aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl296
1 files changed, 294 insertions, 2 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index 3359a42d0d..4736f80d9b 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -1784,6 +1784,8 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
@@ -1796,6 +1798,8 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -1808,6 +1812,10 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
@@ -1821,6 +1829,9 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
*/
__kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -1910,6 +1921,16 @@ __kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
c30 = c30 * (float4)ALPHA;
#endif // defined(ALPHA)
+#if defined(ADD_VEC_C)
+ __global float *src2_addr = (__global float *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ float4 c0 = vload4(0, src2_addr);
+
+ c00 += c0;
+ c10 += c0;
+ c20 += c0;
+ c30 += c0;
+#endif /* defined(ADD_VEC_C) */
+
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
@@ -1959,7 +1980,9 @@ __kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
}
/** This OpenCL kernel is optimized for Bifrost. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication.
+ *
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
*
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
@@ -1974,6 +1997,8 @@ __kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -1986,6 +2011,10 @@ __kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
@@ -1999,6 +2028,9 @@ __kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -2223,6 +2255,28 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
+#if defined(ADD_VEC_C)
+ __global float *src2_addr = (__global float *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ float4 c0 = vload4(0, src2_addr);
+
+ c00 += c0.s0;
+ c01 += c0.s1;
+ c02 += c0.s2;
+ c03 += c0.s3;
+ c10 += c0.s0;
+ c11 += c0.s1;
+ c12 += c0.s2;
+ c13 += c0.s3;
+ c20 += c0.s0;
+ c21 += c0.s1;
+ c22 += c0.s2;
+ c23 += c0.s3;
+ c30 += c0.s0;
+ c31 += c0.s1;
+ c32 += c0.s2;
+ c33 += c0.s3;
+#endif /* defined(ADD_VEC_C) */
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
@@ -2275,6 +2329,8 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
@@ -2287,6 +2343,8 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2299,6 +2357,10 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2312,6 +2374,9 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
*/
__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -2401,6 +2466,20 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
c30 = c30 * (half8)ALPHA;
#endif // defined(ALPHA)
+#if defined(ADD_VEC_C)
+ // *INDENT-OFF*
+ // clang-format off
+ __global half *src2_addr = (__global half *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ half8 c0 = vload8(0, src2_addr);
+ // clang-format on
+ // *INDENT-ON*
+
+ c00 += c0;
+ c10 += c0;
+ c20 += c0;
+ c30 += c0;
+#endif /* defined(ADD_VEC_C) */
+
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
@@ -2452,6 +2531,8 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) while accumulating the result in a 32 floating point variable.
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
@@ -2464,6 +2545,8 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2476,6 +2559,10 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2489,6 +2576,9 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -2578,6 +2668,20 @@ __kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
c30 = c30 * (float8)ALPHA;
#endif // defined(ALPHA)
+#if defined(ADD_VEC_C)
+ // *INDENT-OFF*
+ // clang-format off
+ __global half *src2_addr = (__global half *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ float8 c0 = convert_float8(vload8(0, src2_addr));
+ // clang-format on
+ // *INDENT-ON*
+
+ c00 += c0;
+ c10 += c0;
+ c20 += c0;
+ c30 += c0;
+#endif /* defined(ADD_VEC_C) */
+
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
@@ -2629,6 +2733,8 @@ __kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
/** This OpenCL kernel optimized for Bifrost architectures computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
@@ -2641,6 +2747,8 @@ __kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2653,6 +2761,10 @@ __kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2663,6 +2775,9 @@ __kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -2834,6 +2949,20 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
c30 = c30 * (half8)ALPHA;
#endif // defined(ALPHA)
+#if defined(ADD_VEC_C)
+ // *INDENT-OFF*
+ // clang-format off
+ __global half *src2_addr = (__global half *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ half8 c0 = vload8(0, src2_addr);
+ // clang-format on
+ // *INDENT-ON*
+
+ c00 += c0;
+ c10 += c0;
+ c20 += c0;
+ c30 += c0;
+#endif /* defined(ADD_VEC_C) */
+
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
@@ -2892,7 +3021,9 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
#if defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
#if defined(DATA_TYPE)
#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped.
