aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/winograd
diff options
context:
space:
mode:
authorGeorgios Pinitas <georgios.pinitas@arm.com>2018-01-30 18:13:46 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:46:07 +0000
commit4074c995d2a88684fd4a9d1aa36d51de56bb8dab (patch)
tree280a15ca10ff88c5eb432be011ccb721660a3349 /src/core/NEON/kernels/winograd
parentc5694afca3f937f8c9b3ec328da9394f11f9af2d (diff)
downloadComputeLibrary-4074c995d2a88684fd4a9d1aa36d51de56bb8dab.tar.gz
COMPMID-873: Integrate RSH NEON Depthwise Convolution routine
Change-Id: Ida1e9a836bc518bfe5563e16bf7f92bde5fc13f7 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/118472 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Pablo Tello <pablo.tello@arm.com>
Diffstat (limited to 'src/core/NEON/kernels/winograd')
-rw-r--r--src/core/NEON/kernels/winograd/batched_blocked_gemm.cpp81
-rw-r--r--src/core/NEON/kernels/winograd/transforms/input_2x2_3x3_fp32.cpp409
-rw-r--r--src/core/NEON/kernels/winograd/transforms/input_2x2_5x5_fp32.cpp458
-rw-r--r--src/core/NEON/kernels/winograd/transforms/input_4x4_3x3_fp32.cpp486
-rw-r--r--src/core/NEON/kernels/winograd/transforms/output_2x2_3x3_fp32.cpp251
-rw-r--r--src/core/NEON/kernels/winograd/transforms/output_2x2_5x5_fp32.cpp242
-rw-r--r--src/core/NEON/kernels/winograd/transforms/output_4x4_3x3_fp32.cpp306
-rw-r--r--src/core/NEON/kernels/winograd/transforms/weights_2x2_3x3_fp32.cpp228
-rw-r--r--src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp408
-rw-r--r--src/core/NEON/kernels/winograd/transforms/weights_4x4_3x3_fp32.cpp266
-rw-r--r--src/core/NEON/kernels/winograd/utils.cpp50
-rw-r--r--src/core/NEON/kernels/winograd/winograd_gemm.cpp568
12 files changed, 0 insertions, 3753 deletions
diff --git a/src/core/NEON/kernels/winograd/batched_blocked_gemm.cpp b/src/core/NEON/kernels/winograd/batched_blocked_gemm.cpp
deleted file mode 100644
index 52c2db866a..0000000000
--- a/src/core/NEON/kernels/winograd/batched_blocked_gemm.cpp
+++ /dev/null
@@ -1,81 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "batched_blocked_gemm.hpp"
-#include "gemm.hpp"
-using namespace winograd;
-
-template <const int MB, const int NB, typename TIn, typename TOut>
-BatchedBlockedGemm<MB, NB, TIn, TOut>::BatchedBlockedGemm(
- const unsigned int n_gemms,
- const int M, const int K, const int N,
- const int a_matrix_stride,
- const int a_row_stride,
- const int b_matrix_stride,
- const int b_row_stride,
- const int c_matrix_stride,
- const int c_row_stride,
- const TIn* const a_ptr,
- const TIn* const b_ptr,
- TOut* const c_ptr
-) : n_gemms(n_gemms), M(M), N(N), K(K),
- a_matrix_stride(a_matrix_stride),
- a_row_stride(a_row_stride),
- b_matrix_stride(b_matrix_stride),
- b_row_stride(b_row_stride),
- c_matrix_stride(c_matrix_stride),
- c_row_stride(c_row_stride),
- a_ptr(a_ptr), b_ptr(b_ptr), c_ptr(c_ptr)
-{
-}
-
-template <const int MBlock, const int NBlock, typename TIn, typename TOut>
-unsigned int BatchedBlockedGemm<MBlock, NBlock, TIn, TOut>::get_window() const
-{
- return n_gemms;
-}
-
-template <const int MBlock, const int NBlock, typename TIn, typename TOut>
-void BatchedBlockedGemm<MBlock, NBlock, TIn, TOut>::run(
- const unsigned int start, const unsigned int stop
-)
-{
- // Perform the specified GEMMs
- for (unsigned int i = start; i < stop; i++)
- {
- // Get pointers to the relevant matrices
- const TIn* const mtr_a = a_ptr + i*a_matrix_stride;
- const TIn* const mtr_b = b_ptr + i*b_matrix_stride;
- TOut* const mtr_c = c_ptr + i*c_matrix_stride;
-
- // Perform the GEMM
- BlockedGemm<MBlock, NBlock, TIn, TOut>(
- mtr_a, mtr_b, mtr_c, M, K, N,
- a_row_stride, b_row_stride, c_row_stride
- );
- }
-}
-
-template class winograd::BatchedBlockedGemm<4, 16, float, float>;
-
diff --git a/src/core/NEON/kernels/winograd/transforms/input_2x2_3x3_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/input_2x2_3x3_fp32.cpp
deleted file mode 100644
index 381ae92182..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/input_2x2_3x3_fp32.cpp
+++ /dev/null
@@ -1,409 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "transforms/input.hpp"
-#include "winograd_gemm.hpp"
-#include "arm.hpp"
-
-namespace winograd
-{
-
-using Transform = WinogradGEMM<2, 2, 3, 3>::InputTransform<float>;
-
-/******************************************************************************
- * Cost methods for the input transform.
- * =====================================
- */
-template <>
-template <>
-int Transform::ops_performed(const Tensor4DShape &input_shape)
-{
- // NOTE: Cost in FLOPs rather than instructions or uops.
- const int tile_M = iceildiv(input_shape.n_rows, inner_tile_rows);
- const int tile_N = iceildiv(input_shape.n_cols, inner_tile_cols);
- return 16 * 16 * tile_M * tile_N * input_shape.n_channels;
-}
-/*****************************************************************************/
-
-/*****************************************************************************
-* F(2x2, 3x3) implies the use of a 4x4 input tile. Such tiles can require a
-* variety of padding types. For example, tiles at the top and left of an image
-* can require one row or column of padding on their top and left sides if the
-* padding type is SAME (where X represents a padded value):
-*
-* _______ _______
-* |X X X X| |X X X X|
-* |X | | | . . .
-* |X | | |
-* |X______| |_______|
-* _______
-* |X | .
-* |X | . . . .
-* |X | .
-* |X______|
-*
-* For tiles near the right or bottom of the image it is more complicated. Such
-* tiles might require padding by 0 or 1 rows or columns if the padding type is
-* VALID or 1 or 2 rows or columns if the padding type is SAME:
-*
-* _______ _______ _______ _______
-* |X X X X| |X X X X| |X X X X| |X X X X|
-* |X | | | | X| | X X|
-* |X | | | | X| | X X|
-* |X______| |_______| |______X| |____X_X|
-* _______ _______ _______ _______
-* |X | | | | X| | X X|
-* |X | | | | X| | X X|
-* |X | | | | X| | X X|
-* |X______| |_______| |______X| |____X_X|
-* _______ _______ _______ _______
-* |X | | | | X| | X X|
-* |X | | | | X| | X X|
-* |X | | | | X| | X X|
-* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
-* _______ _______ _______ _______
-* |X | | | | X| | X X|
-* |X | | | | X| | X X|
-* |X X X X| |X X X X| |X X X X| |X X X X|
-* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
-*
-* Additional tiles are required for especially small input images.
-*
-* Build an array of the specialised methods that deal with each of the
-* different padding combinations which may be required. These padding
-* constraints are the space:
-*
-* Padding top in {0, 1}
-* Padding left in {0, 1}
-* Padding bottom in {0, 1, 2}
-* Padding right in {0, 1, 2}
-*/
-template <>
-template <>
-template <int pad_top, int pad_left, int pad_bottom, int pad_right>
-void Transform::process_tile(
- int n_channels,
- const float* const input_base,
- const int input_row_stride,
- const int input_col_stride,
- float* const matrix_base,
- const int matrix_stride
-)
-{
- constexpr int inner_tile_i = 4, inner_tile_j = 4;
- constexpr int cells_i = inner_tile_i - pad_bottom;
- constexpr int cells_j = inner_tile_i - pad_right;
-
- float *outptr = matrix_base;
-
- // Get pointers into the input tile
- const float *x_ptrs[inner_tile_i][inner_tile_j];
- for (int i = pad_top, xi = 0; i < cells_i; i++, xi++)
- {
- // Get a pointer into the row
- const float* const row_ptr = input_base + xi*input_row_stride;
-
- for (int j = pad_left, xj = 0; j < cells_j; j++, xj++)
- {
- x_ptrs[i][j] = row_ptr + xj*input_col_stride;
- }
- }
-
- // Matrices used/computed in this kernel.
- float x[inner_tile_i][inner_tile_j];
- float XTx[inner_tile_i][inner_tile_j];
- float U[inner_tile_i][inner_tile_j];
-
- for (int i = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++)
- {
- x[i][j] = XTx[i][j] = 0.0f;
- }
- }
-
- // Perform the Winograd input transformation for each channel in the input
- // tensor.
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used/computed in this kernel.
- float32x4_t x[inner_tile_i][inner_tile_j];
- float32x4_t XTx[inner_tile_i][inner_tile_j];
- float32x4_t U[inner_tile_i][inner_tile_j];
-
- for (int i = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++)
- {
- x[i][j] = vdupq_n_f32(0.0f);
- XTx[i][j] = vdupq_n_f32(0.0f);
- }
- }
-
- // Load x
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = vld1q_f32(x_ptrs[i][j]);
- x_ptrs[i][j] += 4;
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- // XTx[0][j] = x[0][j] - x[2][j];
- XTx[0][j] = vsubq_f32(x[0][j], x[2][j]);
-
- // XTx[1][j] = x[1][j] + x[2][j];
- XTx[1][j] = vaddq_f32(x[1][j], x[2][j]);
-
- // XTx[2][j] = x[2][j] - x[1][j];
- XTx[2][j] = vsubq_f32(x[2][j], x[1][j]);
-
- // XTx[3][j] = x[1][j] - x[3][j];
- XTx[3][j] = vsubq_f32(x[1][j], x[3][j]);
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < inner_tile_i; i++)
- {
- // U[i][0] = XTx[i][0] - XTx[i][2];
- U[i][0] = vsubq_f32(XTx[i][0], XTx[i][2]);
-
- // U[i][1] = XTx[i][1] + XTx[i][2];
- U[i][1] = vaddq_f32(XTx[i][1], XTx[i][2]);
-
- // U[i][2] = XTx[i][2] - XTx[i][1];
- U[i][2] = vsubq_f32(XTx[i][2], XTx[i][1]);
-
- // U[i][3] = XTx[i][1] - XTx[i][3];
- U[i][3] = vsubq_f32(XTx[i][1], XTx[i][3]);
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++, m++)
- {
- vst1q_f32(outptr + m*matrix_stride, U[i][j]);
- }
- }
- outptr += 4;
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used/computed in this kernel.
