aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2018-07-26 11:44:03 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:54:54 +0000
commit68a3f56627b04acdefebe67d645727dd83889766 (patch)
tree4a3f4dc0facfda861a5ba7afa29d84d82d0829c2 /src/core/CL/cl_kernels/gemm.cl
parent4e0d3819be6c61cc00c7e0fa9b4b740738c703b7 (diff)
downloadComputeLibrary-68a3f56627b04acdefebe67d645727dd83889766.tar.gz
COMPMID-1276 - Allow GEMM to work with 3D input tensor
Skipped im2col in CLGEMMConvolutionLayer for 1x1 convolutions with NHWC data layout Change-Id: I894e6b952ed8605e8f3ffc0ffc25c24730d4664c Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/141909 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl375
1 files changed, 350 insertions, 25 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index 5a6efe64b9..932e0d681a 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -88,6 +88,11 @@ __kernel void gemm_transpose1xW(TENSOR3D_DECLARATION(src),
*
* @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ * @note In case the input has to be reinterpreted as a 3D tensor (i.e. input of convolution layer 1x1), the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -105,9 +110,15 @@ __kernel void gemm_transpose1xW(TENSOR3D_DECLARATION(src),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
*/
__kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
+ TENSOR3D_DECLARATION(dst)
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+ )
{
// Compute source and destination addresses
uint x = get_global_id(0);
@@ -124,6 +135,45 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
// Add offset for batched GEMM
dst_addr_in_bytes += z * dst_stride_z;
+#if defined(REINTERPRET_INPUT_AS_3D)
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * 4 * sizeof(DATA_TYPE) + y * 4 * src_stride_y;
+
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (y * 4) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(y * 4)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (cross_plane_pad * src_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src_stride_z by DEPTH_GEMM3D
+ input_ptr += z * src_stride_z * DEPTH_GEMM3D;
+
+ // Load values from Matrix A
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ a0 = vload4(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y + zin.s0));
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ a1 = vload4(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y + zin.s1));
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ a2 = vload4(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y + zin.s2));
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ a3 = vload4(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y + zin.s3));
+#else // defined(REINTERPRET_INPUT_AS_3D)
__global uchar *input_ptr = src.ptr;
// Load values from Matrix A
@@ -135,6 +185,7 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
a2 = vload4(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 4)
a3 = vload4(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
VEC_DATA_TYPE(DATA_TYPE, 4)
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s0, a1.s0, a2.s0, a3.s0);
@@ -188,7 +239,7 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -366,7 +417,7 @@ __kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -679,7 +730,7 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -853,7 +904,7 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -1095,7 +1146,8 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
* @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
* This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
- * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
@@ -1122,7 +1174,8 @@ __kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0)
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -1130,9 +1183,13 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
- uint cross_plane_pad
+ uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
@@ -1147,9 +1204,40 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
// Update address for the matrix B
src_addr.s1 += idx * sizeof(DATA_TYPE);
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
@@ -1172,6 +1260,23 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(DATA_TYPE)); src_addr += (int2)(2 * sizeof(DATA_TYPE), 2 * src1_stride_y))
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
VEC_DATA_TYPE(DATA_TYPE, 2)
a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
@@ -1187,6 +1292,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
VEC_DATA_TYPE(DATA_TYPE, 2)
a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
VECTOR_TYPE b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
@@ -1210,6 +1317,19 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(DATA_TYPE), src1_stride_y))
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -1221,6 +1341,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
@@ -1280,7 +1402,7 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
+ zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -1335,7 +1457,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
* @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
* This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
- * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
@@ -1362,7 +1485,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -1370,9 +1494,13 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
- uint cross_plane_pad
+ uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
@@ -1387,9 +1515,40 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
// Update address for matrix B
src_addr.s1 += idx * sizeof(float);
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
@@ -1428,6 +1587,19 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
int i = 0;
for(; i <= ((int)COLS_A - 4); i += 4)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ float4 a1 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ float4 a2 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ float4 a3 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A and matrix B
float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -1439,6 +1611,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float4 a3 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
src_addr.s1 += src1_stride_y;
@@ -1579,8 +1753,21 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
for(; i < (int)COLS_A; ++i)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0));
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -1590,6 +1777,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
src_addr.s1 += src1_stride_y;
@@ -1676,7 +1865,7 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
+ zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -1723,7 +1912,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
* @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
* This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
- * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
@@ -1750,7 +1940,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -1758,9 +1949,13 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
- uint cross_plane_pad
+ uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
@@ -1776,9 +1971,40 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
// Update address for the matrix B
src_addr.s1 += idx * sizeof(float);
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
@@ -1807,8 +2033,13 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
int i = 0;
for(; i <= ((int)COLS_A - 8); i += 8)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + zin.s0));
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix B
float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
@@ -1848,7 +2079,11 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
acc01 = fma(a0.s7, b7.s1, acc01);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#if defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
acc10 = fma(a0.s0, b0.s0, acc10);
acc10 = fma(a0.s1, b1.s0, acc10);
acc10 = fma(a0.s2, b2.s0, acc10);
@@ -1868,7 +2103,11 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
acc11 = fma(a0.s7, b7.s1, acc11);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#if defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
acc20 = fma(a0.s0, b0.s0, acc20);
acc20 = fma(a0.s1, b1.s0, acc20);
acc20 = fma(a0.s2, b2.s0, acc20);
@@ -1888,7 +2127,11 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
acc21 = fma(a0.s7, b7.s1, acc21);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#if defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
acc30 = fma(a0.s0, b0.s0, acc30);
acc30 = fma(a0.s1, b1.s0, acc30);
acc30 = fma(a0.s2, b2.s0, acc30);
@@ -1913,6 +2156,19 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
// float size increment
for(; i < (int)COLS_A; ++i)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -1924,6 +2180,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
src_addr.s1 += src1_stride_y;
@@ -1994,7 +2252,7 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
+ zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -2041,7 +2299,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
* @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
* This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
- * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
@@ -2068,7 +2327,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
@@ -2076,9 +2336,13 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
- uint cross_plane_pad
+ uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
@@ -2093,9 +2357,40 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
// Update address for the matrix B
src_addr.s1 += idx * sizeof(half);
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
@@ -2117,6 +2412,19 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
int i = 0;
for(; i <= ((int)COLS_A - 4); i += 4)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -2128,6 +2436,8 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
src_addr.s1 += src1_stride_y;
@@ -2188,6 +2498,19 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
for(; i < (int)COLS_A; ++i)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -2199,6 +2522,8 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
@@ -2260,7 +2585,7 @@ __kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
+ zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D