aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
diff options
context:
space:
mode:
authorJakub Sujak <jakub.sujak@arm.com>2023-08-24 14:01:20 +0100
committerJakub Sujak <jakub.sujak@arm.com>2023-09-04 14:41:16 +0000
commit0d27b2ee8d811d66693555ac1e7be44d93e662e2 (patch)
tree8b62a464a8bb9cd46702c8b5a60f3a97e3821b41 /src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
parent7ff03b67ba7ce669223f4d807e18fa3efa2f729b (diff)
downloadComputeLibrary-0d27b2ee8d811d66693555ac1e7be44d93e662e2.tar.gz
Remove legacy PostOps code
PostOps was the experimental interface for Dynamic Fusion. It is now replaced by the new Dynamic Fusion interface with code generation using the Compute Kernel Writer. Resolves: COMPMID-6190 Change-Id: I813b48facef2fd6f3aee332588886b4f9b3d33d8 Signed-off-by: Jakub Sujak <jakub.sujak@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/10219 Benchmark: Arm Jenkins <bsgcomp@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: SiCong Li <sicong.li@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl')
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl1399
1 files changed, 0 insertions, 1399 deletions
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
deleted file mode 100644
index 09ddcde043..0000000000
--- a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
+++ /dev/null
@@ -1,1399 +0,0 @@
-/*
- * Copyright (c) 2021-2022 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "fp_post_ops_act_eltwise_op_act.h"
-#include "gemm_helpers.h"
-#include "repeat.h"
-
-/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped_only_rhs kernel */
-#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
-#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-
-#define CONCAT(a, b) a##b
-
-#define ARM_DOT1(a, b, c) \
- ({ \
- c = fma(a, b, c); \
- })
-#define ARM_DOT2(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- })
-#define ARM_DOT3(a, b, c) \
- ({ \
- ARM_DOT2(a, b, c); \
- c = fma((a.s2), (b.s2), c); \
- })
-#define ARM_DOT4(a, b, c) \
- ({ \
- ARM_DOT3(a, b, c); \
- c = fma((a.s3), (b.s3), c); \
- })
-#define ARM_DOT8(a, b, c) \
- ({ \
- ARM_DOT4((a.lo), (b.lo), c); \
- ARM_DOT4((a.hi), (b.hi), c); \
- })
-#define ARM_DOT16(a, b, c) \
- ({ \
- ARM_DOT8((a.lo), (b.lo), c); \
- ARM_DOT8((a.hi), (b.hi), c); \
- })
-
-#if N0 == 2
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- })
-#elif N0 == 3 // N0 == 3
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- })
-#elif N0 == 4 // N0 == 4
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- })
-#elif N0 == 8 // N0 == 8
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##4), (c.s4)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##5), (c.s5)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##6), (c.s6)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##7), (c.s7)); \
- })
-#elif N0 == 16 // N0 == 16
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##4), (c.s4)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##5), (c.s5)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##6), (c.s6)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##7), (c.s7)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##8), (c.s8)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##9), (c.s9)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##A), (c.sA)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##B), (c.sB)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##C), (c.sC)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##D), (c.sD)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##E), (c.sE)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##F), (c.sF)); \
- })
-#else // N0 not supported
-#error "N0 value not supported"
-#endif // N0 conditions
-
-#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT)
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
- * Post op 1: activation (optional)
- * Post op 2: elementwise op
- * Post op 3: activation (optional)
- *
- * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
- * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- *
- * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_t, with these additions:
- *
- * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
- * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
- * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
- * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
- */
-__kernel void gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- // Post Op arguments
- IMAGE_DECLARATION(eltwise_operand),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z,
- uint eltwise_operand_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- ,
- const int M,
- const int N,
- const int K)
-{
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (K0)
-#define RHS_STEP_X ((K0) * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (K0)
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
-
- // Compute RHS reshaped matrix address
- uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_offset += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS reshaped matrix
- LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
-
- // Accumulate
- ARM_DOT_K0XN0(K0, a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(K0, a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(K0, a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(K0, a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(K0, a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(K0, a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(K0, a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(K0, a7, b, c7);
-#endif // M0 > 7
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- rhs_offset += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
- }
-
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS reshaped matrix
- LOAD_BLOCK(N0, 1, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
-
- // Accumulate
- ARM_DOT_K0XN0(1, a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(1, a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(1, a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(1, a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(1, a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(1, a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(1, a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(1, a7, b, c7);
-#endif // M0 > 7
-
- lhs_offset += sizeof(DATA_TYPE);
- rhs_offset += sizeof(DATA_TYPE);
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
-
- LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- // c = act(c)
- POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
- // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
- POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
- // c = act(c)
- POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
-
- // Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-}
-#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT)
-
-#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
- * Post op 1: activation (optional)
- * Post op 2: elementwise op
- * Post op 3: activation (optional)
- *
- * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
- * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- *
- * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_t_texture, with these additions:
- *
- * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
- * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
- * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
- * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
- * @param[in] M Number of rows in LHS matrix not reshaped.