- float32x2_t x[inner_tile_i][inner_tile_j];
- float32x2_t XTx[inner_tile_i][inner_tile_j];
- float32x2_t U[inner_tile_i][inner_tile_j];
-
- for (int i = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++)
- {
- x[i][j] = vdup_n_f32(0.0f);
- XTx[i][j] = vdup_n_f32(0.0f);
- }
- }
-
- // Load x
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = vld1_f32(x_ptrs[i][j]);
- x_ptrs[i][j] += 2;
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- // XTx[0][j] = x[0][j] - x[2][j];
- XTx[0][j] = vsub_f32(x[0][j], x[2][j]);
-
- // XTx[1][j] = x[1][j] + x[2][j];
- XTx[1][j] = vadd_f32(x[1][j], x[2][j]);
-
- // XTx[2][j] = x[2][j] - x[1][j];
- XTx[2][j] = vsub_f32(x[2][j], x[1][j]);
-
- // XTx[3][j] = x[1][j] - x[3][j];
- XTx[3][j] = vsub_f32(x[1][j], x[3][j]);
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < inner_tile_i; i++)
- {
- // U[i][0] = XTx[i][0] - XTx[i][2];
- U[i][0] = vsub_f32(XTx[i][0], XTx[i][2]);
-
- // U[i][1] = XTx[i][1] + XTx[i][2];
- U[i][1] = vadd_f32(XTx[i][1], XTx[i][2]);
-
- // U[i][2] = XTx[i][2] - XTx[i][1];
- U[i][2] = vsub_f32(XTx[i][2], XTx[i][1]);
-
- // U[i][3] = XTx[i][1] - XTx[i][3];
- U[i][3] = vsub_f32(XTx[i][1], XTx[i][3]);
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++, m++)
- {
- vst1_f32(outptr + m*matrix_stride, U[i][j]);
- }
- }
- outptr += 2;
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Load x
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = *(x_ptrs[i][j]++);
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- XTx[0][j] = x[0][j] - x[2][j];
- XTx[1][j] = x[1][j] + x[2][j];
- XTx[2][j] = x[2][j] - x[1][j];
- XTx[3][j] = x[1][j] - x[3][j];
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < inner_tile_i; i++)
- {
- U[i][0] = XTx[i][0] - XTx[i][2];
- U[i][1] = XTx[i][1] + XTx[i][2];
- U[i][2] = XTx[i][2] - XTx[i][1];
- U[i][3] = XTx[i][1] - XTx[i][3];
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++, m++)
- {
- *(outptr + m*matrix_stride) = U[i][j];
- }
- }
- outptr++;
- }
-}
-
-template <>
-template <>
-const Transform::TileFn Transform::tile_fns[2][2][max_pad_bottom][max_pad_right] =
-{
- {
- {
- {
- Transform::template process_tile<0, 0, 0, 0>, // No padding
- Transform::template process_tile<0, 0, 0, 1>, // Right
- Transform::template process_tile<0, 0, 0, 2>, // Right
- },
- {
- Transform::template process_tile<0, 0, 1, 0>, // Bottom
- Transform::template process_tile<0, 0, 1, 1>, // Bottom-right
- Transform::template process_tile<0, 0, 1, 2>, // Bottom-right
- },
- {
- Transform::template process_tile<0, 0, 2, 0>, // Bottom
- Transform::template process_tile<0, 0, 2, 1>, // Bottom-right
- Transform::template process_tile<0, 0, 2, 2>, // Bottom-right
- }
- },
- {
- {
- Transform::template process_tile<0, 1, 0, 0>, // Left
- Transform::template process_tile<0, 1, 0, 1>, // Left AND right
- Transform::template process_tile<0, 1, 0, 2>, // Left AND right
- },
- {
- Transform::template process_tile<0, 1, 1, 0>, // Left-bottom
- Transform::template process_tile<0, 1, 1, 1>, // Left, bottom AND right
- Transform::template process_tile<0, 1, 1, 2>, // Left, bottom AND right
- },
- {
- Transform::template process_tile<0, 1, 2, 0>, // Left-bottom
- Transform::template process_tile<0, 1, 2, 1>, // Left, bottom AND right
- Transform::template process_tile<0, 1, 2, 2>, // Left, bottom AND right
- }
- },
- },
- {
- {
- {
- Transform::template process_tile<1, 0, 0, 0>, // Top
- Transform::template process_tile<1, 0, 0, 1>, // Top-right
- Transform::template process_tile<1, 0, 0, 2>, // Top-right
- },
- {
- Transform::template process_tile<1, 0, 1, 0>, // Top AND bottom
- Transform::template process_tile<1, 0, 1, 1>, // Top, bottom AND right
- Transform::template process_tile<1, 0, 1, 2>, // Top, bottom AND right
- },
- {
- Transform::template process_tile<1, 0, 2, 0>, // Top AND bottom
- Transform::template process_tile<1, 0, 2, 1>, // Top, bottom AND right
- Transform::template process_tile<1, 0, 2, 2>, // Top, bottom AND right
- }
- },
- {
- {
- Transform::template process_tile<1, 1, 0, 0>, // Top-left
- Transform::template process_tile<1, 1, 0, 1>, // Top, left AND right
- Transform::template process_tile<1, 1, 0, 2>, // Top, left AND right
- },
- {
- Transform::template process_tile<1, 1, 1, 0>, // Top, left AND bottom
- Transform::template process_tile<1, 1, 1, 1>, // All padded
- Transform::template process_tile<1, 1, 1, 2>, // All padded
- },
- {
- Transform::template process_tile<1, 1, 2, 0>, // Top, left AND bottom
- Transform::template process_tile<1, 1, 2, 1>, // All padded
- Transform::template process_tile<1, 1, 2, 2>, // All padded
- }
- }
- }
-};
-
-template struct WinogradGEMM<2, 2, 3, 3>::InputTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/input_2x2_5x5_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/input_2x2_5x5_fp32.cpp
deleted file mode 100644
index a6ebca1bce..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/input_2x2_5x5_fp32.cpp
+++ /dev/null
@@ -1,458 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "transforms/input.hpp"
-#include "winograd_gemm.hpp"
-#include "arm.hpp"
-
-namespace winograd
-{
-
-using Transform = WinogradGEMM<2, 2, 5, 5>::InputTransform<float>;
-
-template <>
-template <>
-int Transform::ops_performed(const Tensor4DShape &input_shape)
-{
- return 0; // TODO
-}
-
-/*****************************************************************************
-* F(2x2, 5x5) implies the use of a 6x6 input tile.
-*
-* Build an array of the specialised methods that deal with each of the
-* different padding combinations which may be required. These padding
-* constraints are the space:
-*
-* Padding top in {0, 1}
-* Padding left in {0, 1}
-* Padding bottom in {0, 1, 2, 3, 4}
-* Padding right in {0, 1, 2, 3, 4}
-*/
-template <>
-template <>
-template <int pad_top, int pad_left, int pad_bottom, int pad_right>
-void Transform::process_tile(
- int n_channels,
- const float* const input_base,
- const int input_row_stride,
- const int input_col_stride,
- float* const matrix_base,
- const int matrix_stride
-)
-{
- constexpr int cells_i = 6 - pad_bottom;
- constexpr int cells_j = 6 - pad_right;
-
- float *outptr = matrix_base;
-
- // Get pointers into the input tile
- const float *x_ptrs[6][6];
- for (int i = pad_top, xi = 0; i < cells_i; i++, xi++)
- {
- // Get a pointer into the row
- const float* const row_ptr = input_base + xi*input_row_stride;
-
- for (int j = pad_left, xj = 0; j < cells_j; j++, xj++)
- {
- x_ptrs[i][j] = row_ptr + xj*input_col_stride;
- }
- }
-
- // Matrices used/computed in this kernel.
- float x[6][6], XTx[6][6], U[6][6];
- for (int i = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++)
- {
- x[i][j] = XTx[i][j] = 0.0f;
- }
- }
-
- // Perform the Winograd input transformation for each channel in the input
- // tensor.
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used/computed in this kernel
- float32x4_t x[6][6], XTx[6][6], U[6][6];
- for (int i = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++)
- {
- x[i][j] = vdupq_n_f32(0.0f);
- XTx[i][j] = vdupq_n_f32(0.0f);
- }
- }
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = vld1q_f32(x_ptrs[i][j]);
- x_ptrs[i][j] += 4;
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j];
- XTx[0][j] = vmlsq_n_f32(vmlaq_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f);
-
- // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j];
- XTx[1][j] = vmlsq_n_f32(vaddq_f32(x[3][j], x[4][j]), vaddq_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j];
- XTx[2][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[3][j]), vsubq_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j];
- XTx[3][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[2][j]), vsubq_f32(x[3][j], x[1][j]), 2.0f);
-
- // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j];
- XTx[4][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[2][j]), vsubq_f32(x[1][j], x[3][j]), 2.0f);
-
- // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j];
- XTx[5][j] = vmlsq_n_f32(vmlaq_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f);
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < 6; i++)
- {
- // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4];
- U[i][0] = vmlsq_n_f32(vmlaq_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f);
-
- // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4];
- U[i][1] = vmlsq_n_f32(vaddq_f32(XTx[i][3], XTx[i][4]), vaddq_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4];
- U[i][2] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][3]), vsubq_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4];
- U[i][3] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][2]), vsubq_f32(XTx[i][3], XTx[i][1]), 2.0f);
-
- // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4];
- U[i][4] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][2]), vsubq_f32(XTx[i][1], XTx[i][3]), 2.0f);
-
- // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5];
- U[i][5] = vmlsq_n_f32(vmlaq_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f);
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1q_f32(outptr + m*matrix_stride, U[i][j]);
- }
- }
- outptr += 4;
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used/computed in this kernel
- float32x2_t x[6][6], XTx[6][6], U[6][6];
- for (int i = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++)
- {
- x[i][j] = vdup_n_f32(0.0f);
- XTx[i][j] = vdup_n_f32(0.0f);
- }
- }
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = vld1_f32(x_ptrs[i][j]);
- x_ptrs[i][j] += 2;
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j];
- XTx[0][j] = vmls_n_f32(vmla_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f);
-
- // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j];
- XTx[1][j] = vmls_n_f32(vadd_f32(x[3][j], x[4][j]), vadd_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j];
- XTx[2][j] = vmla_n_f32(vsub_f32(x[4][j], x[3][j]), vsub_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j];
- XTx[3][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[3][j], x[1][j]), 2.0f);
-
- // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j];
- XTx[4][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[1][j], x[3][j]), 2.0f);
-
- // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j];
- XTx[5][j] = vmls_n_f32(vmla_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f);
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < 6; i++)
- {
- // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4];
- U[i][0] = vmls_n_f32(vmla_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f);
-
- // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4];
- U[i][1] = vmls_n_f32(vadd_f32(XTx[i][3], XTx[i][4]), vadd_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4];
- U[i][2] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][3]), vsub_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4];
- U[i][3] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][3], XTx[i][1]), 2.0f);
-
- // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4];
- U[i][4] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][1], XTx[i][3]), 2.0f);
-
- // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5];
- U[i][5] = vmls_n_f32(vmla_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f);
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1_f32(outptr + m*matrix_stride, U[i][j]);
- }
- }
- outptr += 2;
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Load x
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = *(x_ptrs[i][j]++);
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j];
- XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j];
- XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j];
- XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j];
- XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j];
- XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j];
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < 6; i++)
- {
- U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4];
- U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4];
- U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4];
- U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4];
- U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4];
- U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5];
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- *(outptr + m*matrix_stride) = U[i][j];
- }
- }
- outptr++;
- }
-}
-
-template <>
-template <>
-const Transform::TileFn Transform::tile_fns[2][2][max_pad_bottom][max_pad_right] =
-{
- {
- {
- {
- Transform::template process_tile<0, 0, 0, 0>, // No padding
- Transform::template process_tile<0, 0, 0, 1>, // Right
- Transform::template process_tile<0, 0, 0, 2>, // " "
- Transform::template process_tile<0, 0, 0, 3>, // " "
- Transform::template process_tile<0, 0, 0, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 1, 0>, // Bottom
- Transform::template process_tile<0, 0, 1, 1>, // Bottom right
- Transform::template process_tile<0, 0, 1, 2>, // " "
- Transform::template process_tile<0, 0, 1, 3>, // " "
- Transform::template process_tile<0, 0, 1, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 2, 0>, // Bottom
- Transform::template process_tile<0, 0, 2, 1>, // Bottom right
- Transform::template process_tile<0, 0, 2, 2>, // " "
- Transform::template process_tile<0, 0, 2, 3>, // " "
- Transform::template process_tile<0, 0, 2, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 3, 0>, // Bottom
