aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorgiuros01 <giuseppe.rossini@arm.com>2018-12-03 17:30:00 +0000
committerGiuseppe Rossini <giuseppe.rossini@arm.com>2018-12-17 16:43:51 +0000
commit92fd94336e4b169005d88af401fe57bcbd50521b (patch)
treed43bc672d0f250e85c72ab310168baea3eb982dc /src
parentcc6129c06af98616a0e4d68475cfa3d92aaf63b3 (diff)
downloadComputeLibrary-92fd94336e4b169005d88af401fe57bcbd50521b.tar.gz
COMPMID-1754: NEON: Implement Maximum, Minumum, SquaredDifference
Change-Id: I77e8c6a8af6ad841293ed5e66ed582035cc1424b Reviewed-on: https://review.mlplatform.org/339 Reviewed-by: Michalis Spyrou <michalis.spyrou@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com>
Diffstat (limited to 'src')
-rw-r--r--src/core/NEON/kernels/NEElementwiseOperationKernel.cpp486
-rw-r--r--src/runtime/NEON/functions/NEElementwiseOperators.cpp69
2 files changed, 555 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/NEElementwiseOperationKernel.cpp b/src/core/NEON/kernels/NEElementwiseOperationKernel.cpp
new file mode 100644
index 0000000000..ee9c10014f
--- /dev/null
+++ b/src/core/NEON/kernels/NEElementwiseOperationKernel.cpp
@@ -0,0 +1,486 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/NEON/kernels/NEElementwiseOperationKernel.h"
+
+#include "arm_compute/core/CPP/Validate.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/IAccessWindow.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/NEON/NEAsymm.h"
+#include "arm_compute/core/NEON/NEFixedPoint.h"
+#include "arm_compute/core/NEON/wrapper/wrapper.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+
+#include <algorithm>
+#include <arm_neon.h>
+#include <cstdint>
+#include <map>
+#include <string>
+
+namespace arm_compute
+{
+class Coordinates;
+
+namespace
+{
+float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
+{
+ qasymm8x16_t x = vld1q_u8(input1_ptr);
+ const float32x4x4_t out =
+ {
+ {
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
+ }
+ };
+ return out;
+}
+
+void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
+{
+ int32x4x4_t out =
+ {
+ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
+ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
+ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
+ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
+ };
+
+ const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
+ const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
+ vst1q_u8(output_ptr, vcombine_u8(pa, pb));
+}
+
+float32x4x4_t dup_quantized(qasymm8_t broadcast_value, int offset, float scale)
+{
+ const qasymm8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value);
+ const int32x4_t voffset = vdupq_n_s32(offset);
+ const float32x4_t vscale = vdupq_n_f32(scale);
+
+ const float32x4x4_t broadcast_vector =
+ {
+ {
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale),
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale),
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale),
+ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale),
+ }
+ };
+ return broadcast_vector;
+}
+
+template <ArithmeticOperation op, typename ScalarType>
+inline ScalarType elementwise_op_scalar(const ScalarType &a, const ScalarType &b)
+{
+ auto res = ScalarType(0);
+
+ switch(op)
+ {
+ case ArithmeticOperation::MAX:
+ res = std::max(a, b);
+ break;
+ case ArithmeticOperation::MIN:
+ res = std::min(a, b);
+ break;
+ case ArithmeticOperation::SQUARED_DIFF:
+ {
+ res = (a - b) * (a - b);
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
+ }
+ return res;
+}
+
+template <ArithmeticOperation op, typename VectorType>
+inline VectorType elementwise_op(const VectorType &a, const VectorType &b)
+{
+ VectorType res = { 0, 0, 0, 0 };
+
+ switch(op)
+ {
+ case ArithmeticOperation::MAX:
+ res = wrapper::vmax(a, b);
+ break;
+ case ArithmeticOperation::MIN:
+ res = wrapper::vmin(a, b);
+ break;
+ case ArithmeticOperation::SQUARED_DIFF:
+ {
+ const VectorType tmp = wrapper::vsub(a, b);
+ res = wrapper::vmul(tmp, tmp);
+ break;
+ }
+
+ default:
+ ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
+ }
+
+ return res;
+}
+
+template <ArithmeticOperation op, typename VectorType, typename ScalarType>
+inline VectorType elementwise_op_broadcast(const VectorType &a, const ScalarType &broadcast_value)
+{
+ VectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
+ return elementwise_op<op>(a, broadcast_vector);
+}
+
+template <ArithmeticOperation op>
+float32x4x4_t elementwise_op(const float32x4x4_t &a, const float32x4x4_t &b)
+{
+ float32x4x4_t out =
+ {
+ elementwise_op<op>(a.val[0], b.val[0]),
+ elementwise_op<op>(a.val[1], b.val[1]),
+ elementwise_op<op>(a.val[2], b.val[2]),
+ elementwise_op<op>(a.val[3], b.val[3]),
+ };
+ return out;
+}
+
+template <ArithmeticOperation op, typename ScalarType>
+void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
+{
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const int window_step_x = 16 / in1->info()->element_size();
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+
+ if(is_broadcast_across_x)
+ {
+ // Select the broadcast input on the X axis
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator output(out, win);
