aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorXinghang Zhou <xinghang.zhou@arm.com>2017-11-14 15:14:25 +0800
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:42:33 +0000
commit53a6ec5944132000e2c6779c04d722b3b2d2501c (patch)
tree75b147d21a34c4e684864e56b71077a6256a9110 /src
parent6e993b5b8ea9c31ac4856b72d969dce704f82396 (diff)
downloadComputeLibrary-53a6ec5944132000e2c6779c04d722b3b2d2501c.tar.gz
APPBROWSER-304,342: Add exclude padding support for OpenGL ES implementation and implement MaxPool operators
Change-Id: Ie6ba36ff114feec2a21739dba11bbb60b76af443 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/113697 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Stephen Li <stephen.li@arm.com> Reviewed-by: Pablo Tello <pablo.tello@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'src')
-rw-r--r--src/core/GLES_COMPUTE/cs_shaders/fill_border.cs46
-rw-r--r--src/core/GLES_COMPUTE/cs_shaders/pooling_layer.cs174
-rw-r--r--src/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.cpp319
-rw-r--r--src/runtime/GLES_COMPUTE/functions/GCPoolingLayer.cpp7
4 files changed, 386 insertions, 160 deletions
diff --git a/src/core/GLES_COMPUTE/cs_shaders/fill_border.cs b/src/core/GLES_COMPUTE/cs_shaders/fill_border.cs
index c64572b061..4f87b9242a 100644
--- a/src/core/GLES_COMPUTE/cs_shaders/fill_border.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/fill_border.cs
@@ -132,7 +132,7 @@ void main()
ImageIterator buf_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(buf_attrs, buf_shift);
// Update pointer to point to the starting point of the valid region
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(buf_iter, uint(start_pos_y) * buf_attrs.stride_y + uint(start_pos_x) * buf_attrs.stride_x);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(buf_iter, start_pos_y * int(buf_attrs.stride_y) + start_pos_x * int(buf_attrs.stride_x));
int total_width = BORDER_SIZE_LEFT + int(width) + BORDER_SIZE_RIGHT;
int gid0 = int(gl_GlobalInvocationID.x);
@@ -158,12 +158,29 @@ void main()
{
if(pos % 2 == 0)
{
- STORE_PACK2_HALF(buf_ptr, offset, left_val.xx);
+ if(BORDER_SIZE_LEFT % 2 == 0)
+ {
+ STORE_PACK2_HALF(buf_ptr, offset, left_val.xx);
+ }
+ else
+ {
+ STORE_PACK2_HALF(buf_ptr, offset, left_val.yy);
+ }
+ i++;
}
}
}
// Handle right border
- vec2 right_val = LOAD_UNPACK2_HALF(buf_ptr, IMAGE_OFFSET(buf_iter, int(width) - 1, gidH));
+ vec2 right_val_origin = LOAD_UNPACK2_HALF(buf_ptr, IMAGE_OFFSET(buf_iter, int(width) - 1, gidH));
+ vec2 right_val;
+ if((((BORDER_SIZE_LEFT + int(width)) % 2)) == 1)
+ {
+ right_val = vec2(right_val_origin.x, right_val_origin.x);
+ }
+ else
+ {
+ right_val = vec2(right_val_origin.y, right_val_origin.y);
+ }
for(int i = 0; i < BORDER_SIZE_RIGHT; ++i)
{
uint offset = IMAGE_OFFSET(buf_iter, int(width) + i, gidH);
@@ -173,7 +190,8 @@ void main()
{
if(pos % 2 == 0)
{
- STORE_PACK2_HALF(buf_ptr, offset, right_val.yy);
+ STORE_PACK2_HALF(buf_ptr, offset, right_val);
+ i++;
}
else
{
@@ -184,7 +202,8 @@ void main()
{
if(pos % 2 == 0)
{
- STORE_PACK2_HALF(buf_ptr, offset, right_val.yy);
+ STORE_PACK2_HALF(buf_ptr, offset, right_val);
+ i++;
}
}
}
@@ -208,7 +227,14 @@ void main()
{
if(gidW == (int(width) - 1))
{
- STORE_PACK2_HALF(buf_ptr, offset, top_val.xx);
+ if(((BORDER_SIZE_LEFT + int(width)) % 2 == 1))
+ {
+ STORE_PACK2_HALF(buf_ptr, offset, top_val.xx);
+ }
+ else
+ {
+ STORE_PACK2_HALF(buf_ptr, offset, top_val.yy);
+ }
}
else
{
@@ -229,6 +255,10 @@ void main()
{
STORE_PACK2_HALF(buf_ptr, offset, top_val.yy);
}
+ else
+ {
+ STORE_PACK2_HALF(buf_ptr, offset, top_val.xx);
+ }
}
else
{
@@ -268,6 +298,10 @@ void main()
{
STORE_PACK2_HALF(buf_ptr, offset, bottom_val.yy);
}
+ else
+ {
+ STORE_PACK2_HALF(buf_ptr, offset, bottom_val.xx);
+ }
}
else
{
