aboutsummaryrefslogtreecommitdiff
path: root/src/core
diff options
context:
space:
mode:
authorGeorge Wort <george.wort@arm.com>2019-02-22 16:37:41 +0000
committerGiuseppe Rossini <giuseppe.rossini@arm.com>2019-03-15 13:34:00 +0000
commit2d7e683e79c8ad328d4930c1f82a46827313faf4 (patch)
treeeb81f928ecd2543ef80af87f65d1bdef5a78ea2a /src/core
parent3814b30623d6a9e570d850fe5ae275fe2117f3f5 (diff)
downloadComputeLibrary-2d7e683e79c8ad328d4930c1f82a46827313faf4.tar.gz
COMPMID-1694: Fuse offset contribution with the output stage when we use NEGEMMLowpMatrixMultiplyCore
Change-Id: Ic1a681e4cc03e1eba3bf8485d9cdb17b3e926047 Signed-off-by: giuros01 <giuseppe.rossini@arm.com> Reviewed-on: https://review.mlplatform.org/c/561 Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core')
-rw-r--r--src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp3
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp11
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.cpp651
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp39
4 files changed, 659 insertions, 45 deletions
diff --git a/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp b/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp
index 83af0c63eb..8fba342e74 100644
--- a/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -51,7 +51,6 @@ Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vecto
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type == GEMMLowpOutputStageType::NONE);
- ARM_COMPUTE_RETURN_ERROR_ON(bias == nullptr && a_offset == 0 && b_offset == 0);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_max_bound > 255);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound < 0 || output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
diff --git a/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
index 33a5b4ace3..22939266e5 100644
--- a/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
+++ b/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2018 ARM Limited.
+ * Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -106,20 +106,17 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result,
Window win = calculate_max_window(*mm_result, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal mm_result_access(mm_result, 0, num_elems_processed_per_iteration);
- window_changed = window_changed || update_window_and_padding(win,
- mm_result_access);
+ window_changed = window_changed || update_window_and_padding(win, mm_result_access);
if(a_offset != 0)
{
AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration);
- window_changed = window_changed || update_window_and_padding(win,
- vector_sum_col_access);
+ window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access);
}
if(b_offset != 0)
{
AccessWindowStatic vector_sum_row_access(vector_sum_row, 0, 0, vector_sum_row->dimension(0), 0); // NOLINT
- window_changed = window_changed || update_window_and_padding(win,
- vector_sum_row_access);
+ window_changed = window_changed || update_window_and_padding(win, vector_sum_row_access);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
diff --git a/src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.cpp
new file mode 100644
index 0000000000..ebbea083e3
--- /dev/null
+++ b/src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.cpp
@@ -0,0 +1,651 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.h"
+
+#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/NEON/NEAsymm.h"
+#include "arm_compute/core/NEON/wrapper/wrapper.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include <arm_neon.h>
+#include <cstddef>
+#include <cstdint>
+#include <map>
+
+namespace arm_compute
+{
+class Coordinates;
+
+namespace
+{
+inline int32x4x4_t load_results_input(const Iterator &mm_result_it, int32_t x)
+{
+ return
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 12)
+ }
+ };
+}
+
+inline int32x4x4_t load(const int32_t *ptr, int32_t x)
+{
+ return
+ {
+ {
+ vld1q_s32(ptr + x + 0),
+ vld1q_s32(ptr + x + 4),
+ vld1q_s32(ptr + x + 8),
+ vld1q_s32(ptr + x + 12)
+ }
+ };
+}
+