+
+ execute_window_loop(win, [&](const Coordinates & id)
+ {
+ auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
+ const auto non_broadcast_input_ptr = reinterpret_cast<const ScalarType *>(non_broadcast_input.ptr());
+ const ScalarType broadcast_value = *reinterpret_cast<const ScalarType *>(broadcast_input.ptr());
+
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto a = wrapper::vloadq((non_broadcast_input_ptr + x));
+ wrapper::vstore(output_ptr + x, elementwise_op_broadcast<op>(a, broadcast_value));
+ }
+ for(; x < window_end_x; ++x)
+ {
+ const auto a = *(non_broadcast_input_ptr + x);
+ *(output_ptr + x) = elementwise_op_scalar<op>(a, broadcast_value);
+ }
+ },
+ broadcast_input, non_broadcast_input, output);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(in1, input1_win);
+ Iterator input2(in2, input2_win);
+ Iterator output(out, win);
+
+ execute_window_loop(win, [&](const Coordinates & id)
+ {
+ auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
+ const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
+
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto a = wrapper::vloadq(input1_ptr + x);
+ const auto b = wrapper::vloadq(input2_ptr + x);
+ wrapper::vstore(output_ptr + x, elementwise_op<op>(a, b));
+ }
+ for(; x < window_end_x; ++x)
+ {
+ const auto a = *(input1_ptr + x);
+ const auto b = *(input2_ptr + x);
+ *(output_ptr + x) = elementwise_op_scalar<op>(a, b);
+ }
+
+ },
+ input1, input2, output);
+ }
+}
+
+template <ArithmeticOperation op>
+void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
+{
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+
+ const float output_scale = out->info()->quantization_info().scale;
+ const int output_offset = out->info()->quantization_info().offset;
+
+ // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero)
+ const float32x4_t voffseto = vdupq_n_f32(output_offset + 0.5f);
+ const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_scale);
+
+ if(is_broadcast_across_x)
+ {
+ // Select the broadcast input on the X axis
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
+
+ const QuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info();
+ const QuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info();
+
+ const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
+ const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale);
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator output(out, win);
+
+ execute_window_loop(win, [&](const Coordinates & id)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
+
+ const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
+ const float32x4x4_t broadcast_vector = dup_quantized(broadcast_value, broadcast_qinfo.offset, broadcast_qinfo.scale);
+
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
+ const float32x4x4_t rf = elementwise_op<op>(af, broadcast_vector);
+ store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
+ }
+ for(; x < window_end_x; ++x)
+ {
+ const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale;
+ const float bfs = static_cast<int32_t>(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale;
+ *(output_ptr + x) = out->info()->quantization_info().quantize(elementwise_op_scalar<op>(afs, bfs), RoundingPolicy::TO_NEAREST_UP);
+ }
+ },
+ broadcast_input, non_broadcast_input, output);
+ }
+ else
+ {
+ // Input1 quantization info
+ const int32x4_t voffset1 = vdupq_n_s32(in1->info()->quantization_info().offset);
+ const float32x4_t vscale1 = vdupq_n_f32(in1->info()->quantization_info().scale);
+
+ // Input2 quantization info
+ const int32x4_t voffset2 = vdupq_n_s32(in2->info()->quantization_info().offset);
+ const float32x4_t vscale2 = vdupq_n_f32(in2->info()->quantization_info().scale);
+
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const QuantizationInfo input1_qinfo = in1->info()->quantization_info();
+ const QuantizationInfo input2_qinfo = in2->info()->quantization_info();
+
+ Iterator input1(in1, input1_win);
+ Iterator input2(in2, input2_win);
+ Iterator output(out, win);
+
+ execute_window_loop(win, [&](const Coordinates & id)
+ {
+ const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
+
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ // Get inputs and compute output
+ const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
+ const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
+ const float32x4x4_t rf = elementwise_op<op>(af, bf);
+ store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
+ }
+ for(; x < window_end_x; ++x)
+ {
+ const float afs = static_cast<int32_t>((*(input1_ptr + x)) - input1_qinfo.offset) * input1_qinfo.scale;
+ const float bfs = static_cast<int32_t>((*(input2_ptr + x)) - input2_qinfo.offset) * input2_qinfo.scale;
+ *(output_ptr + x) = out->info()->quantization_info().quantize(elementwise_op_scalar<op>(afs, bfs), RoundingPolicy::TO_NEAREST_UP);
+ }
+ },
+ input1, input2, output);
+ }
+}
+
+Status validate_arguments_arithmetic(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
+
+ const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
+
+ // Validate in case of configured output
+ if(output.total_size() > 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