diff --git a/src/core/GLES_COMPUTE/cs_shaders/pooling_layer.cs b/src/core/GLES_COMPUTE/cs_shaders/pooling_layer.cs
index 401b002111..64767a7ef1 100644
--- a/src/core/GLES_COMPUTE/cs_shaders/pooling_layer.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/pooling_layer.cs
@@ -259,7 +259,7 @@ layout(std140) uniform shader_params
POOL_OP(data001.xyzw, data001.xyzw, data201.xyzw); \
POOL_OP(data010.xyzw, data010.xyzw, data21.xyzw); \
POOL_OP(res.xyzw, vec4(data000.xw, data001.z, data010.y), vec4(data000.y, data001.xw, data010.z)); \
- POOL_OP(res.xyzw, res.xyzw, vec4(data000.z, data001.y data010.xw))
+ POOL_OP(res.xyzw, res.xyzw, vec4(data000.z, data001.y, data010.xw))
float calculate_max(const int pool_size, Tensor3D src, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
@@ -271,11 +271,11 @@ float calculate_max(const int pool_size, Tensor3D src, const int upper_bound_w,
float data_max;
data_max = LOAD4(src, tensor3D_offset(src, 0, 0, 0));
- for(int i = 0; (start_x + i) < end_x; ++i)
+ for(int i = 0; (start_y + i) < end_y; ++i)
{
- for(int j = 0; (start_y + j) < end_y; ++j)
+ for(int j = 0; (start_x + j) < end_x; ++j)
{
- float data = LOAD4(src, tensor3D_offset(src, i, j, 0));
+ float data = LOAD4(src, tensor3D_offset(src, j, i, 0));
POOL_OP_float(data_max, data_max, data);
}
}
@@ -308,6 +308,11 @@ float calculate_avg(const int pool_size, Tensor3D src, const int upper_bound_w,
}
}
+#if defined(EXCLUDE_PADDING)
+ start_x = max(0, start_x);
+ start_y = max(0, start_y);
+#endif /* defined(EXCLUDE_PADDING) */
+
return data_total / float((end_y - start_y) * (end_x - start_x));
}
@@ -460,6 +465,10 @@ void main(void)
int start_y = int(gl_GlobalInvocationID.y) * STRIDE_Y - PAD_Y;
ivec4 end_x = min((start_x + (ivec4(3))), (ivec4(MAX_WIDTH)));
int end_y = min((start_y + 3), MAX_HEIGHT);
+#if defined(EXCLUDE_PADDING)
+ start_x = max(ivec4(0), start_x);
+ start_y = max(0, start_y);
+#endif /* defined(EXCLUDE_PADDING) */
res *= (vec4((1.f)) / vec4((ivec4(end_y - start_y)) * (end_x - start_x)));
#endif /*POOL_AVG*/
@@ -606,12 +615,16 @@ void main(void)
#if defined(POOL_AVG) || defined(POOL_L2)
{
// Divide by pool region in case of average pooling
- int start_x = int(gl_GlobalInvocationID.x) * STRIDE_X - PAD_X;
- int start_y = int(gl_GlobalInvocationID.y) * STRIDE_Y - PAD_Y;
- int end_x = int(min(start_x + POOL_SIZE, MAX_WIDTH));
- int end_y = int(min(start_y + POOL_SIZE, MAX_HEIGHT));
- float res1 = float((end_y - start_y) * (end_x - start_x));
- res = DIV_OP(res, res1);
+ int start_x = int(gl_GlobalInvocationID.x) * STRIDE_X - PAD_X;
+ int start_y = int(gl_GlobalInvocationID.y) * STRIDE_Y - PAD_Y;
+ int end_x = int(min(start_x + POOL_SIZE, MAX_WIDTH));
+ int end_y = int(min(start_y + POOL_SIZE, MAX_HEIGHT));
+#if defined(EXCLUDE_PADDING)
+ start_x = max(0, start_x);
+ start_y = max(0, start_y);
+#endif /* defined(EXCLUDE_PADDING) */
+ float res1 = float((end_y - start_y) * (end_x - start_x));
+ res = DIV_OP(res, res1);
}
#endif /* defined(POOL_AVG) || defined(POOL_L2) */
@@ -867,7 +880,7 @@ layout(std140) uniform shader_params
POOL_OP(data001.xyzw, data001.xyzw, data201.xyzw); \
POOL_OP(data010.xyzw, data010.xyzw, data21.xyzw); \
POOL_OP(res.xyzw, vec4(data000.xw, data001.z, data010.y), vec4(data000.y, data001.xw, data010.z)); \
- POOL_OP(res.xyzw, res.xyzw, vec4(data000.z, data001.y data010.xw))
+ POOL_OP(res.xyzw, res.xyzw, vec4(data000.z, data001.y, data010.xw))
vec2 load_and_unpack(Tensor3D src, uint offset)
{
@@ -970,7 +983,7 @@ vec2 calculate_max(const int pool_size, Tensor3D src, const int upper_bound_w, c
vec2 calculate_avg(const int pool_size, Tensor3D src, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
- int start_x1 = int(gl_GlobalInvocationID.x) * stride_x - pad_x;
+ int start_x1 = (2 * int(gl_GlobalInvocationID.x)) * stride_x - pad_x;