+inline int32x4x4_t get_a_offset(const int32_t *vector_sum_col_ptr, int32_t a_offset, int32_t x)
+{
+ int32x4x4_t a_offset_term_s32 = load(vector_sum_col_ptr, x);
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+ return a_offset_term_s32;
+}
+
+inline int32x4_t get_b_offset(const int32_t *vector_sum_row_ptr, int32_t b_offset)
+{
+ int32x4_t b_offset_term_s32 = vld1q_dup_s32(vector_sum_row_ptr);
+ b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset);
+ return b_offset_term_s32;
+}
+
+inline int32x4x4_t get_k_offset(int32_t k_offset)
+{
+ return
+ {
+ {
+ vdupq_n_s32(k_offset),
+ vdupq_n_s32(k_offset),
+ vdupq_n_s32(k_offset),
+ vdupq_n_s32(k_offset)
+ }
+ };
+}
+
+template <bool is_bounded_relu>
+inline uint8x16_t finalize_quantization_floating_point(int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8)
+{
+ const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+ // Shift final result (negative value shift right)
+ in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+ in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+ in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+ in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+ // Saturate negative values
+ in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+ in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+ in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+ in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+ // Convert S32 to S16
+ const int16x8x2_t in_s16 =
+ {
+ {
+ vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+ vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+ }
+ };
+
+ // Convert S16 to U8
+ uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
+
+ if(is_bounded_relu)
+ {
+ out_u8 = vmaxq_u8(out_u8, min_u8);
+ out_u8 = vminq_u8(out_u8, max_u8);
+ }
+
+ return out_u8;
+}
+
+inline Window get_win_vector_sum(const Window &window)
+{
+ Window win_vector_sum(window);
+ win_vector_sum.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ return win_vector_sum;
+}
+
+inline Iterator get_vector_sum_col_it(const Window &window, const ITensor *vector_sum_col)
+{
+ Iterator vector_sum_col_it(vector_sum_col, get_win_vector_sum(window));
+ return vector_sum_col_it;
+}
+
+inline Iterator get_vector_sum_row_it(const Window &window, const ITensor *vector_sum_row)
+{
+ Window win_vector_sum_row = get_win_vector_sum(window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+ return vector_sum_row_it;
+}
+
+inline Iterator get_bias_it(const Window &window, const ITensor *bias)
+{
+ Window win_bias(window);
+ win_bias.set(Window::DimY, Window::Dimension(0, 1, 1));
+ win_bias.set(Window::DimZ, Window::Dimension(0, 1, 1));
+ Iterator bias_it(bias, win_bias);
+ return bias_it;
+}
+
+inline int32x4x4_t add_s32(int32x4x4_t a, int32x4_t b)
+{
+ return
+ {
+ {
+ vaddq_s32(a.val[0], b),
+ vaddq_s32(a.val[1], b),
+ vaddq_s32(a.val[2], b),
+ vaddq_s32(a.val[3], b)
+ }
+ };
+}
+
+inline int32x4x4_t add_s32(int32x4x4_t a, int32x4x4_t b)
+{
+ return
+ {
+ {
+ vaddq_s32(a.val[0], b.val[0]),
+ vaddq_s32(a.val[1], b.val[1]),
+ vaddq_s32(a.val[2], b.val[2]),
+ vaddq_s32(a.val[3], b.val[3])
+ }
+ };
+}
+
+inline int32x4x4_t mul_s32(int32x4x4_t &a, int32_t mul_scalar)
+{
+ return
+ {
+ {
+ vmulq_n_s32(a.val[0], mul_scalar),
+ vmulq_n_s32(a.val[1], mul_scalar),
+ vmulq_n_s32(a.val[2], mul_scalar),
+ vmulq_n_s32(a.val[3], mul_scalar)
+ }
+ };
+}
+
+template <bool has_a_offset, bool has_b_offset, bool has_bias, bool is_bounded_relu, bool is_fixed_point>
+inline void run_offset_contribution_output_stage_window(const int32_t *vector_sum_col_ptr, const int32_t *vector_sum_row_ptr, const int32_t *bias_ptr, Iterator mm_result_it, Iterator out_it,
+ const int32x4_t result_offset_s32, const int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8,
+ int32_t a_offset, int32_t b_offset, int32_t k_offset,
+ GEMMLowpOutputStageInfo output_stage, int window_step_x, int window_start_x, int window_end_x)
+{
+ int32x4x4_t offset_term_s32 = { 0, 0, 0, 0 };
+ if(!is_fixed_point)
+ {
+ // Combine quantization offset with other offsets.