- Transform::template process_tile<0, 0, 3, 1>, // Bottom right
- Transform::template process_tile<0, 0, 3, 2>, // " "
- Transform::template process_tile<0, 0, 3, 3>, // " "
- Transform::template process_tile<0, 0, 3, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 4, 0>, // Bottom
- Transform::template process_tile<0, 0, 4, 1>, // Bottom right
- Transform::template process_tile<0, 0, 4, 2>, // " "
- Transform::template process_tile<0, 0, 4, 3>, // " "
- Transform::template process_tile<0, 0, 4, 4>, // " "
- }
- },
- {
- {
- Transform::template process_tile<0, 1, 0, 0>, // Left
- Transform::template process_tile<0, 1, 0, 1>,
- Transform::template process_tile<0, 1, 0, 2>,
- Transform::template process_tile<0, 1, 0, 3>,
- Transform::template process_tile<0, 1, 0, 4>,
- },
- {
- Transform::template process_tile<0, 1, 1, 0>, // Bottom left
- Transform::template process_tile<0, 1, 1, 1>,
- Transform::template process_tile<0, 1, 1, 2>,
- Transform::template process_tile<0, 1, 1, 3>,
- Transform::template process_tile<0, 1, 1, 4>,
- },
- {
- Transform::template process_tile<0, 1, 2, 0>, // " "
- Transform::template process_tile<0, 1, 2, 1>,
- Transform::template process_tile<0, 1, 2, 2>,
- Transform::template process_tile<0, 1, 2, 3>,
- Transform::template process_tile<0, 1, 2, 4>,
- },
- {
- Transform::template process_tile<0, 1, 3, 0>, // " "
- Transform::template process_tile<0, 1, 3, 1>,
- Transform::template process_tile<0, 1, 3, 2>,
- Transform::template process_tile<0, 1, 3, 3>,
- Transform::template process_tile<0, 1, 3, 4>,
- },
- {
- Transform::template process_tile<0, 1, 4, 0>, // " "
- Transform::template process_tile<0, 1, 4, 1>,
- Transform::template process_tile<0, 1, 4, 2>,
- Transform::template process_tile<0, 1, 4, 3>,
- Transform::template process_tile<0, 1, 4, 4>,
- }
- }
- },
- {
- {
- {
- Transform::template process_tile<1, 0, 0, 0>, // Top
- Transform::template process_tile<1, 0, 0, 1>, // Top right
- Transform::template process_tile<1, 0, 0, 2>, // " "
- Transform::template process_tile<1, 0, 0, 3>, // " "
- Transform::template process_tile<1, 0, 0, 4>, // " "
- },
- {
- Transform::template process_tile<1, 0, 1, 0>,
- Transform::template process_tile<1, 0, 1, 1>,
- Transform::template process_tile<1, 0, 1, 2>,
- Transform::template process_tile<1, 0, 1, 3>,
- Transform::template process_tile<1, 0, 1, 4>,
- },
- {
- Transform::template process_tile<1, 0, 2, 0>,
- Transform::template process_tile<1, 0, 2, 1>,
- Transform::template process_tile<1, 0, 2, 2>,
- Transform::template process_tile<1, 0, 2, 3>,
- Transform::template process_tile<1, 0, 2, 4>,
- },
- {
- Transform::template process_tile<1, 0, 3, 0>,
- Transform::template process_tile<1, 0, 3, 1>,
- Transform::template process_tile<1, 0, 3, 2>,
- Transform::template process_tile<1, 0, 3, 3>,
- Transform::template process_tile<1, 0, 3, 4>,
- },
- {
- Transform::template process_tile<1, 0, 4, 0>,
- Transform::template process_tile<1, 0, 4, 1>,
- Transform::template process_tile<1, 0, 4, 2>,
- Transform::template process_tile<1, 0, 4, 3>,
- Transform::template process_tile<1, 0, 4, 4>,
- },
- },
- {
- {
- Transform::template process_tile<1, 1, 0, 0>, // Top left
- Transform::template process_tile<1, 1, 0, 1>,
- Transform::template process_tile<1, 1, 0, 2>,
- Transform::template process_tile<1, 1, 0, 3>,
- Transform::template process_tile<1, 1, 0, 4>,
- },
- {
- Transform::template process_tile<1, 1, 1, 0>,
- Transform::template process_tile<1, 1, 1, 1>,
- Transform::template process_tile<1, 1, 1, 2>,
- Transform::template process_tile<1, 1, 1, 3>,
- Transform::template process_tile<1, 1, 1, 4>,
- },
- {
- Transform::template process_tile<1, 1, 2, 0>,
- Transform::template process_tile<1, 1, 2, 1>,
- Transform::template process_tile<1, 1, 2, 2>,
- Transform::template process_tile<1, 1, 2, 3>,
- Transform::template process_tile<1, 1, 2, 4>,
- },
- {
- Transform::template process_tile<1, 1, 3, 0>,
- Transform::template process_tile<1, 1, 3, 1>,
- Transform::template process_tile<1, 1, 3, 2>,
- Transform::template process_tile<1, 1, 3, 3>,
- Transform::template process_tile<1, 1, 3, 4>,
- },
- {
- Transform::template process_tile<1, 1, 4, 0>,
- Transform::template process_tile<1, 1, 4, 1>,
- Transform::template process_tile<1, 1, 4, 2>,
- Transform::template process_tile<1, 1, 4, 3>,
- Transform::template process_tile<1, 1, 4, 4>,
- }
- }
- }
-};
-
-template struct WinogradGEMM<2, 2, 5, 5>::InputTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/input_4x4_3x3_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/input_4x4_3x3_fp32.cpp
deleted file mode 100644
index 477aaaf34e..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/input_4x4_3x3_fp32.cpp
+++ /dev/null
@@ -1,486 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "transforms/input.hpp"
-#include "winograd_gemm.hpp"
-#include "arm.hpp"
-
-namespace winograd
-{
-
-using Transform = WinogradGEMM<4, 4, 3, 3>::InputTransform<float>;
-
-template <>
-template <>
-int Transform::ops_performed(const Tensor4DShape &input_shape)
-{
- // NOTE: Cost in FLOPs rather than instructions or uops.
- const int tile_M = iceildiv(input_shape.n_rows, inner_tile_rows);
- const int tile_N = iceildiv(input_shape.n_cols, inner_tile_cols);
- return 12 * 24 * tile_M * tile_N * input_shape.n_channels;
-}
-
-/* F(4x4, 3x3) implies the use of a 6x6 input tile. Such tiles can require a
-* variety of padding types. For example, tiles at the top and left of an
-* image can require one row or column of padding on their top and left sides
-* if the padding type is SAME (where X represents a padded value):
-*
-* ___________ ___________
-* |X X X X X X| |X X X X X X|
-* |X | | |
-* |X | | |
-* |X | | |
-* |X | | |
-* |X__________| |___________|
-* ___________
-* |X |
-* |X |
-* |X |
-* |X |
-* |X |
-* |X__________|
-*
-* For tiles near the right or bottom of the image it is more complicated.
-* Such tiles might require padding by 0, 1, 2 or 3 rows or columns if the
-* padding type is VALID or 1, 2, 3 or 4 rows or columns if the padding
-* type is SAME.
-*
-* Build an array of the specialised methods that deal with each of the
-* different padding combinations which may be required. These padding
-* constraints are the space:
-*
-* Padding top in {0, 1}
-* Padding left in {0, 1}
-* Padding bottom in {0, 1, 2, 3, 4}
-* Padding right in {0, 1, 2, 3, 4}
-*/
-template <>
-template <>
-template <int pad_top, int pad_left, int pad_bottom, int pad_right>
-void Transform::process_tile(
- int n_channels,
- const float* const input_base,
- const int input_row_stride,
- const int input_col_stride,
- float* const matrix_base,
- const int matrix_stride
-)
-{
- constexpr int cells_i = 6 - pad_bottom;
- constexpr int cells_j = 6 - pad_right;
-
- float *outptr = matrix_base;
-
- // Get pointers into the input tile
- const float *x_ptrs[6][6];
- for (int i = pad_top, xi = 0; i < cells_i; i++, xi++)
- {
- // Get a pointer into the row
- const float* const row_ptr = input_base + xi*input_row_stride;
-
- for (int j = pad_left, xj = 0; j < cells_j; j++, xj++)
- {
- x_ptrs[i][j] = row_ptr + xj*input_col_stride;
- }
- }
-
- // Matrices used/computed in this kernel.
- float x[6][6], XTx[6][6], U[6][6];
- for (int i = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++)
- {
- x[i][j] = XTx[i][j] = 0.0f;
- }
- }
-
- // Perform the Winograd input transformation for each channel in the input
- // tensor.
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used/computed in this kernel
- float32x4_t x[6][6], XTx[6][6], U[6][6];
- for (int i = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++)
- {
- x[i][j] = vdupq_n_f32(0.0f);
- XTx[i][j] = vdupq_n_f32(0.0f);
- }
- }
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = vld1q_f32(x_ptrs[i][j]);
- x_ptrs[i][j] += 4;
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j];
- XTx[0][j] = vmlsq_n_f32(vmlaq_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f);
-
- // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j];
- XTx[1][j] = vmlsq_n_f32(vaddq_f32(x[3][j], x[4][j]), vaddq_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j];
- XTx[2][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[3][j]), vsubq_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j];
- XTx[3][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[2][j]), vsubq_f32(x[3][j], x[1][j]), 2.0f);
-
- // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j];
- XTx[4][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[2][j]), vsubq_f32(x[1][j], x[3][j]), 2.0f);
-
- // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j];
- XTx[5][j] = vmlsq_n_f32(vmlaq_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f);
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < 6; i++)
- {
- // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4];
- U[i][0] = vmlsq_n_f32(vmlaq_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f);
-
- // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4];
- U[i][1] = vmlsq_n_f32(vaddq_f32(XTx[i][3], XTx[i][4]), vaddq_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4];
- U[i][2] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][3]), vsubq_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4];
- U[i][3] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][2]), vsubq_f32(XTx[i][3], XTx[i][1]), 2.0f);
-
- // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4];
- U[i][4] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][2]), vsubq_f32(XTx[i][1], XTx[i][3]), 2.0f);
-
- // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5];
- U[i][5] = vmlsq_n_f32(vmlaq_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f);
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1q_f32(outptr + m*matrix_stride, U[i][j]);
- }
- }
- outptr += 4;
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used/computed in this kernel
- float32x2_t x[6][6], XTx[6][6], U[6][6];
- for (int i = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++)
- {
- x[i][j] = vdup_n_f32(0.0f);
- XTx[i][j] = vdup_n_f32(0.0f);
- }
- }
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = vld1_f32(x_ptrs[i][j]);
- x_ptrs[i][j] += 2;
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j];
- XTx[0][j] = vmls_n_f32(vmla_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f);
-
- // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j];
- XTx[1][j] = vmls_n_f32(vadd_f32(x[3][j], x[4][j]), vadd_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j];
- XTx[2][j] = vmla_n_f32(vsub_f32(x[4][j], x[3][j]), vsub_f32(x[1][j], x[2][j]), 4.0f);
-
- // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j];
- XTx[3][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[3][j], x[1][j]), 2.0f);
-
- // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j];
- XTx[4][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[1][j], x[3][j]), 2.0f);
-
- // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j];
- XTx[5][j] = vmls_n_f32(vmla_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f);
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < 6; i++)
- {
- // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4];
- U[i][0] = vmls_n_f32(vmla_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f);
-
- // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4];
- U[i][1] = vmls_n_f32(vadd_f32(XTx[i][3], XTx[i][4]), vadd_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4];
- U[i][2] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][3]), vsub_f32(XTx[i][1], XTx[i][2]), 4.0f);
-
- // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4];
- U[i][3] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][3], XTx[i][1]), 2.0f);
-
- // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4];
- U[i][4] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][1], XTx[i][3]), 2.0f);
-
- // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5];
- U[i][5] = vmls_n_f32(vmla_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f);
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1_f32(outptr + m*matrix_stride, U[i][j]);
- }
- }
- outptr += 2;
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Load x
- for (int i = pad_top; i < cells_i; i++)
- {
- for (int j = pad_left; j < cells_j; j++)
- {
- x[i][j] = *(x_ptrs[i][j]++);
- }
- }
-
- // Compute XT . x
- for (int j = pad_left; j < cells_j; j++)
- {
- XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j];
- XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j];
- XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j];
- XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j];
- XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j];
- XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j];
- }
-
- // Compute U = XT . x . X
- for (int i = 0; i < 6; i++)
- {
- U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4];
- U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4];
- U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4];
- U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4];
- U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4];
- U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5];
- }
-
- // Store the transformed matrix
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- *(outptr + m*matrix_stride) = U[i][j];
- }
- }
- outptr++;
- }
-}
-
-/* In the below, unusual or especially small tiles are routed via the slow
- * path whereas common or large tiles are routed through a faster path.