int start_y1 = int(gl_GlobalInvocationID.y) * stride_y - pad_y;
int end_x1 = int(min(start_x1 + pool_size, upper_bound_w));
int end_y1 = int(min(start_y1 + pool_size, upper_bound_h));
@@ -1002,11 +1015,11 @@ vec2 calculate_avg(const int pool_size, Tensor3D src, const int upper_bound_w, c
}
//Calculate sum2
- if((start_x2 + j) < end_x2 && end_x1 < upper_bound_w)
+ if((start_x2 + j) < end_x2 && end_x1 <= upper_bound_w)
{
if((stride_x % 2) == 0)
{
- vec2 data2 = load_and_unpack(src, (tensor3D_offset_fp16(src, (j + stride_x + 1), i, 0) >> uint(2)));
+ vec2 data2 = load_and_unpack(src, (tensor3D_offset_fp16(src, (j + stride_x), i, 0) >> uint(2)));
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
data2 = POW2_OP(data2, 2);
@@ -1040,6 +1053,13 @@ vec2 calculate_avg(const int pool_size, Tensor3D src, const int upper_bound_w, c
}
}
}
+#if defined(EXCLUDE_PADDING)
+ start_x1 = max(0, start_x1);
+ start_y1 = max(0, start_y1);
+ start_x2 = max(0, start_x2);
+ start_y2 = max(0, start_y2);
+#endif /* defined(EXCLUDE_PADDING) */
+
//Calculate average
vec2 data_avg;
data_avg.x = data_total1 / float((end_y1 - start_y1) * (end_x1 - start_x1));
@@ -1203,6 +1223,10 @@ void main(void)
int start_y = int(gl_GlobalInvocationID.y) * STRIDE_Y - PAD_Y;
ivec4 end_x = min((start_x + (ivec4(3))), (ivec4(MAX_WIDTH)));
int end_y = min((start_y + 3), MAX_HEIGHT);
+#if defined(EXCLUDE_PADDING)
+ start_x = max(ivec4(0), start_x);
+ start_y = max(0, start_y);
+#endif /* defined(EXCLUDE_PADDING) */
res *= (vec4((1.f)) / vec4((ivec4(end_y - start_y)) * (end_x - start_x)));
#endif /*POOL_AVG*/
@@ -1354,44 +1378,96 @@ void main(void)
}
}
- for(int y = STRIDE_X; y < int(POOL_SIZE + STRIDE_X); y++)
+ for(int y = 0; y < int(POOL_SIZE); y++)
{
- int x1 = STRIDE_X;
- for(; x1 <= (int(POOL_SIZE + STRIDE_X) - 8); x1 += 8)
+ if((STRIDE_X % 2) == 0)
{
- vec4 data2;
- vec4 data3;
- LOAD4_fp16(data2, src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)));
- LOAD4_fp16(data3, src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)) + uint(2));
+ int x1 = STRIDE_X;
+ for(; x1 <= (int(POOL_SIZE + STRIDE_X) - 8); x1 += 8)
+ {
+ vec4 data2;
+ vec4 data3;
+ LOAD4_fp16(data2, src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)));
+ LOAD4_fp16(data3, src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)) + uint(2));
#if defined(POOL_L2)
- // Raise to power of 2 for L2 Pooling
- data2 *= data2;
- data3 *= data3;
+ // Raise to power of 2 for L2 Pooling
+ data2 *= data2;
+ data3 *= data3;
#endif /* defined(POOL_L2) */
- POOL_OP(vdata01, vdata01, data2);
- POOL_OP(vdata11, vdata11, data3);
- }
+ POOL_OP(vdata01, vdata01, data2);
+ POOL_OP(vdata11, vdata11, data3);
+ }
- // Leftover
- for(; x1 < int(POOL_SIZE + STRIDE_X); x1 = x1 + 2)
+ // Leftover
+ for(; x1 < int(POOL_SIZE + STRIDE_X); x1 = x1 + 2)
+ {
+ vec2 data4middle;
+ data4middle = load_and_unpack(src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)));
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data4middle *= data4middle;
+#endif /* defined(POOL_L2) */
+ if((x1 + 1) >= int(POOL_SIZE + STRIDE_X))
+ {
+ POOL_OP_float(sdata.y, sdata.y, data4middle.x);
+ }
+ else
+ {
+ float data4;
+ POOL_OP_float(data4, data4middle.x, data4middle.y);
+ POOL_OP_float(sdata.y, sdata.y, data4);
+ }
+ }
+ }
+ else
{
- vec2 data4middle;
- data4middle = load_and_unpack(src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)));
+ vec2 dataorigin2;
+ dataorigin2 = load_and_unpack(src, (tensor3D_offset_fp16(src, (STRIDE_X - 1), y, 0) >> uint(2)));
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
- data4middle *= data4middle;
+ dataorigin2.y *= dataorigin2.y;
#endif /* defined(POOL_L2) */
- if((x1 + 1) >= int(POOL_SIZE + STRIDE_X))