+ offset_term_s32 = add_s32(offset_term_s32, result_offset_s32);
+ }
+ if(has_a_offset && has_b_offset)
+ {
+ offset_term_s32 = add_s32(offset_term_s32, get_k_offset(k_offset));
+ }
+ if(has_b_offset)
+ {
+ offset_term_s32 = add_s32(offset_term_s32, get_b_offset(vector_sum_row_ptr, b_offset));
+ }
+
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
+
+ if(has_a_offset)
+ {
+ in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
+ }
+ if(has_bias)
+ {
+ in_s32 = add_s32(in_s32, load(bias_ptr, x));
+ }
+ if(!is_fixed_point || has_b_offset)
+ {
+ in_s32 = add_s32(in_s32, offset_term_s32);
+ }
+ if(!is_fixed_point)
+ {
+ in_s32 = mul_s32(in_s32, output_stage.gemmlowp_multiplier);
+ }
+
+ if(is_fixed_point)
+ {
+ vst1q_u8(out_it.ptr() + x, finalize_quantization<is_bounded_relu>(in_s32, output_stage.gemmlowp_multiplier, output_stage.gemmlowp_shift, result_offset_s32, min_u8, max_u8));
+ }
+ else
+ {
+ vst1q_u8(out_it.ptr() + x, finalize_quantization_floating_point<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
+ }
+ }
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int32_t in_value = *(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
+
+ if(has_a_offset)
+ {
+ in_value += (*(vector_sum_col_ptr + x) * a_offset);
+ }
+ if(has_bias)
+ {
+ in_value += *(bias_ptr + x);
+ }
+
+ if(is_fixed_point)
+ {
+ // Finalize and store the result
+ *(out_it.ptr() + x) = finalize_quantization<is_bounded_relu>(in_value, output_stage.gemmlowp_multiplier, output_stage.gemmlowp_shift,
+ output_stage.gemmlowp_offset, static_cast<uint8_t>(output_stage.gemmlowp_min_bound), static_cast<uint8_t>(output_stage.gemmlowp_max_bound));
+ }
+ else
+ {
+ // Finalize quantization
+ in_value = (in_value * output_stage.gemmlowp_multiplier) >> output_stage.gemmlowp_shift;
+
+ // Bound and store the result
+ if(is_bounded_relu)
+ {
+ in_value = static_cast<uint8_t>(std::max(output_stage.gemmlowp_min_bound, std::min(output_stage.gemmlowp_max_bound, in_value)));
+ }
+ *(out_it.ptr() + x) = static_cast<uint8_t>(std::max(0, std::min(255, in_value)));
+ }
+ }
+}
+
+template <bool is_gemm3d, bool is_bounded_relu, bool is_fixed_point>
+void run_offset_contribution_output_stage(const Window &window,
+ const ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, const ITensor *bias, ITensor *output,
+ int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col,
+ GEMMLowpOutputStageInfo output_stage)
+{
+ const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
+ const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+ const int32x4_t result_offset_s32 = vdupq_n_s32(output_stage.gemmlowp_offset);
+ const int32x4_t result_shift_s32 = vdupq_n_s32(is_fixed_point ? output_stage.gemmlowp_shift : -output_stage.gemmlowp_shift);
+ const uint8x16_t min_u8 = vdupq_n_u8(static_cast<uint8_t>(output_stage.gemmlowp_min_bound));
+ const uint8x16_t max_u8 = vdupq_n_u8(static_cast<uint8_t>(output_stage.gemmlowp_max_bound));
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ Window win(window);
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
+
+ Iterator mm_result_it(mm_result, win);
+ Iterator out_it(output, win);
+
+ if((a_offset != 0) && (b_offset != 0))
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+ Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+ Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ // Offset in case vector_sum_col is batched
+ const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+ if(bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+ const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ + id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<true, true, true, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
+ out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ vector_sum_col_it, vector_sum_row_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+ const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ + id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<true, true, false, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ vector_sum_col_it, vector_sum_row_it, mm_result_it, out_it);
+ }
+ }
+ else if((a_offset == 0) && (b_offset != 0))
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+ Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ if(bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ + id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<false, true, true, is_bounded_relu, is_fixed_point>(nullptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ vector_sum_row_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ + id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<false, true, false, is_bounded_relu, is_fixed_point>(nullptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ vector_sum_row_it, mm_result_it, out_it);
+ }
+ }
+ else if((a_offset != 0) && (b_offset == 0))
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+
+ Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+
+ // Offset in case vector_sum_col is batched
