aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/gemm.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/common/gemm.cl94
1 files changed, 52 insertions, 42 deletions
diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl
index dd03147ad6..9732588b31 100644
--- a/src/core/CL/cl_kernels/common/gemm.cl
+++ b/src/core/CL/cl_kernels/common/gemm.cl
@@ -1096,9 +1096,6 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
uint y = get_global_id(1);
uint z = get_global_id(2);
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
#if defined(DUMMY_WORK_ITEMS)
if((x * N0 >= N) || (y * M0 >= M))
{
@@ -1107,7 +1104,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#endif // defined(DUMMY_WORK_ITEMS)
// Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
// Compute RHS reshaped matrix address
uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
@@ -1124,7 +1121,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#if defined(REINTERPRET_INPUT_AS_3D)
// The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply lhs_stride_z by DEPTH_GEMM3D
@@ -1223,14 +1220,18 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
rhs_offset += sizeof(DATA_TYPE);
}
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y);
REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
+ const bool cond_y = ((y + 1) * M0 >= M);
+ const bool cond_x = ((x + 1) * N0 >= N);
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -1263,7 +1264,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
ADD_BLOCK_BROADCAST(M0, c, bias0);
#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z;
LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
@@ -1392,9 +1393,6 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
uint y = get_global_id(1);
uint z = get_global_id(2);
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
#if defined(DUMMY_WORK_ITEMS)
if((x * N0 >= N) || (y * M0 >= M))
{
@@ -1403,7 +1401,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#endif // defined(DUMMY_WORK_ITEMS)
// Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
@@ -1421,7 +1419,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#if defined(REINTERPRET_INPUT_AS_3D)
// The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply lhs_stride_z by DEPTH_GEMM3D
@@ -1569,14 +1567,18 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#endif // LEFTOVER_K != 0
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y);
REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
+ const bool cond_y = ((y + 1) * M0 >= M);
+ const bool cond_x = ((x + 1) * N0 >= N);
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -1609,7 +1611,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
ADD_BLOCK_BROADCAST(M0, c, bias0);
#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z;
LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
@@ -1813,9 +1815,6 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
uint y = get_global_id(1);
uint z = get_global_id(2);
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
#if defined(DUMMY_WORK_ITEMS)
if((x * N0 >= N) || (y * M0 >= M))
{
@@ -1824,7 +1823,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
#endif // defined(DUMMY_WORK_ITEMS)
// Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
// Compute RHS reshaped matrix address
uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
@@ -1842,7 +1841,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
#if defined(REINTERPRET_INPUT_AS_3D)
// The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zin, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply lhs_stride_z by DEPTH_GEMM3D
@@ -1966,13 +1965,17 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE);
}
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y);
REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
+ const bool cond_y = ((y + 1) * M0 >= M);
+ const bool cond_x = ((x + 1) * N0 >= N);
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -2005,7 +2008,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
ADD_BLOCK_BROADCAST(M0, c, bias0);
#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z;
LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
@@ -2130,9 +2133,6 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
uint y = get_global_id(1);
uint z = get_global_id(2);
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
#if defined(DUMMY_WORK_ITEMS)
if((x * N0 >= N) || (y * M0 >= M))
{
@@ -2141,7 +2141,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#endif // defined(DUMMY_WORK_ITEMS)
// Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
@@ -2160,7 +2160,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#if defined(REINTERPRET_INPUT_AS_3D)
// The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zin, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply lhs_stride_z by DEPTH_GEMM3D
@@ -2275,13 +2275,17 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
x_rhs += RHS_STEP_X;
}
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y);
REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
+ const bool cond_y = ((y + 1) * M0 >= M);
+ const bool cond_x = ((x + 1) * N0 >= N);
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -2314,7 +2318,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
ADD_BLOCK_BROADCAST(M0, c, bias0);
#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z;
LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
@@ -2706,6 +2710,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
@@ -2977,6 +2982,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
@@ -3287,6 +3293,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
const uint y = get_global_id(1);
const uint z = get_global_id(2);
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
@@ -3842,6 +3849,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
@@ -4111,7 +4119,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
#endif // defined(DUMMY_WORK_ITEMS)
// Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
// Compute RHS matrix address
uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
@@ -4128,7 +4136,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
#if defined(REINTERPRET_INPUT_AS_3D)
// The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply lhs_stride_z by DEPTH_GEMM3D
@@ -4235,13 +4243,17 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
rhs_offset += rhs_stride_y;
}
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y);
REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+ // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
+ const bool cond_y = ((y + 1) * M0 >= M);
+ const bool cond_x = ((x + 1) * N0 >= N);
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -4264,7 +4276,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
#if defined(BROADCAST_BIAS)
__global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
#ifndef UNIT_BETA
SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
@@ -4274,9 +4286,10 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
ADD_BLOCK_BROADCAST(M0, c, bias0);
#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#ifndef UNIT_BETA
SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
@@ -4292,9 +4305,6 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL);
#endif // defined(ACTIVATION_TYPE)
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
// Store output block
STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
}