+ POOL_OP_float(sdata.y, sdata.y, dataorigin2.y);
+
+ int x1 = STRIDE_X + 1;
+ for(; x1 <= (int(POOL_SIZE + STRIDE_X) - 8); x1 += 8)
{
- POOL_OP_float(sdata.y, sdata.y, data4middle.x);
+ vec4 data2;
+ vec4 data3;
+ LOAD4_fp16(data2, src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)));
+ LOAD4_fp16(data3, src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)) + uint(2));
+
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data2 *= data2;
+ data3 *= data3;
+#endif /* defined(POOL_L2) */
+
+ POOL_OP(vdata01, vdata01, data2);
+ POOL_OP(vdata11, vdata11, data3);
}
- else
+
+ // Leftover
+ for(; x1 < int(POOL_SIZE + STRIDE_X); x1 = x1 + 2)
{
- float data4;
- POOL_OP_float(data4, data4middle.x, data4middle.y);
- POOL_OP_float(sdata.y, sdata.y, data4);
+ vec2 data4middle;
+ data4middle = load_and_unpack(src, (tensor3D_offset_fp16(src, x1, y, 0) >> uint(2)));
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data4middle *= data4middle;
+#endif /* defined(POOL_L2) */
+ if((x1 + 1) >= int(POOL_SIZE + STRIDE_X))
+ {
+ POOL_OP_float(sdata.y, sdata.y, data4middle.x);
+ }
+ else
+ {
+ float data4;
+ POOL_OP_float(data4, data4middle.x, data4middle.y);
+ POOL_OP_float(sdata.y, sdata.y, data4);
+ }
}
}
}
@@ -1414,14 +1490,20 @@ void main(void)
#if defined(POOL_AVG) || defined(POOL_L2)
{
// Divide by pool region in case of average pooling
- int start_x1 = int(gl_GlobalInvocationID.x) * STRIDE_X - PAD_X;
- int start_y1 = int(gl_GlobalInvocationID.y) * STRIDE_Y - PAD_Y;
- int end_x1 = int(min(start_x1 + POOL_SIZE, MAX_WIDTH));
- int end_y1 = int(min(start_y1 + POOL_SIZE, MAX_HEIGHT));
- int start_x2 = start_x1 + STRIDE_X;
- int start_y2 = start_y1;
- int end_x2 = int(min(start_x2 + POOL_SIZE, MAX_WIDTH));
- int end_y2 = int(min(start_y2 + POOL_SIZE, MAX_HEIGHT));
+ int start_x1 = (2 * int(gl_GlobalInvocationID.x)) * STRIDE_X - PAD_X;
+ int start_y1 = int(gl_GlobalInvocationID.y) * STRIDE_Y - PAD_Y;
+ int end_x1 = int(min(start_x1 + POOL_SIZE, MAX_WIDTH));
+ int end_y1 = int(min(start_y1 + POOL_SIZE, MAX_HEIGHT));
+ int start_x2 = start_x1 + STRIDE_X;
+ int start_y2 = start_y1;
+ int end_x2 = int(min(start_x2 + POOL_SIZE, MAX_WIDTH));
+ int end_y2 = int(min(start_y2 + POOL_SIZE, MAX_HEIGHT));
+#if defined(EXCLUDE_PADDING)
+ start_x1 = max(0, start_x1);
+ start_y1 = max(0, start_y1);
+ start_x2 = max(0, start_x2);
+ start_y2 = max(0, start_y2);
+#endif /* defined(EXCLUDE_PADDING) */
vec2 res1;
res1.x = float((end_y1 - start_y1) * (end_x1 - start_x1));
res1.y = float((end_y2 - start_y2) * (end_x2 - start_x2));
diff --git a/src/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.cpp b/src/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.cpp
index 0b6ba583a3..6451db741d 100644
--- a/src/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.cpp
+++ b/src/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.cpp
@@ -40,6 +40,176 @@
using namespace arm_compute;
+namespace
+{
+// Internal window config info
+using GCPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
+
+void auto_init(const ITensorInfo *input, ITensorInfo *output, unsigned int pooled_w, unsigned int pooled_h)
+{
+ TensorShape output_shape{ input->tensor_shape() };
+ output_shape.set(0, pooled_w);
+ output_shape.set(1, pooled_h);
+
+ auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
+}
+
+Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(input->data_type()) && pool_info.pool_type() == PoolingType::L2),
+ "Unsupported combination of parameters!");
+
+ const bool is_global_pooling = pool_info.is_global_pooling();
+ const unsigned int pool_size = is_global_pooling ? input->tensor_shape().x() : pool_info.pool_size();
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_global_pooling && (input->tensor_shape().x() != input->tensor_shape().y()),