+ const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+ if(bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+ run_offset_contribution_output_stage_window<true, false, true, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ vector_sum_col_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+ run_offset_contribution_output_stage_window<true, false, false, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, nullptr, nullptr, mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ vector_sum_col_it, mm_result_it, out_it);
+ }
+ }
+ else
+ {
+ if(bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ run_offset_contribution_output_stage_window<false, false, true, is_bounded_relu, is_fixed_point>(nullptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(collapsed_window, [&](const Coordinates & id)
+ {
+ run_offset_contribution_output_stage_window<false, false, false, is_bounded_relu, is_fixed_point>(nullptr, nullptr, nullptr, mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
+ output_stage, window_step_x, window_start_x, window_end_x);
+ },
+ mm_result_it, out_it);
+ }
+ return;
+ }
+}
+
+Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
+ int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_max_bound > 255);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound < 0 || output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN && output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
+
+ if(bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
+ }
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if(a_offset != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
+ }
+
+ // If b_offset == 0, vector_sum_row can be a nullptr
+ if(b_offset != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+
+ // Validate input
+ ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
+ ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
+
+ TensorShape output_shape = output->tensor_shape();
+ if(output_shape.num_dimensions() > 1)
+ {
+ const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
+
+ TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
+ vector_sum_row_shape.collapse_from(1);
+ output_shape.collapse_from(output_batch_idx);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
+ "mm_result tensor must have the same number of batches of output tensor");
+
+ if(a_offset != 0)
+ {
+ TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
+ vector_sum_col_shape.collapse_from(1);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
+ "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
+ }
+ }
+ }
+
+ if(output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output);
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *output)
+{
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*output, mm_result->clone()->set_data_type(DataType::QASYMM8));
+
+ // Configure kernel window
+ Window win = calculate_max_window(*mm_result, Steps());
+
+ // Note: This kernel performs 16 elements per iteration.
+ // However, since we use a left-over for loop, we cannot have any read or write out of memory
+ // For this reason num_elems_processed_per_iteration is 1 and so update_window_and_padding() can be skipped
+ Coordinates coord;
+ coord.set_num_dimensions(output->num_dimensions());
+ output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
+
+ return std::make_pair(Status{}, win);
+}
+
+NEGEMMLowpOffsetContributionOutputStageKernel::NEGEMMLowpOffsetContributionOutputStageFunction
+get_configured_function(const ITensor *mm_result, const ITensor *vector_sum_row, GEMMLowpOutputStageInfo output_stage)
+{
+ static std::map<uint8_t, NEGEMMLowpOffsetContributionOutputStageKernel::NEGEMMLowpOffsetContributionOutputStageFunction> map_function =
+ {
+ { 0, &run_offset_contribution_output_stage<false, false, false> },
+ { 1, &run_offset_contribution_output_stage<true, false, false> },
+ { 2, &run_offset_contribution_output_stage<false, true, false> },
+ { 3, &run_offset_contribution_output_stage<true, true, false> },
+ { 4, &run_offset_contribution_output_stage<false, false, true> },
+ { 5, &run_offset_contribution_output_stage<true, false, true> },
+ { 6, &run_offset_contribution_output_stage<false, true, true> },
+ { 7, &run_offset_contribution_output_stage<true, true, true> }
+ };
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d = vector_sum_row != nullptr
+ && mm_result->info()->num_dimensions() > 1
+ && mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
+
+ // Check if we need to clamp the result using min and max
+ const bool is_bounded_relu = ((output_stage.gemmlowp_min_bound != output_stage.gemmlowp_max_bound)
+ && !(output_stage.gemmlowp_min_bound == 0 && output_stage.gemmlowp_max_bound == 255));
+
+ const bool is_fixed_point = output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN;
+
+ // key acts as a bitset, setting the first bit on reinterpret_as_3d,
+ // the second on is_bounded_relu, and the third on is_fixed_point.