- */
-template <>
-template <>
-const Transform::TileFn Transform::tile_fns[2][2][max_pad_bottom][max_pad_right] =
-{
- {
- {
- {
- Transform::template process_tile<0, 0, 0, 0>, // No padding
- Transform::template process_tile<0, 0, 0, 1>, // Right
- Transform::template process_tile<0, 0, 0, 2>, // " "
- Transform::template process_tile<0, 0, 0, 3>, // " "
- Transform::template process_tile<0, 0, 0, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 1, 0>, // Bottom
- Transform::template process_tile<0, 0, 1, 1>, // Bottom right
- Transform::template process_tile<0, 0, 1, 2>, // " "
- Transform::template process_tile<0, 0, 1, 3>, // " "
- Transform::template process_tile<0, 0, 1, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 2, 0>, // Bottom
- Transform::template process_tile<0, 0, 2, 1>, // Bottom right
- Transform::template process_tile<0, 0, 2, 2>, // " "
- Transform::template process_tile<0, 0, 2, 3>, // " "
- Transform::template process_tile<0, 0, 2, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 3, 0>, // Bottom
- Transform::template process_tile<0, 0, 3, 1>, // Bottom right
- Transform::template process_tile<0, 0, 3, 2>, // " "
- Transform::template process_tile<0, 0, 3, 3>, // " "
- Transform::template process_tile<0, 0, 3, 4>, // " "
- },
- {
- Transform::template process_tile<0, 0, 4, 0>, // Bottom
- Transform::template process_tile<0, 0, 4, 1>, // Bottom right
- Transform::template process_tile<0, 0, 4, 2>, // " "
- Transform::template process_tile<0, 0, 4, 3>, // " "
- Transform::template process_tile<0, 0, 4, 4>, // " "
- }
- },
- {
- {
- Transform::template process_tile<0, 1, 0, 0>, // Left
- Transform::template process_tile<0, 1, 0, 1>,
- Transform::template process_tile<0, 1, 0, 2>,
- Transform::template process_tile<0, 1, 0, 3>,
- Transform::template process_tile<0, 1, 0, 4>,
- },
- {
- Transform::template process_tile<0, 1, 1, 0>, // Bottom left
- Transform::template process_tile<0, 1, 1, 1>,
- Transform::template process_tile<0, 1, 1, 2>,
- Transform::template process_tile<0, 1, 1, 3>,
- Transform::template process_tile<0, 1, 1, 4>,
- },
- {
- Transform::template process_tile<0, 1, 2, 0>, // " "
- Transform::template process_tile<0, 1, 2, 1>,
- Transform::template process_tile<0, 1, 2, 2>,
- Transform::template process_tile<0, 1, 2, 3>,
- Transform::template process_tile<0, 1, 2, 4>,
- },
- {
- Transform::template process_tile<0, 1, 3, 0>, // " "
- Transform::template process_tile<0, 1, 3, 1>,
- Transform::template process_tile<0, 1, 3, 2>,
- Transform::template process_tile<0, 1, 3, 3>,
- Transform::template process_tile<0, 1, 3, 4>,
- },
- {
- Transform::template process_tile<0, 1, 4, 0>, // " "
- Transform::template process_tile<0, 1, 4, 1>,
- Transform::template process_tile<0, 1, 4, 2>,
- Transform::template process_tile<0, 1, 4, 3>,
- Transform::template process_tile<0, 1, 4, 4>,
- }
- }
- },
- {
- {
- {
- Transform::template process_tile<1, 0, 0, 0>, // Top
- Transform::template process_tile<1, 0, 0, 1>, // Top right
- Transform::template process_tile<1, 0, 0, 2>, // " "
- Transform::template process_tile<1, 0, 0, 3>, // " "
- Transform::template process_tile<1, 0, 0, 4>, // " "
- },
- {
- Transform::template process_tile<1, 0, 1, 0>,
- Transform::template process_tile<1, 0, 1, 1>,
- Transform::template process_tile<1, 0, 1, 2>,
- Transform::template process_tile<1, 0, 1, 3>,
- Transform::template process_tile<1, 0, 1, 4>,
- },
- {
- Transform::template process_tile<1, 0, 2, 0>,
- Transform::template process_tile<1, 0, 2, 1>,
- Transform::template process_tile<1, 0, 2, 2>,
- Transform::template process_tile<1, 0, 2, 3>,
- Transform::template process_tile<1, 0, 2, 4>,
- },
- {
- Transform::template process_tile<1, 0, 3, 0>,
- Transform::template process_tile<1, 0, 3, 1>,
- Transform::template process_tile<1, 0, 3, 2>,
- Transform::template process_tile<1, 0, 3, 3>,
- Transform::template process_tile<1, 0, 3, 4>,
- },
- {
- Transform::template process_tile<1, 0, 4, 0>,
- Transform::template process_tile<1, 0, 4, 1>,
- Transform::template process_tile<1, 0, 4, 2>,
- Transform::template process_tile<1, 0, 4, 3>,
- Transform::template process_tile<1, 0, 4, 4>,
- },
- },
- {
- {
- Transform::template process_tile<1, 1, 0, 0>, // Top left
- Transform::template process_tile<1, 1, 0, 1>,
- Transform::template process_tile<1, 1, 0, 2>,
- Transform::template process_tile<1, 1, 0, 3>,
- Transform::template process_tile<1, 1, 0, 4>,
- },
- {
- Transform::template process_tile<1, 1, 1, 0>,
- Transform::template process_tile<1, 1, 1, 1>,
- Transform::template process_tile<1, 1, 1, 2>,
- Transform::template process_tile<1, 1, 1, 3>,
- Transform::template process_tile<1, 1, 1, 4>,
- },
- {
- Transform::template process_tile<1, 1, 2, 0>,
- Transform::template process_tile<1, 1, 2, 1>,
- Transform::template process_tile<1, 1, 2, 2>,
- Transform::template process_tile<1, 1, 2, 3>,
- Transform::template process_tile<1, 1, 2, 4>,
- },
- {
- Transform::template process_tile<1, 1, 3, 0>,
- Transform::template process_tile<1, 1, 3, 1>,
- Transform::template process_tile<1, 1, 3, 2>,
- Transform::template process_tile<1, 1, 3, 3>,
- Transform::template process_tile<1, 1, 3, 4>,
- },
- {
- Transform::template process_tile<1, 1, 4, 0>,
- Transform::template process_tile<1, 1, 4, 1>,
- Transform::template process_tile<1, 1, 4, 2>,
- Transform::template process_tile<1, 1, 4, 3>,
- Transform::template process_tile<1, 1, 4, 4>,
- }
- }
- }
-};
-
-template struct WinogradGEMM<4, 4, 3, 3>::InputTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/output_2x2_3x3_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/output_2x2_3x3_fp32.cpp
deleted file mode 100644
index 58db7d2ecd..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/output_2x2_3x3_fp32.cpp
+++ /dev/null
@@ -1,251 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "transforms/output.hpp"
-#include "winograd_gemm.hpp"
-#include "arm.hpp"
-
-namespace winograd
-{
-
-using Transform = WinogradGEMM<2, 2, 3, 3>::OutputTransform<float>;
-
-template <>
-template <>
-int Transform::ops_performed(const Tensor4DShape &shape)
-{
- // NOTE: Cost in FLOPs rather than instructions or uops.
- const int tile_M = iceildiv(shape.n_rows, 2);
- const int tile_N = iceildiv(shape.n_cols, 2);
- return 24 * tile_M * tile_N * shape.n_channels;
-}
-
-/* F(2x2, 3x3) constructs 2x2 output tiles from a 3x3 convolution. Since we use
- * enough tiles to cover the output space each output tile may contain 0 or 1
- * padded values to the right and bottom columns or rows of the tile, e.g.:
- *
- * ___ ___
- * | | | X|
- * |___| |__X|
- *
- * ___ ___
- * | | | X|
- * |X_X| |X_X|
- *
- *
- * We provide a specialised output transform for each of these instances.
- * Consequently we below construct an array of the various padding options, the
- * array contains pointers to the specific implementations.
- */
-template <>
-template <>
-template <int pad_bottom, int pad_right>
-void Transform::process_tile(
- const int n_channels,
- const float* const matrix_base,
- const int matrix_stride,
- const float* const biases,
- float* const output,
- const int output_row_stride,
- const int output_col_stride
-)
-{
- constexpr int cells_i = 2 - pad_bottom;
- constexpr int cells_j = 2 - pad_right;
-
- // Construct a map to the output cells
- float *outptrs[cells_i][cells_j];
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
- }
- }
- const float *inptr = matrix_base;
- const float *bptr = biases;
-
- // For each channel of the output
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used and computed during this transform
- float32x4_t F[4][4], FZ[4][2], f[2][2], b;
-
- // Read a 4x4 tile in the Winograd domain
- for (int i = 0, m = 0; i < 4; i++)
- {
- for (int j = 0; j < 4; j++, m++)
- {
- F[i][j] = vld1q_f32(inptr + m*matrix_stride);
- }
- }
- inptr += 4;
-
- // Compute the matrix F Z
- for (int i = 0; i < 4; i++)
- {
- // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
- FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
-
- // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
- FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
- f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
-
- // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
- f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
- }
-
- // Load the bias vector
- b = vld1q_f32(bptr);
- bptr += 4;
-
- // Write out the output tile
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
- outptrs[i][j] += 4;
- }
- }
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed during this transform
- float32x2_t F[4][4], FZ[4][2], f[2][2], b;
-
- // Read a 4x4 tile in the Winograd domain
- for (int i = 0, m = 0; i < 4; i++)
- {
- for (int j = 0; j < 4; j++, m++)
- {
- F[i][j] = vld1_f32(inptr + m*matrix_stride);
- }
- }
- inptr += 2;
-
- // Compute the matrix F Z
- for (int i = 0; i < 4; i++)
- {
- // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
- FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
-
- // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
- FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
- f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
-
- // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
- f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
- }
-
- // Load the bias vector
- b = vld1_f32(bptr);
- bptr += 2;
-
- // Write out the output tile
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
- outptrs[i][j] += 2;
- }
- }
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Matrices used and computed during this transform
- float F[4][4], FZ[4][2], f[2][2], b;
-
- // Read a 4x4 tile in the Winograd domain
- for (int i = 0, m = 0; i < 4; i++)
- {
- for (int j = 0; j < 4; j++, m++)
- {
- F[i][j] = *(inptr + m*matrix_stride);
- }
- }
- inptr++;
-
- // Compute the matrix F Z
- for (int i = 0; i < 4; i++)
- {
- FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
- FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
- f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
- }
-
- // Load the bias
- b = *(bptr++);
-
- // Write out the output tile
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- *(outptrs[i][j]++) = f[i][j] + b;
- }
- }
- }
-}
-
-template <>
-template <>
-const Transform::TileFn Transform::tile_fns[max_pad_bottom][max_pad_right] =
-{
- {
- Transform::template process_tile<0, 0>, // No padding
- Transform::template process_tile<0, 1>, // Right padding
- },
- {
- Transform::template process_tile<1, 0>, // Bottom padding
- Transform::template process_tile<1, 1>, // Bottom and right padding
- }
-};
-
-template struct WinogradGEMM<2, 2, 3, 3>::OutputTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/output_2x2_5x5_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/output_2x2_5x5_fp32.cpp
deleted file mode 100644
index bfd670090a..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/output_2x2_5x5_fp32.cpp
+++ /dev/null
@@ -1,242 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "transforms/output.hpp"
-#include "winograd_gemm.hpp"
-#include "arm.hpp"
-
-namespace winograd
-{
-
-using Transform = WinogradGEMM<2, 2, 5, 5>::OutputTransform<float>;
-
-template <>
-template <>
-int Transform::ops_performed(const Tensor4DShape &shape)
-{
- return 0; // TODO
-}
-
-/* F(2x2, 5x5) constructs 2x2 output tiles from a 5x5 convolution. Since we use
- * enough tiles to cover the output space each output tile may contain 0 or 1
- * padded values to the right and bottom columns or rows of the tile, e.g.:
- *
- * ___ ___
- * | | | X|
- * |___| |__X|
- *
- * ___ ___
- * | | | X|
- * |X_X| |X_X|
- *
- *
- * We provide a specialised output transform for each of these instances.