+ "Global pooling is supported only with rectangular inputs!");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_global_pooling && ((pool_info.pad_stride_info().pad().first >= pool_size) || (pool_info.pad_stride_info().pad().second >= pool_size)),
+ "Invalid pool size and pool pad combination!");
+
+ // Checks performed when output is configured
+ if(output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
+
+ unsigned int pooled_w = 0;
+ unsigned int pooled_h = 0;
+ std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
+ input->dimension(1),
+ pool_size,
+ pool_size,
+ pool_info.pad_stride_info());
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != pooled_w) || (output->dimension(1) != pooled_h),
+ "Invalid output pooling dimensions!");
+ }
+
+ return Status{};
+}
+
+std::tuple<Status, Window, GCPoolingConfig> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info)
+{
+ int pool_pad_x = 0;
+ int pool_pad_y = 0;
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ unsigned int pooled_w = 0;
+ unsigned int pooled_h = 0;
+ int pool_size = pool_info.pool_size();
+ const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
+ std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad();
+ std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
+
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+
+ // Update pool size in case of global pooling
+ pool_size = pool_info.is_global_pooling() ? input->dimension(0) : pool_size;
+
+ // Check output dimensions
+ std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
+ input->dimension(1),
+ pool_size,
+ pool_size,
+ pad_stride_info);
+
+ auto_init(input, output, pooled_w, pooled_h);
+
+ BorderSize border_size = BorderSize(pool_pad_y, pool_pad_x);
+ const DataType data_type = input->data_type();
+
+ const int input_width = input->dimension(0);
+ const int input_height = input->dimension(1);
+
+ unsigned int num_elems_processed_per_iteration = 1;
+
+ // Create kernel
+ if(pool_size == 3)
+ {
+ // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where
+ // each thread computes 4 output elements
+ const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(data_type);
+
+ int num_elems_read_per_iteration = pool_size;
+
+ if(input->data_type() == DataType::F32)
+ {
+ if(is_pool3x3_stride_le3)
+ {
+ // Change the number of elements processed and number of elements read per iteration for pooling 3x3 with stride less equal than 3
+ num_elems_processed_per_iteration = 4;
+ num_elems_read_per_iteration = pool_size * (pool_stride_x + 1);
+ }
+ }
+ else
+ {
+ if(is_pool3x3_stride_le3)
+ {
+ num_elems_processed_per_iteration = 4;
+ }
+ else
+ {
+ num_elems_processed_per_iteration = 2;
+ }
+ }
+
+ const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elems_read_per_iteration) - input_width;
+ const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
+
+ border_size.right = std::max(upper_bound_w, pool_pad_x);
+ border_size.bottom = std::max(upper_bound_h, pool_pad_y);
+ }
+ else // Run general case
+ {
+ if(input->data_type() == DataType::F32)
+ {
+ num_elems_processed_per_iteration = 1;
+ }
+ else
+ {
+ num_elems_processed_per_iteration = 2;
+ }
+
+ const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + pool_size) - input_width;
+ const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
+
+ border_size.right = std::max(upper_bound_w, pool_pad_x);
+ border_size.bottom = std::max(upper_bound_h, pool_pad_y);
+ }
+ // Configure kernel window
+ Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
+
+ if(input->data_type() == DataType::F32)
+ {
+ AccessWindowStatic input_access(input, -pool_pad_x, -pool_pad_y, input_width + border_size.right, input_height + border_size.bottom);
+ AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