+ uint8_t key = (reinterpret_as_3d ? 1UL : 0UL) | ((is_bounded_relu ? 1UL : 0UL) << 1) | ((is_fixed_point ? 1UL : 0UL) << 2);
+ return map_function.find(key)->second;
+}
+} // namespace
+
+NEGEMMLowpOffsetContributionOutputStageKernel::NEGEMMLowpOffsetContributionOutputStageKernel()
+ : _function(nullptr), _vector_sum_col(nullptr), _vector_sum_row(nullptr), _bias(nullptr), _mm_result(nullptr), _output(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true),
+ _output_stage(GEMMLowpOutputStageInfo())
+
+{
+}
+
+void NEGEMMLowpOffsetContributionOutputStageKernel::configure(const ITensor *mm_result, const ITensor *vector_sum_col,
+ const ITensor *vector_sum_row, const ITensor *bias, ITensor *output, int32_t k,
+ int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
+{
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(),
+ vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT
+ vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT
+ bias != nullptr ? bias->info() : nullptr, // NOLINT
+ output->info(), a_offset, b_offset, output_stage)); // NOLINT
+
+ _vector_sum_col = vector_sum_col;
+ _vector_sum_row = vector_sum_row;
+ _bias = bias;
+ _mm_result = mm_result;
+ _output = output;
+ _a_offset = a_offset;
+ _b_offset = b_offset;
+ _k_offset = a_offset * b_offset * k;
+ _output_stage = output_stage;
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if(a_offset != 0)
+ {
+ // Check if vector_sum_col_shape should be slidden or not
+ // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
+ // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+ _slide_vector_sum_col = vector_sum_col->info()->tensor_shape().num_dimensions() > 1;
+ }
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(mm_result->info(), output->info());
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+ INEKernel::configure(win_config.second);
+
+ _function = get_configured_function(mm_result, vector_sum_row, output_stage);
+}
+
+Status NEGEMMLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col,
+ const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
+ int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(), output->clone().get()).first);
+ return Status{};
+}
+
+void NEGEMMLowpOffsetContributionOutputStageKernel::run(const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+ _function(window, _mm_result, _vector_sum_col, _vector_sum_row, _bias, _output, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, _output_stage);
+}
+
+} // namespace arm_compute \ No newline at end of file
diff --git a/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp
index f0ac695b20..d3cfc7a8fa 100644
--- a/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp
+++ b/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp
@@ -86,37 +86,6 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
namespace arm_compute
{
class Coordinates;
-
-/* Function used by the left-over for loop to perform the quantization */
-template <bool is_bounded_relu>
-inline uint8_t finalize_quantization(int32x4_t in_s32, int result_fixedpoint_multiplier, int32_t result_shift, int32x4_t result_offset_after_shift_s32, uint8_t min_u8, uint8_t max_u8)
-{
- const static int32x4_t zero_s32 = vdupq_n_s32(0);
- const static int32x4_t sat_value_s32 = vdupq_n_s32(255);
-
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- in_s32 = vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier);
-
- // Round to the nearest division by a power-of-two using result_shift_s32
- in_s32 = rounding_divide_by_pow2(in_s32, result_shift);
-
- // Add the offset terms
- in_s32 = vaddq_s32(in_s32, result_offset_after_shift_s32);
-
- // Saturate negative values
- in_s32 = vmaxq_s32(in_s32, zero_s32);
- in_s32 = vminq_s32(in_s32, sat_value_s32);
-
- auto out_u8 = static_cast<uint8_t>(vgetq_lane_s32(in_s32, 0));
-
- if(is_bounded_relu)
- {
- out_u8 = std::max(out_u8, min_u8);
- out_u8 = std::min(out_u8, max_u8);
- }
-
- return out_u8;
-}
} // namespace arm_compute
template <bool is_bounded_relu>
@@ -188,10 +157,8 @@ void NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run(const Window
// Add bias
in_value += bias_value;
-
// Finalize and store the result
- *(out.ptr() + x) = finalize_quantization<is_bounded_relu>(vdupq_n_s32(in_value), _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, static_cast<uint8_t>(_min),
- static_cast<uint8_t>(_max));
+ *(out.ptr() + x) = finalize_quantization<is_bounded_relu>(in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, static_cast<uint8_t>(_min), static_cast<uint8_t>(_max));
}
},
in, out, bias);
@@ -220,10 +187,10 @@ void NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run(const Window
// Compute left-over elements
for(; x < window_end_x; ++x)
{
- const int32x4_t in_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x);
+ const int32_t in_value = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
// Finalize and store the result
- *(out.ptr() + x) = finalize_quantization<is_bounded_relu>(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, static_cast<uint8_t>(_min), static_cast<uint8_t>(_max));
+ *(out.ptr() + x) = finalize_quantization<is_bounded_relu>(in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, static_cast<uint8_t>(_min), static_cast<uint8_t>(_max));
}
},
in, out);