+ "Wrong shape for output");
+ }
+
+ return Status{};
+}
+} // namespace
+
+NEElementwiseOperationKernel::NEElementwiseOperationKernel()
+ : _op(), _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr)
+{
+}
+template <ArithmeticOperation op>
+void NEElementwiseOperationKernel::configure_common(const ITensor *input1, const ITensor *input2, ITensor *output)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info()));
+
+ // Configure kernel window
+ const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1->info(), *input2->info());
+ const TensorShape &out_shape = broadcast_pair.first;
+ const ValidRegion &valid_region = broadcast_pair.second;
+
+ // Auto initialize output if not initialized
+ auto_init_if_empty(*output->info(), out_shape, 1, input1->info()->data_type());
+
+ Window win = calculate_max_window(valid_region);
+
+ static std::map<std::string, ElementwiseFunction *> map_function =
+ {
+ { "op_F32_F32_F32", &elementwise_op<op, float> },
+ { "op_S16_S16_S16", &elementwise_op<op, int16_t> },
+ { "op_S32_S32_S32", &elementwise_op<op, int32_t> },
+ { "op_QASYMM8_QASYMM8_QASYMM8", &elementwise_op_quantized<op> }
+ };
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ map_function["op_F16_F16_F16"] = &elementwise_op<op, float16_t>;
+#endif /* ARM_COMPUTE_AARCH64_V8_2 */
+ _input1 = input1;
+ _input2 = input2;
+ _output = output;
+
+ std::string function_to_call("op_");
+ function_to_call += string_from_data_type(input1->info()->data_type()) + "_";
+ function_to_call += string_from_data_type(input2->info()->data_type()) + "_";
+ function_to_call += string_from_data_type(output->info()->data_type());
+ auto it = map_function.find(function_to_call);
+
+ if(it != map_function.end())
+ {
+ _func = it->second;
+ }
+
+ INEKernel::configure(win);
+}
+
+void NEElementwiseOperationKernel::run(const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+ ARM_COMPUTE_ERROR_ON(_func == nullptr);
+
+ (*_func)(_input1, _input2, _output, window);
+}
+
+/** Arithmetic operators (min, max, squared_diff) */
+
+void NEArithmeticOperationKernel::configure(ArithmeticOperation op, const ITensor *input1, const ITensor *input2, ITensor *output)
+{
+ _op = op;
+ switch(op)
+ {
+ case ArithmeticOperation::MAX:
+ configure_common<ArithmeticOperation::MAX>(input1, input2, output);
+ break;
+ case ArithmeticOperation::MIN:
+ configure_common<ArithmeticOperation::MIN>(input1, input2, output);
+ break;
+ case ArithmeticOperation::SQUARED_DIFF:
+ configure_common<ArithmeticOperation::SQUARED_DIFF>(input1, input2, output);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
+ }
+}
+
+Status NEArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+ ARM_COMPUTE_UNUSED(op);
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
+
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_arithmetic(*input1, *input2, *output));
+ return Status{};
+}
+
+Status NEArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
+{
+ return validate_arguments_arithmetic(input1, input2, output);
+}
+} // namespace arm_compute
diff --git a/src/runtime/NEON/functions/NEElementwiseOperators.cpp b/src/runtime/NEON/functions/NEElementwiseOperators.cpp
new file mode 100644
index 0000000000..4d4a6a9c50
--- /dev/null
+++ b/src/runtime/NEON/functions/NEElementwiseOperators.cpp
@@ -0,0 +1,69 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INNEUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY NEAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/NEON/functions/NEElementwiseOperations.h"
+#include <arm_compute/core/NEON/kernels/NEElementwiseOperationKernel.h>
+
+#include "arm_compute/core/ITensor.h"
+#include "support/ToolchainSupport.h"
+
+#include <utility>
+
+namespace arm_compute
+{
+void NEElementwiseMax::configure(ITensor *input1, ITensor *input2, ITensor *output)
+{
+ auto k = arm_compute::support::cpp14::make_unique<NEArithmeticOperationKernel>();
+ k->configure(ArithmeticOperation::MAX, input1, input2, output);
+ _kernel = std::move(k);
+}
+
+Status NEElementwiseMax::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+ return NEArithmeticOperationKernel::validate(ArithmeticOperation::MAX, input1, input2, output);
+}
+
+void NEElementwiseMin::configure(ITensor *input1, ITensor *input2, ITensor *output)
+{
+ auto k = arm_compute::support::cpp14::make_unique<NEArithmeticOperationKernel>();
+ k->configure(ArithmeticOperation::MIN, input1, input2, output);
+ _kernel = std::move(k);
+}
+
+Status NEElementwiseMin::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+ return NEArithmeticOperationKernel::validate(ArithmeticOperation::MIN, input1, input2, output);
+}
+
+void NEElementwiseSquaredDiff::configure(ITensor *input1, ITensor *input2, ITensor *output)
+{
+ auto k = arm_compute::support::cpp14::make_unique<NEArithmeticOperationKernel>();
+ k->configure(ArithmeticOperation::SQUARED_DIFF, input1, input2, output);
+ _kernel = std::move(k);
+}
+
+Status NEElementwiseSquaredDiff::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+ return NEArithmeticOperationKernel::validate(ArithmeticOperation::SQUARED_DIFF, input1, input2, output);
+}
+} // namespace arm_compute