+ bool window_changed = update_window_and_padding(win, input_access, output_access);
+ output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_tuple(err, win, GCPoolingConfig(num_elems_processed_per_iteration, border_size));
+ }
+ else
+ {
+ // Calculate output right and bottom border
+ const int output_width = output->dimension(0);
+ const int output_height = output->dimension(1);
+ const int output_padding_right = ceil_to_multiple(output_width, num_elems_processed_per_iteration) - output_width;
+ const int output_padding_bottom = ceil_to_multiple(output_height, 1) - output_height;
+ const int input_padding_right = ceil_to_multiple(input_width + 2 * border_size.right, num_elems_processed_per_iteration) - (input_width + 2 * border_size.right);
+ const int input_padding_bottom = ceil_to_multiple(input_height + 2 * border_size.bottom, 1) - (input_height + 2 * border_size.bottom);
+
+ // Configure kernel window
+ AccessWindowStatic input_access(input, -pool_pad_x, -pool_pad_y, input_width + border_size.right + input_padding_right, input_height + border_size.bottom + input_padding_bottom);
+ AccessWindowStatic output_access(output, 0, 0, output_width + output_padding_right, output_height + output_padding_bottom);
+ bool window_changed = update_window_and_padding(win, input_access, output_access);
+ output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_tuple(err, win, GCPoolingConfig(num_elems_processed_per_iteration, border_size));
+ }
+}
+} // namespace
+
GCPoolingLayerKernel::GCPoolingLayerKernel()
: _input(nullptr), _output(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1)
{
@@ -52,54 +222,41 @@ BorderSize GCPoolingLayerKernel::border_size() const
void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output, const PoolingLayerInfo &pool_info)
{
- int pool_pad_x = 0;
- int pool_pad_y = 0;
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- unsigned int pooled_w = 0;
- unsigned int pooled_h = 0;
- const PoolingType pool_type = pool_info.pool_type();
- int pool_size = pool_info.pool_size();
- const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
- const bool is_global_pooling = pool_info.is_global_pooling();
+ int pool_pad_x = 0;
+ int pool_pad_y = 0;
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ unsigned int pooled_w = 0;
+ unsigned int pooled_h = 0;
+ const PoolingType pool_type = pool_info.pool_type();
+ int pool_size = pool_info.pool_size();
+ const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
+ const bool exclude_padding = pool_info.exclude_padding();
std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
- ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
- ARM_COMPUTE_ERROR_ON_NULLPTR(output);
- ARM_COMPUTE_ERROR_ON(!is_global_pooling && (pool_pad_x >= pool_size || pool_pad_y >= pool_size));
- ARM_COMPUTE_ERROR_ON(is_global_pooling && (input->info()->tensor_shape().x() != input->info()->tensor_shape().y()));
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Update pool size in case of global pooling
- pool_size = is_global_pooling ? input->info()->dimension(0) : pool_size;
+ pool_size = pool_info.is_global_pooling() ? input->info()->dimension(0) : pool_size;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0),
input->info()->dimension(1),
pool_size,
pool_size,
- pool_info.pad_stride_info());
-
- // Output auto initialization if not yet initialized
- {
- TensorShape output_shape{ input->info()->tensor_shape() };
- output_shape.set(0, pooled_w);
- output_shape.set(1, pooled_h);
-
- auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position());
- }
+ pad_stride_info);
- ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
- ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pooled_w) || (output->info()->dimension(1) != pooled_h));
