just for matching the VX implementation)
+ int4 iold = convert_int4(round(old_i));
+
+ // Accumulate values in the Spatial Gradient Matrix
+ iG.s0 += (int)(iold.s1 * iold.s1);
+ iG.s1 += (int)(iold.s1 * iold.s2);
+ iG.s2 += (int)(iold.s2 * iold.s2);
+
+ // Store ival, ixval and iyval
+ iold_val[window_offset + kx] = convert_short4(iold);
+ }
+ window_offset += window_dimension;
+ }
+
+ // Scale iA11, iA12 and iA22
+ float4 G = convert_float4(iG) * (float4)FLT_SCALE;
+
+ // Compute minimum eigen value
+ G.s3 = (float)(G.s2 + G.s0 - sqrt(pown(G.s0 - G.s2, 2) + 4.0f * G.s1 * G.s1)) * eig_const;
+
+ // Store A11. A11, A22 and min_eig
+ coeff[idx] = G;
+}
+
+/** Computes the motion vector for a given keypoint
+ *
+ * @param[in] new_image_ptr Pointer to the input new image. Supported data types: U8
+ * @param[in] new_image_stride_x Stride of the input new image in X dimension (in bytes)
+ * @param[in] new_image_step_x new_image_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] new_image_stride_y Stride of the input new image in Y dimension (in bytes)
+ * @param[in] new_image_step_y new_image_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] new_image_offset_first_element_in_bytes The offset of the first element in the input new image
+ * @param[in, out] new_points An output array of key points. Those key points are defined at the new_images high resolution pyramid
+ * @param[in] coeff The | A11 | A12 | A22 | min_eig | for each keypoint
+ * @param[in] iold_val The | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
+ * @param[in] window_dimension The size of the window on which to perform the algorithm
+ * @param[in] window_dimension_pow2 The squared size of the window on which to perform the algorithm
+ * @param[in] half_window The half size of the window on which to perform the algorithm
+ * @param[in] num_iterations The maximum number of iterations
+ * @param[in] epsilon The value for terminating the algorithm.
+ * @param[in] border_limits It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
+ * @param[in] eig_const 1.0f / (float)(2.0f * window_dimension * window_dimension)
+ * @param[in] level0 It is set to 1 if level of pyramid = 0
+ * @param[in] term_iteration It is set to 1 if termination = VX_TERM_CRITERIA_ITERATIONS
+ * @param[in] term_epsilon It is set to 1 if termination = VX_TERM_CRITERIA_EPSILON
+ */
+void __kernel lktracker_stage1(
+ IMAGE_DECLARATION(new_image),
+ __global float4 *new_points,
+ __global float4 *coeff,
+ __global short4 *iold_val,
+ const int window_dimension,
+ const int window_dimension_pow2,
+ const int half_window,
+ const int num_iterations,
+ const float epsilon,
+ const float3 border_limits,
+ const float eig_const,
+ const int level0,
+ const int term_iteration,
+ const int term_epsilon)
+{
+ int idx = get_global_id(0);
+ Image new_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(new_image);
+
+ // G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
+ float4 G = coeff[idx];
+
+ // Determinant
+ float D = G.s0 * G.s2 - G.s1 * G.s1;
+
+ // Check if it is a good point to track
+ if(G.s3 < EIGENVALUE_THR || D < DETERMINANT_THR)
+ {
+ if(level0 == 1)
+ {
+ // Invalidate tracked point as we are at level 0
+ new_points[idx].s2 = 0;
+ }
+
+ return;
+ }
+
+ // Compute inverse
+ //D = native_recip(D);
+ D = 1.0 / D;
+
+ // Get new keypoint
+ float2 new_keypoint = new_points[idx].xy - (float)half_window;
+
+ // Get new point
+ float2 out_new_point = new_points[idx].xy;
+
+ // Keep delta obtained in the previous iteration
+ float2 prev_delta = (float2)0.0f;
+
+ int j = 0;
+ while(j < num_iterations)
+ {
+ // Get the floor value
+ float2 inew_keypoint = floor(new_keypoint);
+
+ // Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
+ if(any(inew_keypoint < border_limits.zz) || any(inew_keypoint >= border_limits.xy))
+ {
+ if(level0 == 1)
+ {
+ // Invalidate tracked point as we are at level 0
+ new_points[idx].s2 = 0.0f;
+ }
+ else
+ {
+ new_points[idx].xy = out_new_point;
+ }
+
+ return;
+ }
+
+ // Compute weight for the bilinear interpolation
+ float2 ab = new_keypoint - inew_keypoint;
+
+ // Weight used for Bilinear-Interpolation on Old and New images
+ // w.s0 = round((1.0f - ab.x) * (1.0f - ab.y) * D0)
+ // w.s1 = round(ab.x * (1.0f - ab.y) * D0)
+ // w.s2 = round((1.0f - ab.x) * ab.y * D0)
+ // w.s3 = D0 - w.s0 - w.s1 - w.s2
+
+ float4 w;
+ w.s3 = ab.x * ab.y;
+ w.s0 = w.s3 + 1.0f - ab.x - ab.y;
+ w.s12 = ab - (float2)w.s3;
+ w = round(w * (float4)D0);
+ w.s3 = D0 - w.s0 - w.s1 - w.s2;
+
+ // Mismatch vector
+ int2 ib = 0;
+
+ // Old val offset
+ int old_val_offset = idx * window_dimension_pow2;
+
+ for(int ky = 0; ky < window_dimension; ++ky)
+ {
+ for(int kx = 0; kx < window_dimension; ++kx)
+ {
+ // ival, ixval and iyval have been computed in the previous stage
+ int4 old_ival = convert_int4(iold_val[old_val_offset]);
+
+ // Load values from old_image for computing the bilinear interpolation
+ float4 px = convert_float4((uchar4)(vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky)),
+ vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky + 1))));
+
+ // Compute bilinear interpolation on new image
+ int jval = (int)round(dot(px, w) * D1);
+
+ // Compute luminance difference
+ int diff = (int)(jval - old_ival.s0);
+
+ // Accumulate values in mismatch vector
+ ib += (diff * old_ival.s12);
+
+ // Update old val offset
+ old_val_offset++;
+ }
+ }
+
+ float2 b = convert_float2(ib) * (float2)FLT_SCALE;
+
+ // Optical Flow
+ float2 delta;
+
+ delta.x = (float)((G.s1 * b.y - G.s2 * b.x) * D);
+ delta.y = (float)((G.s1 * b.x - G.s0 * b.y) * D);
+
+ // Update new point coordinate
+ new_keypoint += delta;
+
+ out_new_point = new_keypoint + (float2)half_window;
+
+ if(term_epsilon == 1)
+ {
+ float mag2 = dot(delta, delta);
+
+ if(mag2 <= epsilon)
+ {
+ new_points[idx].xy = out_new_point;
+
+ return;
+ }
+ }
+
+ // Check convergence analyzing the previous delta
+ if(j > 0 && all(fabs(delta + prev_delta) < (float2)0.01f))
+ {
+ out_new_point -= delta * (float2)0.5f;
+
+ new_points[idx].xy = out_new_point;
+
+ return;
+ }
+
+ // Update previous delta
+ prev_delta = delta;
+
+ if(term_iteration == 1)
+ {
+ j++;
+ }
+ }
+
+ new_points[idx].xy = out_new_point;
+}