+ *
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
*
* @note This OpenCL kernel works with floating point data types (F16/F32)
* @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
@@ -2908,6 +3039,8 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2920,6 +3053,10 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2934,6 +3071,9 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
*/
__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -3134,6 +3274,26 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
acc3 = acc3 * (VECTOR_TYPE)ALPHA;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 && defined(ALPHA)
+#if defined(ADD_VEC_C)
+ // *INDENT-OFF*
+ // clang-format off
+ __global DATA_TYPE *src2_addr = (__global DATA_TYPE *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ VECTOR_TYPE c0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src2_addr);
+ // clang-format on
+ // *INDENT-ON*
+
+ acc0 += c0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif /* defined(ADD_VEC_C) */
+
int z = get_global_id(2);
#if defined(REINTERPRET_OUTPUT_AS_3D)
@@ -3204,6 +3364,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
@@ -3219,6 +3381,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -3231,6 +3395,10 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -3245,6 +3413,9 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -3599,6 +3770,34 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
+#if defined(ADD_VEC_C)
+ __global float *src2_addr = (__global float *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ float4 c0 = vload4(0, src2_addr);
+
+ acc00 += c0.s0;
+ acc01 += c0.s1;
+ acc02 += c0.s2;
+ acc03 += c0.s3;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc10 += c0.s0;
+ acc11 += c0.s1;
+ acc12 += c0.s2;
+ acc13 += c0.s3;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc20 += c0.s0;
+ acc21 += c0.s1;
+ acc22 += c0.s2;
+ acc23 += c0.s3;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc30 += c0.s0;
+ acc31 += c0.s1;
+ acc32 += c0.s2;
+ acc33 += c0.s3;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif /* defined(ADD_VEC_C) */
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
@@ -3658,6 +3857,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
* This OpenCL kernel is optimized for Bifrost when the number of matrix B columns is less or equal to 1000.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
@@ -3674,6 +3875,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -3686,6 +3889,10 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -3700,6 +3907,9 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -3986,6 +4196,26 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
+#if defined(ADD_VEC_C)
+ __global float *src2_addr = (__global float *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ float2 c0 = vload2(0, src2_addr);
+
+ acc00 += c0.s0;
+ acc01 += c0.s1;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc10 += c0.s0;
+ acc11 += c0.s1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc20 += c0.s0;
+ acc21 += c0.s1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc30 += c0.s0;
+ acc31 += c0.s1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif /* defined(ADD_VEC_C) */
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
@@ -4046,6 +4276,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note This OpenCL kernel works with the 16-bit floating point data type (half) and accumulating the result in a 32 floating point variable.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
@@ -4061,6 +4293,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -4073,6 +4307,10 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -4087,6 +4325,9 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -4327,6 +4568,26 @@ __kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
#endif // defined(ALPHA)
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#if defined(ADD_VEC_C)
+ // *INDENT-OFF*
+ // clang-format off
+ __global half *src2_addr = (__global half *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ half8 c0 = vload8(0, src2_addr);
+ // clang-format on
+ // *INDENT-ON*
+
+ hacc0 += c0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ hacc1 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ hacc2 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ hacc3 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif /* defined(ADD_VEC_C) */
+
int z = get_global_id(2);
// Compute destination address
@@ -4394,6 +4655,8 @@ __kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
+ * Moreover, it can add a vector (src2) if the ADD_VEC_C parameter is passed at compile time.
+ *
* @note This OpenCL kernel works with the 16-bit floating point data type (half) and uses the fma units.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
@@ -4409,6 +4672,8 @@ __kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
+ * @note In case a 3rd input (src2) needs to be added, the ADD_VEC_C parameter has to be passed at compile time as -DADD_VEC_C
+ *
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -4421,6 +4686,10 @@ __kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the source vector in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -4435,6 +4704,9 @@ __kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
*/
__kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
+#if defined(ADD_VEC_C)
+ VECTOR_DECLARATION(src2),
+#endif /* defined(ADD_VEC_C) */
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
@@ -4659,6 +4931,26 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
acc3 = acc3 * (half8)ALPHA;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 && defined(ALPHA)
+#if defined(ADD_VEC_C)
+ // *INDENT-OFF*
+ // clang-format off
+ __global half *src2_addr = (__global half *)(src2_ptr + src2_offset_first_element_in_bytes + get_global_id(0) * src2_step_x);
+ half8 c0 = vload8(0, src2_addr);
+ // clang-format on
+ // *INDENT-ON*
+
+ acc0 += c0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += c0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif /* defined(ADD_VEC_C) */
+
int z = get_global_id(2);
// Compute destination address