- * Consequently we below construct an array of the various padding options, the
- * array contains pointers to the specific implementations.
- */
-template <>
-template <>
-template <int pad_bottom, int pad_right>
-void Transform::process_tile(
- const int n_channels,
- const float* const matrix_base,
- const int matrix_stride,
- const float* const biases,
- float* const output,
- const int output_row_stride,
- const int output_col_stride
-)
-{
- constexpr int cells_i = 2 - pad_bottom;
- constexpr int cells_j = 2 - pad_right;
-
- // Construct a map to the output cells
- float *outptrs[cells_i][cells_j];
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
- }
- }
- const float *inptr = matrix_base;
- const float *bptr = biases;
-
- // For each channel of the output
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used and computed during this transform
- float32x4_t F[6][6], FZ[6][2], f[2][2], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- F[i][j] = vld1q_f32(inptr + m*matrix_stride);
- }
- }
- inptr += 4;
-
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
-
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
- FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
-
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
- f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
- }
-
- // Write out the output tile
- b = vld1q_f32(bptr);
- bptr += 4;
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
- outptrs[i][j] += 4;
- }
- }
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed during this transform
- float32x2_t F[6][6], FZ[6][2], f[2][2], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- F[i][j] = vld1_f32(inptr + m*matrix_stride);
- }
- }
- inptr += 2;
-
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
-
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
- FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
-
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
- f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
- }
-
- // Write out the output tile
- b = vld1_f32(bptr);
- bptr += 2;
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
- outptrs[i][j] += 2;
- }
- }
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Matrices used and computed during this transform
- float F[6][6], FZ[6][2], f[2][2], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- F[i][j] = *(inptr + m*matrix_stride);
- }
- }
- inptr++;
-
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
- }
-
- // Write out the output tile
- b = *(bptr++);
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- *(outptrs[i][j]++) = f[i][j] + b;
- }
- }
- }
-}
-
-template <>
-template <>
-const Transform::TileFn Transform::tile_fns[max_pad_bottom][max_pad_right] =
-{
- {
- Transform::template process_tile<0, 0>, // No padding
- Transform::template process_tile<0, 1>, // Right padding
- },
- {
- Transform::template process_tile<1, 0>, // Bottom padding
- Transform::template process_tile<1, 1>, // Bottom and right padding
- }
-};
-
-template struct WinogradGEMM<2, 2, 5, 5>::OutputTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/output_4x4_3x3_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/output_4x4_3x3_fp32.cpp
deleted file mode 100644
index 45210d7976..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/output_4x4_3x3_fp32.cpp
+++ /dev/null
@@ -1,306 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "transforms/output.hpp"
-#include "winograd_gemm.hpp"
-#include "arm.hpp"
-
-namespace winograd
-{
-
-using Transform = WinogradGEMM<4, 4, 3, 3>::OutputTransform<float>;
-
-template <>
-template <>
-int Transform::ops_performed(const Tensor4DShape &shape)
-{
- // NOTE: Cost in FLOPs rather than instructions or uops.
- const int tile_M = iceildiv(shape.n_rows, 4);
- const int tile_N = iceildiv(shape.n_cols, 4);
- return 170 * tile_M * tile_N * shape.n_channels;
-}
-
-// Instantiate cost methods
-template int Transform::ops_performed(const Tensor4DShape&);
-
-/* F(4x4, 3x3) constructs 4x4 output tiles from a 3x3 convolution. Since we use
- * enough tiles to cover the output space each output tile may contain up to 3
- * padded values to the right and bottom columns or rows of the tile, e.g.:
-*
-* ________ ________ ________ ________
-* | | | X| | X X| | X X X|
-* | | | X| | X X| | X X X|
-* | | | X| | X X| | X X X|
-* |_______| |______X| |____X_X| |__X_X_X|
-*
-* ________ ________ ________ ________
-* | | | X| | X X| | X X X|
-* | | | X| | X X| | X X X|
-* | | | X| | X X| | X X X|
-* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
-*
-* ________ ________ ________ ________
-* | | | X| | X X| | X X X|
-* | | | X| | X X| | X X X|
-* |X X X X| |X X X X| |X X X X| |X X X X|
-* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
-*
-* ________ ________ ________ ________
-* | | | X| | X X| | X X X|
-* |X X X X| |X X X X| |X X X X| |X X X X|
-* |X X X X| |X X X X| |X X X X| |X X X X|
-* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
-*
-*
-* We provide a specialised output transform for each of these instances.
-*/
-template <>
-template <>
-template <int pad_bottom, int pad_right>
-void Transform::process_tile(
- const int n_channels,
- const float* const matrix_base,
- const int matrix_stride,
- const float* const biases,
- float* const output,
- const int output_row_stride,
- const int output_col_stride
-)
-{
- constexpr int cells_i = 4 - pad_bottom;
- constexpr int cells_j = 4 - pad_right;
-
- // Construct a map to the output cells
- float *outptrs[cells_i][cells_j];
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
- }
- }
- const float *inptr = matrix_base;
- const float *bptr = biases;
-
- // For each channel of the output
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used and computed during this transform
- float32x4_t F[6][6], FZ[6][4], f[4][4], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- F[i][j] = vld1q_f32(inptr + m*matrix_stride);
- }
- }
- inptr += 4;
-
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
-
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
- FZ[i][1] = vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f);
-
- // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
- FZ[i][2] = vmlaq_n_f32(vaddq_f32(F[i][1], F[i][2]), vaddq_f32(F[i][3], F[i][4]), 4.0f);
-
- // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
- FZ[i][3] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 4; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
-
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
- f[1][j] = vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f);
-
- // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
- f[2][j] = vmlaq_n_f32(vaddq_f32(FZ[1][j], FZ[2][j]), vaddq_f32(FZ[3][j], FZ[4][j]), 4.0f);
-
- // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
- f[3][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
- }
-
- // Write out the output tile
- b = vld1q_f32(bptr);
- bptr += 4;
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
- outptrs[i][j] += 4;
- }
- }
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed during this transform
- float32x2_t F[6][6], FZ[6][4], f[4][4], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- F[i][j] = vld1_f32(inptr + m*matrix_stride);
- }
- }
- inptr += 2;
-
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
-
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
- FZ[i][1] = vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f);
-
- // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
- FZ[i][2] = vmla_n_f32(vadd_f32(F[i][1], F[i][2]), vadd_f32(F[i][3], F[i][4]), 4.0f);
-
- // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
- FZ[i][3] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 4; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
-
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
- f[1][j] = vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f);
-
- // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
- f[2][j] = vmla_n_f32(vadd_f32(FZ[1][j], FZ[2][j]), vadd_f32(FZ[3][j], FZ[4][j]), 4.0f);
-
- // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
- f[3][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
- }
-
- // Write out the output tile
- b = vld1_f32(bptr);
- bptr += 2;
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
- outptrs[i][j] += 2;
- }
- }
- }
-#endif
- for (; channels_remaining; channels_remaining--)
- {
- // Matrices used and computed during this transform
- float F[6][6], FZ[6][4], f[4][4], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- F[i][j] = *(inptr + m*matrix_stride);
- }
- }
- inptr++;
-
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
- FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
- FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
- }
-
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 4; j++)
- {
- f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
- f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
- f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
- }
-
- // Write out the output tile
- b = *(bptr++);
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
- {
- *(outptrs[i][j]++) = f[i][j] + b;
- }
- }
- }
-}
-
-template <>
-template <>
-const Transform::TileFn Transform::tile_fns[max_pad_bottom][max_pad_right] =
-{
- {
- Transform::template process_tile<0, 0>,
- Transform::template process_tile<0, 1>,
- Transform::template process_tile<0, 2>,
- Transform::template process_tile<0, 3>,
- },
- {
- Transform::template process_tile<1, 0>,
- Transform::template process_tile<1, 1>,
- Transform::template process_tile<1, 2>,
- Transform::template process_tile<1, 3>,
- },
- {
- Transform::template process_tile<2, 0>,
- Transform::template process_tile<2, 1>,
- Transform::template process_tile<2, 2>,
- Transform::template process_tile<2, 3>,
- },
- {
- Transform::template process_tile<3, 0>,
- Transform::template process_tile<3, 1>,
- Transform::template process_tile<3, 2>,
- Transform::template process_tile<3, 3>,
- }
-};
-
-template struct WinogradGEMM<4, 4, 3, 3>::OutputTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/weights_2x2_3x3_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/weights_2x2_3x3_fp32.cpp
deleted file mode 100644
index c0b282431e..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/weights_2x2_3x3_fp32.cpp
+++ /dev/null
@@ -1,228 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "arm.hpp"
-#include "winograd_gemm.hpp"
-#include "transforms/kernel.hpp"
-
-namespace winograd
-{
- template <>
- template <>
- void WinogradGEMM<2, 2, 3, 3>::WeightsTransform<float>::execute(
- const int n_output_channels,
- const int n_input_channels,
- const float* const input,
- float* const output,
- const int matrix_stride,
- const int matrix_row_stride
- )
- {
- constexpr int inner_tile_i = 4;
- constexpr int inner_tile_j = 4;
-
- // Get pointers to each cell of the weight tensor
- const auto weight_col_stride = n_input_channels * n_output_channels;
- const auto weight_row_stride = 3 * weight_col_stride;
- const float *inptrs[3][3];
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride;
- }
- }
-
- // For each input channel
- for (int ic = 0; ic < n_input_channels; ic++)
- {
- float *outptr = output + ic * matrix_row_stride;
-
- // For each output channel
- int channels_remaining = n_output_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used and computed in this kernel
- float32x4_t w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
-
- // Read weights
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- w[i][j] = vld1q_f32(inptrs[i][j]);
- inptrs[i][j] += 4;
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 3; j++)
- {
- Ww[0][j] = w[0][j];
-
- // Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
- Ww[1][j] = vmulq_n_f32(vaddq_f32(vaddq_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
-
- // Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
- Ww[2][j] = vmulq_n_f32(vaddq_f32(vsubq_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
-
- Ww[3][j] = w[2][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < inner_tile_i; i++)
- {
- V[i][0] = Ww[i][0];
-
- // V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
- V[i][1] = vmulq_n_f32(vaddq_f32(vaddq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
-
- // V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
- V[i][2] = vmulq_n_f32(vaddq_f32(vsubq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
-
- V[i][3] = Ww[i][2];
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++, m++)
- {