+ auto_init(input->info(), output->info(), pooled_w, pooled_h);
- const int input_width = input->info()->dimension(0);
- const int input_height = input->info()->dimension(1);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info));
// Set instance variables
- _input = input;
- _output = output;
- _pool_info = pool_info;
- _border_size = BorderSize(pool_pad_y, pool_pad_x);
+ _input = input;
+ _output = output;
+ _pool_info = pool_info;
+
+ const DataType data_type = input->info()->data_type();
// Set build options
std::set<std::string> build_opts;
@@ -114,10 +271,14 @@ void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output,
{
build_opts.insert("#define DATA_TYPE_FP16");
}
+ if(exclude_padding)
+ {
+ build_opts.emplace("#define EXCLUDE_PADDING");
+ }
build_opts.emplace(("#define POOL_" + string_from_pooling_type(pool_type)));
build_opts.emplace(("#define STRIDE_X " + support::cpp11::to_string(pool_stride_x)));
- build_opts.emplace(("#define MAX_WIDTH " + support::cpp11::to_string(input->info()->dimension(0) + pool_pad_x)));
- build_opts.emplace(("#define MAX_HEIGHT " + support::cpp11::to_string(input->info()->dimension(1) + pool_pad_y)));
+ build_opts.emplace(("#define MAX_WIDTH " + support::cpp11::to_string(input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_x))));
+ build_opts.emplace(("#define MAX_HEIGHT " + support::cpp11::to_string(input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_y))));
build_opts.emplace(("#define STRIDE_Y " + support::cpp11::to_string(pool_stride_y)));
build_opts.emplace(("#define PAD_X " + support::cpp11::to_string(pool_pad_x)));
build_opts.emplace(("#define PAD_Y " + support::cpp11::to_string(pool_pad_y)));
@@ -127,37 +288,7 @@ void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output,
{
// Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where
// each thread computes 4 output elements
- const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(input->info()->data_type());
-
- int num_elements_read_per_iteration = (pool_size == 7) ? 8 : pool_size;
-
- if(input->info()->data_type() == DataType::F32)
- {
- if(is_pool3x3_stride_le3)
- {
- // Change the number of elements processed and number of elements read per iteration for pooling 3x3 with stride less equal than 3
- _num_elems_processed_per_iteration = 4;
- num_elements_read_per_iteration = pool_size * (pool_stride_x + 1);
- }
- }
- else
- {
- num_elements_read_per_iteration = pool_size;
- if(is_pool3x3_stride_le3)
- {
- _num_elems_processed_per_iteration = 4;
- }
- else
- {
- _num_elems_processed_per_iteration = 2;
- }
- }
-
- const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elements_read_per_iteration) - input_width;
- const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
-
- _border_size.right = std::max(upper_bound_w, pool_pad_x);
- _border_size.bottom = std::max(upper_bound_h, pool_pad_y);
+ const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(data_type);
std::string kernel_name = "pooling_layer_" + support::cpp11::to_string(pool_size);
if(is_pool3x3_stride_le3)
@@ -173,53 +304,27 @@ void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output,
}
else // Run general case
{
- if(input->info()->data_type() == DataType::F32)
- {
- _num_elems_processed_per_iteration = 1;
- }
- else
- {
- _num_elems_processed_per_iteration = 2;
- }
- const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + pool_size) - input_width;
- const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
-
- _border_size.right = std::max(upper_bound_w, pool_pad_x);
- _border_size.bottom = std::max(upper_bound_h, pool_pad_y);
-
build_opts.emplace(("#define POOL_SIZE " + support::cpp11::to_string(pool_size)));
build_opts.insert("#define POOLING_LAYER_N");