- vst1q_f32(outptr + m*matrix_stride, V[i][j]);
- }
- }
- outptr += 4;
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed in this kernel
- float32x2_t w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
-
- // Read weights
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- w[i][j] = vld1_f32(inptrs[i][j]);
- inptrs[i][j] += 2;
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 3; j++)
- {
- Ww[0][j] = w[0][j];
-
- // Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
- Ww[1][j] = vmul_n_f32(vadd_f32(vadd_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
-
- // Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
- Ww[2][j] = vmul_n_f32(vadd_f32(vsub_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
-
- Ww[3][j] = w[2][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < inner_tile_i; i++)
- {
- V[i][0] = Ww[i][0];
-
- // V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
- V[i][1] = vmul_n_f32(vadd_f32(vadd_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
-
- // V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
- V[i][2] = vmul_n_f32(vadd_f32(vsub_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
-
- V[i][3] = Ww[i][2];
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++, m++)
- {
- vst1_f32(outptr + m*matrix_stride, V[i][j]);
- }
- }
- outptr += 2;
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Matrices used and computed in this kernel
- float w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
-
- // Read weights
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- w[i][j] = *(inptrs[i][j]++);
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 3; j++)
- {
- Ww[0][j] = w[0][j];
- Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
- Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
- Ww[3][j] = w[2][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < inner_tile_i; i++)
- {
- V[i][0] = Ww[i][0];
- V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
- V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
- V[i][3] = Ww[i][2];
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < inner_tile_i; i++)
- {
- for (int j = 0; j < inner_tile_j; j++, m++)
- {
- *(outptr + m*matrix_stride) = V[i][j];
- }
- }
- outptr++;
- }
- }
- }
-
- template <>
- template <>
- int WinogradGEMM<2, 2, 3, 3>::WeightsTransform<float>::ops_performed(const KernelShape &shape)
- {
- const int channel_prod = shape.n_input_channels * shape.n_output_channels;
- return 2 * 18 * channel_prod;
- }
-
- template struct WinogradGEMM<2, 2, 3, 3>::WeightsTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp
deleted file mode 100644
index acf6b913f8..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp
+++ /dev/null
@@ -1,408 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "arm.hpp"
-#include "winograd_gemm.hpp"
-#include "transforms/kernel.hpp"
-
-namespace winograd
-{
- template <>
- template <>
- void WinogradGEMM<2, 2, 5, 5>::WeightsTransform<float>::execute(
- const int n_output_channels,
- const int n_input_channels,
- const float* const input,
- float* const output,
- const int matrix_stride,
- const int matrix_row_stride
- )
- {
- // Get pointers to each cell of the weight tensor
- const auto weight_col_stride = n_input_channels * n_output_channels;
- const auto weight_row_stride = 5 * weight_col_stride;
- const float *inptrs[5][5];
- for (int i = 0; i < 5; i++)
- {
- for (int j = 0; j < 5; j++)
- {
- inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride;
- }
- }
-
- // For each input channel
- for (int ic = 0; ic < n_input_channels; ic++)
- {
- float *outptr = output + ic * matrix_row_stride;
-
- // For each output channel
- int channels_remaining = n_output_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used and computed in this kernel
- float32x4_t w[5][5], Ww[6][5], V[6][6];
-
- // Read weights
- for (int i = 0; i < 5; i++)
- {
- for (int j = 0; j < 5; j++)
- {
- w[i][j] = vld1q_f32(inptrs[i][j]);
- inptrs[i][j] += 4;
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 5; j++)
- {
- // Ww[0][j] = w[0][j]/4.0f;
- Ww[0][j] = vmulq_n_f32(w[0][j], 1.0f/4.0f);
-
- // Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f;
- Ww[1][j] = vmulq_n_f32(
- vaddq_f32(
- vaddq_f32(
- vaddq_f32(w[1][j], w[0][j]),
- vaddq_f32(w[3][j], w[2][j])
- ),
- w[4][j]
- ),
- -1.0f/6.0f
- );
-
- // Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f;
- // Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f;
- Ww[2][j] = vmulq_n_f32(
- vsubq_f32(
- vaddq_f32(
- vsubq_f32(w[1][j], w[0][j]),
- vsubq_f32(w[3][j], w[2][j])
- ),
- w[4][j]
- ),
- 1.0f/6.0f
- );
-
- // Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f;
- Ww[3][j] = vmulq_n_f32(
- vmlaq_n_f32(
- vaddq_f32(
- vaddq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)),
- vaddq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
- ),
- w[4][j], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f;
- Ww[4][j] = vmulq_n_f32(
- vmlaq_n_f32(
- vaddq_f32(
- vsubq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)),
- vsubq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
- ),
- w[4][j], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // Ww[5][j] = w[4][j];
- Ww[5][j] = w[4][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < 6; i++)
- {
- // V[i][0] = Ww[i][0]/4.0f;
- V[i][0] = vmulq_n_f32(Ww[i][0], 1.0f/4.0f);
-
- // V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f;
- V[i][1] = vmulq_n_f32(
- vaddq_f32(
- vaddq_f32(
- vaddq_f32(Ww[i][1], Ww[i][0]),
- vaddq_f32(Ww[i][3], Ww[i][2])
- ),
- Ww[i][4]
- ),
- -1.0f/6.0f
- );
-
- // V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f;
- // V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f;
- V[i][2] = vmulq_n_f32(
- vsubq_f32(
- vaddq_f32(
- vsubq_f32(Ww[i][1], Ww[i][0]),
- vsubq_f32(Ww[i][3], Ww[i][2])
- ),
- Ww[i][4]
- ),
- 1.0f/6.0f
- );
-
- // V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f;
- V[i][3] = vmulq_n_f32(
- vmlaq_n_f32(
- vaddq_f32(
- vaddq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)),
- vaddq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
- ),
- Ww[i][4], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f;
- V[i][4] = vmulq_n_f32(
- vmlaq_n_f32(
- vaddq_f32(
- vsubq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)),
- vsubq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
- ),
- Ww[i][4], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // V[i][5] = Ww[i][4];
- V[i][5] = Ww[i][4];
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1q_f32(outptr + m*matrix_stride, V[i][j]);
- }
- }
- outptr += 4;
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed in this kernel
- float32x2_t w[5][5], Ww[6][5], V[6][6];
-
- // Read weights
- for (int i = 0; i < 5; i++)
- {
- for (int j = 0; j < 5; j++)
- {
- w[i][j] = vld1_f32(inptrs[i][j]);
- inptrs[i][j] += 2;
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 5; j++)
- {
- // Ww[0][j] = w[0][j]/4.0f;
- Ww[0][j] = vmul_n_f32(w[0][j], 1.0f/4.0f);
-
- // Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f;
- Ww[1][j] = vmul_n_f32(
- vadd_f32(
- vadd_f32(
- vadd_f32(w[1][j], w[0][j]),
- vadd_f32(w[3][j], w[2][j])
- ),
- w[4][j]
- ),
- -1.0f/6.0f
- );
-
- // Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f;
- // Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f;
- Ww[2][j] = vmul_n_f32(
- vsub_f32(
- vadd_f32(
- vsub_f32(w[1][j], w[0][j]),
- vsub_f32(w[3][j], w[2][j])
- ),
- w[4][j]
- ),
- 1.0f/6.0f
- );
-
- // Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f;
- Ww[3][j] = vmul_n_f32(
- vmla_n_f32(
- vadd_f32(
- vadd_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)),
- vadd_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
- ),
- w[4][j], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f;
- Ww[4][j] = vmul_n_f32(
- vmla_n_f32(
- vadd_f32(
- vsub_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)),
- vsub_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
- ),
- w[4][j], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // Ww[5][j] = w[4][j];
- Ww[5][j] = w[4][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < 6; i++)
- {
- // V[i][0] = Ww[i][0]/4.0f;
- V[i][0] = vmul_n_f32(Ww[i][0], 1.0f/4.0f);
-
- // V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f;
- V[i][1] = vmul_n_f32(
- vadd_f32(
- vadd_f32(
- vadd_f32(Ww[i][1], Ww[i][0]),
- vadd_f32(Ww[i][3], Ww[i][2])
- ),
- Ww[i][4]
- ),
- -1.0f/6.0f
- );
-
- // V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f;
- // V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f;
- V[i][2] = vmul_n_f32(
- vsub_f32(
- vadd_f32(
- vsub_f32(Ww[i][1], Ww[i][0]),
- vsub_f32(Ww[i][3], Ww[i][2])
- ),
- Ww[i][4]
- ),
- 1.0f/6.0f
- );
-
- // V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f;
- V[i][3] = vmul_n_f32(
- vmla_n_f32(
- vadd_f32(
- vadd_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)),
- vadd_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
- ),
- Ww[i][4], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f;
- V[i][4] = vmul_n_f32(
- vmla_n_f32(
- vadd_f32(
- vsub_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)),
- vsub_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
- ),
- Ww[i][4], 2.0f
- ),
- 1.0f/3.0f
- );
-
- // V[i][5] = Ww[i][4];
- V[i][5] = Ww[i][4];
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1_f32(outptr + m*matrix_stride, V[i][j]);
- }
- }
- outptr += 2;
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Matrices used and computed in this kernel
- float w[5][5], Ww[6][5], V[6][6];
-
- // Read weights
- for (int i = 0; i < 5; i++)
- {
- for (int j = 0; j < 5; j++)
- {
- w[i][j] = *(inptrs[i][j]++);
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 5; j++)
- {
- Ww[0][j] = w[0][j]/4.0f;
- Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f;
- Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f;
- Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f;
- Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f;
- Ww[5][j] = w[4][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < 6; i++)
- {
- V[i][0] = Ww[i][0]/4.0f;
- V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f;
- V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f;
- V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f;
- V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f;
- V[i][5] = Ww[i][4];
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- *(outptr + m*matrix_stride) = V[i][j];
- }
- }
- outptr++;
- }
- }
- }
-
- template <>
- template <>
- int WinogradGEMM<2, 2, 5, 5>::WeightsTransform<float>::ops_performed(const KernelShape &shape)
- {
- return 0; // TODO
- }
-
- template class WinogradGEMM<2, 2, 5, 5>::WeightsTransform<float>;
-} // namespace winograd
diff --git a/src/core/NEON/kernels/winograd/transforms/weights_4x4_3x3_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/weights_4x4_3x3_fp32.cpp
deleted file mode 100644
index de659c38e0..0000000000
--- a/src/core/NEON/kernels/winograd/transforms/weights_4x4_3x3_fp32.cpp
+++ /dev/null
@@ -1,266 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "arm.hpp"
-#include "winograd_gemm.hpp"
-#include "transforms/kernel.hpp"
-
-namespace winograd
-{
- /* Float implementation for kernel transform F(4x4, 3x3) */
- template <>
- template <>
- void WinogradGEMM<4, 4, 3, 3>::WeightsTransform<float>::execute(
- const int n_output_channels,
- const int n_input_channels,
- const float* const input, // NOTE: Data in HWIO order
- float* const output,
- const int matrix_stride,
- const int matrix_row_stride
- )
- {
- // Get pointers to each cell of the weight tensor
- const auto weight_col_stride = n_input_channels * n_output_channels;
- const auto weight_row_stride = 3 * weight_col_stride;
- const float *inptrs[3][3];
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride;
- }
- }
-
- // For each input channel
- for (int ic = 0; ic < n_input_channels; ic++)
- {
- float *outptr = output + ic * matrix_row_stride;
-
- // For each output channel
- int channels_remaining = n_output_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
- {
- // Matrices used and computed in this kernel
- float32x4_t w[3][3], Ww[6][3], V[6][6];
-
- // Read weights
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- w[i][j] = vld1q_f32(inptrs[i][j]);
- inptrs[i][j] += 4;
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 3; j++)
- {
- // Ww[0][j] = 6*w[0][j];
- Ww[0][j] = vmulq_n_f32(w[0][j], 6.0);
-
- // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
- Ww[1][j] = vmulq_n_f32(vaddq_f32(vaddq_f32(w[0][j], w[1][j]), w[2][j]), -4.0);
-
- // Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j];
- Ww[2][j] = vmulq_n_f32(vsubq_f32(vsubq_f32(w[1][j], w[0][j]), w[2][j]), 4.0);
-
- // Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j];
- Ww[3][j] = vmlaq_n_f32(vmlaq_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
-
- // Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j];
- Ww[4][j] = vmlaq_n_f32(vmlsq_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
-
- // Ww[5][j] = 24*w[2][j];
- Ww[5][j] = vmulq_n_f32(w[2][j], 24.0f);
- }
-
- // Compute V = W w WT
- for (int i = 0; i < 6; i++)
- {
- const float recip576 = 1.0f / 576.0f;
-
- // V[i][0] = 6*Ww[i][0];
- V[i][0] = vmulq_n_f32(vmulq_n_f32(Ww[i][0], 6.0), recip576);
-
- // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2];
- V[i][1] = vmulq_n_f32(vmulq_n_f32(vaddq_f32(vaddq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576);
-
- // V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2];
- V[i][2] = vmulq_n_f32(vmulq_n_f32(vsubq_f32(vsubq_f32(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576);
-
- // V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2];
- V[i][3] = vmulq_n_f32(vmlaq_n_f32(vmlaq_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
-
- // V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2];
- V[i][4] = vmulq_n_f32(vmlaq_n_f32(vmlsq_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
-
- // V[i][5] = 24*Ww[i][2];
- V[i][5] = vmulq_n_f32(vmulq_n_f32(Ww[i][2], 24.0f), recip576);
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1q_f32(outptr + m*matrix_stride, V[i][j]);
- }
- }
- outptr += 4;
- }
-#endif // __aarch64__
-#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed in this kernel
- float32x2_t w[3][3], Ww[6][3], V[6][6];
-
- // Read weights
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- w[i][j] = vld1_f32(inptrs[i][j]);
- inptrs[i][j] += 2;
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 3; j++)
- {
- // Ww[0][j] = 6*w[0][j];
- Ww[0][j] = vmul_n_f32(w[0][j], 6.0);
-
- // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
- Ww[1][j] = vmul_n_f32(vadd_f32(vadd_f32(w[0][j], w[1][j]), w[2][j]), -4.0);
-
- // Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j];
- Ww[2][j] = vmul_n_f32(vsub_f32(vsub_f32(w[1][j], w[0][j]), w[2][j]), 4.0);
-
- // Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j];
- Ww[3][j] = vmla_n_f32(vmla_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
-
- // Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j];
- Ww[4][j] = vmla_n_f32(vmls_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
-
- // Ww[5][j] = 24*w[2][j];
- Ww[5][j] = vmul_n_f32(w[2][j], 24.0f);
- }
-
- // Compute V = W w WT
- for (int i = 0; i < 6; i++)
- {
- const float recip576 = 1.0f / 576.0f;
-
- // V[i][0] = 6*Ww[i][0];
- V[i][0] = vmul_n_f32(vmul_n_f32(Ww[i][0], 6.0), recip576);
-
- // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2];
- V[i][1] = vmul_n_f32(vmul_n_f32(vadd_f32(vadd_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576);
-
- // V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2];
- V[i][2] = vmul_n_f32(vmul_n_f32(vsub_f32(vsub_f32(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576);
-
- // V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2];
- V[i][3] = vmul_n_f32(vmla_n_f32(vmla_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
-
- // V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2];
- V[i][4] = vmul_n_f32(vmla_n_f32(vmls_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
-
- // V[i][5] = 24*Ww[i][2];
- V[i][5] = vmul_n_f32(vmul_n_f32(Ww[i][2], 24.0f), recip576);
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- vst1_f32(outptr + m*matrix_stride, V[i][j]);
- }
- }
- outptr += 2;
- }
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
- {
- // Matrices used and computed in this kernel
- float w[3][3], Ww[6][3], V[6][6];
-
- // Read weights
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- w[i][j] = *(inptrs[i][j]++);
- }
- }
-
- // Compute the matrix W w
- for (int j = 0; j < 3; j++)
- {
- Ww[0][j] = 6*w[0][j];
- Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
- Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j];
- Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j];
- Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j];
- Ww[5][j] = 24*w[2][j];
- }
-
- // Compute V = W w WT
- for (int i = 0; i < 6; i++)
- {
- V[i][0] = ( 6*Ww[i][0]) / 576.0;
- V[i][1] = (-4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]) / 576.0;
- V[i][2] = (-4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]) / 576.0;
- V[i][3] = ( 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]) / 576.0;
- V[i][4] = ( 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]) / 576.0;
- V[i][5] = (24*Ww[i][2]) / 576.0;
- }
-
- // Store the transformed weights
- for (int i = 0, m = 0; i < 6; i++)
- {
- for (int j = 0; j < 6; j++, m++)
- {
- *(outptr + m*matrix_stride) = V[i][j];
- }
- }
- outptr++;
- }
- }
- }
-
- template <>
- template <>
- int WinogradGEMM<4, 4, 3, 3>::WeightsTransform<float>::ops_performed(const KernelShape &shape)
- {
- const int channel_prod = shape.n_input_channels * shape.n_output_channels;
- return 9 * 16 * channel_prod;
- }
-
- template struct WinogradGEMM<4, 4, 3, 3>::WeightsTransform<float>;
-}
diff --git a/src/core/NEON/kernels/winograd/utils.cpp b/src/core/NEON/kernels/winograd/utils.cpp
deleted file mode 100644
index 24d0386c76..0000000000
--- a/src/core/NEON/kernels/winograd/utils.cpp
+++ /dev/null
@@ -1,50 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include <cstdio>
-#include <ctime>
-
-double TimeInUs(void)
-{
-#ifdef CYCLE_PROFILING
- timespec t;
- clock_gettime(CLOCK_REALTIME, &t);
- return 1e6*t.tv_sec + 1e-3*t.tv_nsec;
-#else
- return 0;
-#endif
-}
-
-void PrintMatrix(const float* const m, const int M, const int N, const int row_stride)
-{
- for (int i = 0; i < M; i++)
- {
- for (int j = 0; j < N; j++)
- {
- printf("%.3f ", m[i*row_stride + j]);
- }
- printf("\n");
- }
- printf("\n");
-}
diff --git a/src/core/NEON/kernels/winograd/winograd_gemm.cpp b/src/core/NEON/kernels/winograd/winograd_gemm.cpp
deleted file mode 100644
index 05426450a6..0000000000
--- a/src/core/NEON/kernels/winograd/winograd_gemm.cpp
+++ /dev/null
@@ -1,568 +0,0 @@
-/*
- * Copyright (c) 2017 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "winograd_gemm.hpp"
-#include "batched_blocked_gemm.hpp"
-using namespace winograd;
-
-/** Get the output shape of a convolution. */
-template <int kr, int kc, int itr, int itc>
-template <typename TOut, typename TIn>
-Tensor4DShape WinogradGEMM<kr, kc, itr, itc>::Convolution<TOut, TIn>::get_output_shape(
- const KernelShape &kernel_shape,
- const Tensor4DShape &in_shape,
- const PaddingType padding
-)
-{
- return Tensor4DShape {
- in_shape.n_batches,
- (padding == PADDING_SAME) ? in_shape.n_rows : in_shape.n_rows - (kernel_rows - 1),
- (padding == PADDING_SAME) ? in_shape.n_cols : in_shape.n_cols - (kernel_cols - 1),
- kernel_shape.n_output_channels,
- in_shape.ordering
- };
-}
-
-/* Get the memory required to transform the kernel.
- */
-template <int kernel_rows, int kernel_cols,
- int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_kernel_transform_working_size(const KernelShape &shape)
-{
- if (shape.ordering == HWIO)
- {
- // Kernel is already in the correct order, so no additional memory is
- // required.
- return 0;
- }
- else
- {
- // Need to re-order the kernel into HWIO form, require enough space to
- // represent the tensor.
- return sizeof(TIn) * shape.size();
- }
-}
-
-/** Get the memory required to store the kernel transformed into the
- * Winograd domain.
- */
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_kernel_storage_size(const KernelShape &shape)
-{
- return N_GEMMS * get_kernel_matrix_size(shape);
-}
-
-
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_input_storage_size(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding
-)
-{
- return N_GEMMS * get_input_matrix_size(kernel_shape, input_shape, padding);
-}
-
-
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_output_storage_size(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding
-)
-{
- return N_GEMMS * get_output_matrix_size(kernel_shape, input_shape, padding);
-}
-
-
-/** Get the memory required to apply a Winograd operator to some input.
- */
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_working_space_size(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding_type
-)
-{
- const auto output_shape = get_output_shape(kernel_shape, input_shape, padding_type);
-
- // Get the memory required to store the matrices
- const size_t matrix_sizes = N_GEMMS * (
- get_input_matrix_size(kernel_shape, input_shape, padding_type) +
- get_output_matrix_size(kernel_shape, input_shape, padding_type)
- );
-
- // Add additional space to re-order the input and output if the input tensor
- // is not in NHWC format.
- if (input_shape.ordering == NHWC)
- {
- return matrix_sizes; // No extra spacing required
- }
- else // NCHW, must reorder the input and output tensors
- {
- // We only need to re-order the input or output at any one time, so request
- // enough memory to do the largest of these.
- const size_t extra_memory = std::max(
- sizeof(TIn) * input_shape.size(),
- sizeof(TOut) * output_shape.size()
- );
- return matrix_sizes + extra_memory;
- }
-}
-
-
-/* Get the memory required by a single "input" matrix.
- */
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_input_matrix_size(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding_type
-)
-{
- return get_input_matrix_stride(kernel_shape, input_shape, padding_type) * sizeof(TIn);
-}
-
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-int WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_input_matrix_stride(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding_type
-)
-{
- // Compute shape for the GEMM
- const auto output_shape = get_output_shape(kernel_shape, input_shape, padding_type);
- const int tile_rows = iceildiv(output_shape.n_rows, output_tile_rows);
- const int tile_cols = iceildiv(output_shape.n_cols, output_tile_cols);
- const int M = roundup(input_shape.n_batches * tile_rows * tile_cols, M_BLOCK);
- const int K = kernel_shape.n_input_channels;
-
- return M * K;
-}
-
-
-/* Get the memory required by a single "output" matrix.
- */
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_output_matrix_size(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding_type
-)
-{
- return get_output_matrix_stride(kernel_shape, input_shape, padding_type) * sizeof(TOut);
-}
-
-
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-int WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_output_matrix_stride(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding_type
-)
-{
- // Compute shape for the GEMM
- const auto output_shape = get_output_shape(kernel_shape, input_shape, padding_type);
- const int tile_rows = iceildiv(output_shape.n_rows, output_tile_rows);
- const int tile_cols = iceildiv(output_shape.n_cols, output_tile_cols);
- const int M = roundup(tile_rows * tile_cols, M_BLOCK);
- const int N = roundup(kernel_shape.n_output_channels, N_BLOCK);
-
- return input_shape.n_batches * M * N;
-}
-
-
-/* Get the memory required by a single "kernel" matrix.
- */
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-size_t WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_kernel_matrix_size(const KernelShape &shape)
-{
- return sizeof(TIn) * get_kernel_matrix_stride(shape);
-}
-
-template <int kernel_rows, int kernel_cols, int output_tile_rows, int output_tile_cols>
-template <typename TOut, typename TIn>
-int WinogradGEMM<kernel_rows, kernel_cols, output_tile_rows, output_tile_cols>::Convolution<TOut, TIn>::get_kernel_matrix_stride(const KernelShape &shape)
-{
- const int K = shape.n_input_channels;
- const int N = roundup(shape.n_output_channels, N_BLOCK);
- return K * N;
-}
-
-
-/** Create a new Winograd operator. */
-template <int output_tile_rows, int output_tile_cols,
- int kernel_rows, int kernel_cols>
-template <typename TOut, typename TIn>
-WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::Convolution<TOut, TIn>::Convolution(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding,
- void *kernel_storage
-) : kernel_shape(kernel_shape), // Store the kernel shape
- kernel_matrix_row_stride(roundup(kernel_shape.n_output_channels, N_BLOCK)),
- manage_kernel_storage(kernel_storage == NULL),
- _kernel_storage(manage_kernel_storage ?