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel("pooling_layer_n", build_opts));
}
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info);
+ ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
+
+ IGCKernel::configure(std::get<1>(win_config));
+ GCPoolingConfig pooling_config = std::get<2>(win_config);
+ _num_elems_processed_per_iteration = pooling_config.first;
+ _border_size = pooling_config.second;
+}
- Window win = calculate_max_window(*output->info(), Steps(_num_elems_processed_per_iteration));
-
- if(input->info()->data_type() == DataType::F32)
- {
- AccessWindowStatic input_access(input->info(), -pool_pad_x, -pool_pad_y, input_width + _border_size.right, input_height + _border_size.bottom);
- AccessWindowHorizontal output_access(output->info(), 0, _num_elems_processed_per_iteration);
- update_window_and_padding(win, input_access, output_access);
- output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
- }
- else
- {
- // Calculate output right and bottom border
- const int output_width = output->info()->dimension(0);
- const int output_height = output->info()->dimension(1);
- const int output_padding_right = ceil_to_multiple(output_width, _num_elems_processed_per_iteration) - output_width;
- const int output_padding_bottom = ceil_to_multiple(output_height, 1) - output_height;
- const int input_padding_right = ceil_to_multiple(input_width + 2 * _border_size.right, _num_elems_processed_per_iteration) - (input_width + 2 * _border_size.right);
- const int input_padding_bottom = ceil_to_multiple(input_height + 2 * _border_size.bottom, 1) - (input_height + 2 * _border_size.bottom);
-
- // Configure kernel window
- AccessWindowStatic input_access(input->info(), -pool_pad_x, -pool_pad_y, input_width + _border_size.right + input_padding_right, input_height + _border_size.bottom + input_padding_bottom);
- AccessWindowStatic output_access(output->info(), 0, 0, output_width + output_padding_right, output_height + output_padding_bottom);
- update_window_and_padding(win, input_access, output_access);
- output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
- }
+Status GCPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info));
+ ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info)));
- IGCKernel::configure(win);
+ return Status{};
}
void GCPoolingLayerKernel::run(const Window &window)
@@ -239,7 +344,7 @@ void GCPoolingLayerKernel::run(const Window &window)
do
{
// Upsample input by pool size
- Window in_slice(slice);
+ Window in_slice(slice); // NOLINT
in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration));
in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, in_slice.y().end() * pool_stride_y, pool_stride_y));
diff --git a/src/runtime/GLES_COMPUTE/functions/GCPoolingLayer.cpp b/src/runtime/GLES_COMPUTE/functions/GCPoolingLayer.cpp
index 46a60cddef..ff03effd3f 100644
--- a/src/runtime/GLES_COMPUTE/functions/GCPoolingLayer.cpp
+++ b/src/runtime/GLES_COMPUTE/functions/GCPoolingLayer.cpp
@@ -23,8 +23,8 @@
*/
#include "arm_compute/runtime/GLES_COMPUTE/functions/GCPoolingLayer.h"
+#include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
#include "arm_compute/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.h"
-#include "arm_compute/core/PixelValue.h"
#include "support/ToolchainSupport.h"
using namespace arm_compute;
@@ -40,3 +40,8 @@ void GCPoolingLayer::configure(IGCTensor *input, IGCTensor *output, const Poolin
BorderMode border_mode = (PoolingType::MAX == pool_info.pool_type()) ? BorderMode::REPLICATE : BorderMode::CONSTANT;
_border_handler.configure(input, _kernel->border_size(), border_mode, PixelValue(0.0f));
}
+
+Status GCPoolingLayer::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
+{
+ return GCPoolingLayerKernel::validate(input, output, pool_info);
+} \ No newline at end of file