- ALLOCATE(get_kernel_storage_size(kernel_shape)) :
- kernel_storage),
- input_shape(input_shape),
- padding(padding),
- output_shape(get_output_shape(kernel_shape, input_shape, padding)),
- tile_rows(iceildiv(output_shape.n_rows, output_tile_rows)),
- tile_cols(iceildiv(output_shape.n_cols, output_tile_cols)),
- M(input_shape.n_batches * tile_rows * tile_cols),
- K(kernel_shape.n_input_channels),
- N(kernel_shape.n_output_channels),
- prof()
-{
- // Create pointers to the kernel matrices
- const int kernel_matrix_size_bytes = get_kernel_matrix_size(kernel_shape);
- int8_t* const ks_bytes = reinterpret_cast<int8_t *>(_kernel_storage);
- for (int i = 0; i < N_GEMMS; i++) {
- kernel_matrices[i] = reinterpret_cast<TIn *>(
- ks_bytes + i*kernel_matrix_size_bytes);
- }
-}
-
-
-/** Create a new Winograd operator and initialise the weights. */
-template <int output_tile_rows, int output_tile_cols,
- int kernel_rows, int kernel_cols>
-template <typename TOut, typename TIn>
-WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::Convolution<TOut, TIn>::Convolution(
- const KernelShape &kernel_shape,
- const Tensor4DShape &input_shape,
- const PaddingType padding,
- const TIn* const kernel,
- void *kernel_storage,
- void *transform_working_space
-) : Convolution(kernel_shape, input_shape, padding, kernel_storage)
-{
- transform_weights(kernel, transform_working_space);
-}
-
-
-/** Clean up a convolution engine. */
-template <int output_tile_rows, int output_tile_cols, int kernel_rows, int kernel_cols>
-template <typename TOut, typename TIn>
-WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::
-Convolution<TOut, TIn>::~Convolution()
-{
- // If we were responsible for managing kernel storage ensure that it is
- // freed.
- if (manage_kernel_storage)
- {
- free(_kernel_storage);
- }
-}
-
-
-/** Transform weights into the Winograd domain and store them for later use/reuse. */
-template <int output_tile_rows, int output_tile_cols, int kernel_rows, int kernel_cols>
-template <typename TOut, typename TIn>
-template <typename WeightsTransformT>
-void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::
-Convolution<TOut, TIn>::transform_weights(
- const TIn* const kernel,
- void *transform_working_space
-)
-{
- // Allocate working space if it is required
- bool allocated_working_space = false;
- if (transform_working_space == NULL && // If no memory has been provided
- get_kernel_transform_working_size(kernel_shape) != 0) // And we need the space
- {
- allocated_working_space = true;
- transform_working_space = ALLOCATE(
- get_kernel_transform_working_size(kernel_shape)
- );
- }
-
- // The transformation methods only work on weights laid out in HWIO form, if
- // the weights are not in this form then we need to re-order them.
- const TIn *kernel_hwio = kernel;
- if (kernel_shape.ordering != HWIO)
- {
- kernel_hwio = reinterpret_cast<TIn *>(transform_working_space);
-
- // Re-order the weights from OIHW to HWIO
- this->prof(
- "Weight reorder",
- [&kernel, &kernel_hwio, this] () {
- reorder::ofm_ifm_h_w_to_h_w_ifm_ofm(
- kernel, const_cast<TIn *>(kernel_hwio),
- kernel_shape.n_output_channels,
- kernel_shape.n_input_channels,
- kernel_shape.n_rows,
- kernel_shape.n_cols
- );
- },
- kernel_shape.size() * sizeof(TIn),
- 0,
- kernel_shape.size() * sizeof(TIn)
- );
- }
-
- const int kernel_matrix_size_bytes = get_kernel_matrix_size(kernel_shape);
- WeightsTransformT weights_transform(
- kernel_hwio, kernel_matrices[0],
- kernel_matrix_size_bytes / sizeof(TIn),
- kernel_matrix_row_stride,
- kernel_shape.n_output_channels,
- kernel_shape.n_input_channels
- );
-
- // Transform the weights into the Winograd domain
- auto kernel_prep = [&] ()
- {
- weights_transform.run(0, weights_transform.get_window());
- };
-
- prof(
- "Kernel Prep", kernel_prep,
- WeightsTransformT::bytes_read(kernel_shape),
- WeightsTransformT::ops_performed(kernel_shape),
- WeightsTransformT::bytes_written(kernel_shape)
- );
-
- // Free memory if we allocated it
- if (allocated_working_space)
- {
- free(transform_working_space);
- }
-}
-
-
-/** Perform a convolution. */
-template <int output_tile_rows, int output_tile_cols,
- int kernel_rows, int kernel_cols>
-template <typename TOut, typename TIn>
-void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::
-Convolution<TOut, TIn>::execute(
- TOut* const output,
- const TIn* const input,
- const TOut* const biases,
- void *working_space,
- const int n_threads
-)
-{
- const auto padding_type = padding;
- const auto input_shape = this->input_shape;
-
- // Allocate working space if none has been provided
- const bool manage_working_space = (working_space == NULL);
- if (manage_working_space)
- {
- const size_t ws_size = get_working_space_size(
- kernel_shape, input_shape, padding_type
- );
- working_space = ALLOCATE(ws_size * sizeof(int8_t));
- memset(working_space, 0x00, ws_size);
- }
- int8_t* const ws_bytes = reinterpret_cast<int8_t *>(working_space);
-
- // Split the working space into that required for 16 input matrices and
- // output matrices.
- TIn *input_matrices[N_GEMMS];
- TOut *output_matrices[N_GEMMS];
- const int in_matrix_stride_bytes = get_input_matrix_size(kernel_shape, input_shape, padding_type);
- const int out_matrix_stride_bytes = get_output_matrix_size(kernel_shape, input_shape, padding_type);
-
- for (int i = 0; i < N_GEMMS; i++)
- {
- input_matrices[i] = reinterpret_cast<TIn *>(
- ws_bytes + i*in_matrix_stride_bytes);
- output_matrices[i] = reinterpret_cast<TIn *>(
- ws_bytes + N_GEMMS*in_matrix_stride_bytes + i*out_matrix_stride_bytes);
- }
-
- // If we need to re-order the input and output tensors then the final chunk
- // of the working space can be used for this purpose.
- // TODO - Overlay the input reorder on top of the output matrices
- // - Overlay the output reorder on top of the input matrices
- // Reorder the input input form if it was not provided in this ordering.
- const TIn* input_nhwc = input;
- if (input_shape.ordering == NCHW)
- {
- input_nhwc = reinterpret_cast<TIn *>(
- ws_bytes + N_GEMMS*(in_matrix_stride_bytes + out_matrix_stride_bytes)
- );
-
- this->prof(
- "NCHW -> NHWC",
- [input, input_shape, input_nhwc] () {
- reorder::nchw_to_nhwc(
- input, const_cast<TIn *>(input_nhwc),
- input_shape.n_batches,
- input_shape.n_channels,
- input_shape.n_rows,
- input_shape.n_cols
- );
- },
- input_shape.size(), 0, input_shape.size()
- );
- }
-
- // Compute shape for the GEMM
- const auto output_shape = this->output_shape;
- int M = this->M;
- int K = this->K;
- int N = this->N;
-
- const int in_matrix_row_stride = K;
- const int out_matrix_row_stride = kernel_matrix_row_stride;
-
- InputTransform<TIn> input_transform(
- input_nhwc,
- input_shape.n_batches,
- input_shape.n_rows,
- input_shape.n_cols,
- input_shape.n_channels,
- padding_type,
- input_matrices[0],
- in_matrix_stride_bytes / sizeof(TIn),
- in_matrix_row_stride
- );
-
- // Transform the input into the Winograd domain
- auto input_prep = [&] () {
- input_transform.run(0, input_transform.get_window());
- };
- prof(
- "Input Prep", input_prep,
- InputTransform<TIn>::bytes_read(input_shape),
- InputTransform<TIn>::ops_performed(input_shape),
- InputTransform<TIn>::bytes_written(input_shape)
- );
-
- // Perform the GEMMs
- const int kernel_matrix_stride_bytes = get_kernel_matrix_size(kernel_shape);
- BatchedBlockedGemm<M_BLOCK, N_BLOCK, TOut, TIn> gemms(
- N_GEMMS, M, K, N,
- in_matrix_stride_bytes / sizeof(TIn),
- in_matrix_row_stride,
- kernel_matrix_stride_bytes / sizeof(TIn),
- kernel_matrix_row_stride,
- out_matrix_stride_bytes / sizeof(TOut),
- out_matrix_row_stride,
- input_matrices[0],
- kernel_matrices[0],
- output_matrices[0]
- );
- for (unsigned int i = 0; i < gemms.get_window(); i++)
- {
- auto run_gemm = [&] () { gemms.run(i, i+1); };
- prof("GEMM", run_gemm, 0, 0, 0);
- }
-
- // If the output tensor needs to be in NCHW form then store the NHWC output
- // tensor in temporary storage and then reorder. If the output tensor needs
- // to be in NHWC then just write straight to the output tensor.
- TOut *output_nhwc = output;
- if (input_shape.ordering == NCHW)
- {
- output_nhwc = reinterpret_cast<TOut *>(
- ws_bytes + N_GEMMS*(in_matrix_stride_bytes + out_matrix_stride_bytes)
- );
- }
-
- // Transform the output tensor from the Winograd domain to the spatial
- // domain.
- OutputTransform<TOut> output_transform(
- output_matrices[0],
- out_matrix_stride_bytes / sizeof(TOut),
- out_matrix_row_stride,
- biases,
- output_nhwc,
- output_shape.n_batches,
- output_shape.n_rows,
- output_shape.n_cols,
- output_shape.n_channels
- );
- auto output_prep = [&] () {
- output_transform.run(0, output_transform.get_window());
- };
- prof(
- "Output Comp", output_prep,
- OutputTransform<TOut>::bytes_read(output_shape),
- OutputTransform<TOut>::ops_performed(output_shape),
- OutputTransform<TOut>::bytes_written(output_shape)
- );
-
- // Reorder the output tensor if it is required to be in NCHW form.
- if (input_shape.ordering == NCHW)
- {
- prof(
- "NHWC -> NCHW",
- [output_nhwc, output_shape, output] () {
- reorder::nhwc_to_nchw(
- output_nhwc, output,
- output_shape.n_batches,
- output_shape.n_rows,
- output_shape.n_cols,
- output_shape.n_channels
- );
- },
- output_shape.size(), 0, output_shape.size()
- );
- }
-
- // Free working space if we were responsible for allocating it
- if (manage_working_space)
- {
- free(working_space);
- }
-}
-
-
-/** Perform a convolution. */
-template <int output_tile_rows, int output_tile_cols,
- int kernel_rows, int kernel_cols>
-template <typename TOut, typename TIn>
-void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::
-Convolution<TOut, TIn>::execute(
- TOut* const output,
- const TIn* const input,
- const TOut* const biases,
- const int n_threads
-)
-{
- execute(output, input, biases, NULL, n_threads);
-}
-
-
-// Instantiate required implementations
-template class WinogradGEMM<2, 2, 3, 3>::Convolution<float, float>;
-template class WinogradGEMM<4, 4, 3, 3>::Convolution<float, float>;
-
-template class WinogradGEMM<2, 2, 5, 5>::Convolution<float, float>;