- * @param[in] N Number of columns in RHS matrix not reshaped.
- * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
- */
-__kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
- __read_only image2d_t rhs_img,
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- // Post Op arguments
- IMAGE_DECLARATION(eltwise_operand),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z,
- uint eltwise_operand_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- ,
- const int M,
- const int N,
- const int K)
-{
- // Pixel unit
-#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
-
- const uint LEFTOVER_K = K % K0;
-
- // Block size
-#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (PIXEL_UNIT)
-#define RHS_STEP_X (PIXEL_UNIT * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X PIXEL_UNIT
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
-#else // defined(MATRIX_B_DEPTH)
- const uint z_rhs = get_global_id(2);
-#endif // defined(MATRIX_B_DEPTH)
-
- // Compute RHS matrix coordinates
- uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
- const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS matrix stored in a cl_image
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
- LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
-
- // Accumulate
- ARM_DOT_K0XN0(K0, a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(K0, a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(K0, a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(K0, a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(K0, a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(K0, a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(K0, a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(K0, a7, b, c7);
-#endif // M0 > 7
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
- }
-
- if(LEFTOVER_K != 0)
- {
- // Note: We cannot read out-of-bound elements from the RHS matrix because
- // the RHS width is always multiple of K0. This is not be true for the LHS matrix
-
- union UNION_VEC_TYPE
- {
- DATA_TYPE s[K0];
- VEC_DATA_TYPE(DATA_TYPE, K0)
- v;
- };
-
- union UNION_VEC_TYPE a0 = {.v = 0 };
-#if M0 > 1
- union UNION_VEC_TYPE a1 = {.v = 0 };
-#endif // M0 > 1
-#if M0 > 2
- union UNION_VEC_TYPE a2 = {.v = 0 };
-#endif // M0 > 2
-#if M0 > 3
- union UNION_VEC_TYPE a3 = {.v = 0 };
-#endif // M0 > 3
-#if M0 > 4
- union UNION_VEC_TYPE a4 = {.v = 0 };
-#endif // M0 > 4
-#if M0 > 5
- union UNION_VEC_TYPE a5 = {.v = 0 };
-#endif // M0 > 5
-#if M0 > 6
- union UNION_VEC_TYPE a6 = {.v = 0 };
-#endif // M0 > 6
-#if M0 > 7
- union UNION_VEC_TYPE a7 = {.v = 0 };
-#endif // M0 > 7
-
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
-
- // Load from RHS matrix
- LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
-
- // Load from LHS matrix
- for(int k = 0; k < LEFTOVER_K; ++k)
- {
- a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
-#if M0 > 1
- a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
-#endif // M0 > 1
-#if M0 > 2
- a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
-#endif // M0 > 2
-#if M0 > 3
- a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
-#endif // M0 > 3
-#if M0 > 4
- a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
-#endif // M0 > 4
-#if M0 > 5
- a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
-#endif // M0 > 5
-#if M0 > 6
- a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
-#endif // M0 > 6
-#if M0 > 7
- a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
-#endif // M0 > 7
-
- lhs_offset += sizeof(DATA_TYPE);
- }
-
- // Accumulate
- ARM_DOT_K0XN0(K0, a0.v, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(K0, a1.v, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(K0, a2.v, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(K0, a3.v, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(K0, a4.v, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(K0, a5.v, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(K0, a6.v, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(K0, a7.v, b, c7);
-#endif // M0 > 7
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
-
- LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- // c = act(c)
- POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
- // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
- POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
- // c = act(c)
- POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
-
- // Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-#undef PIXEL_UNIT
-}
-#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
-
-#define VFMA(a, b, c) \
- ({ \
- c = fma(a, b, c); \
- })
-
-#if M0 == 1
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- })
-#elif M0 == 2 // M0 == 2
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- })
-#elif M0 == 3 // M0 == 3
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- })
-#elif M0 == 4 // M0 == 4
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- })
-#elif M0 == 5 // M0 == 5
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- })
-#elif M0 == 6 // M0 == 6
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- })
-#elif M0 == 7 // M0 == 7
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- })
-#elif M0 == 8 // M0 == 8
-#define VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
- })
-#else // M0 not supported
-#error "M0 not supported"
-#endif // M0 not supported
-
-#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
- * Post op 1: activation (optional)
- * Post op 2: elementwise op
- * Post op 3: activation (optional)
- *
- * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
- * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- *
- * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_nt, with these additions:
- *
- * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
- * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
- * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
- * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
- * @param[in] M Number of rows in LHS matrix not reshaped.
- * @param[in] N Number of columns in RHS matrix not reshaped.
- * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
- */
-__kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- // Post Op arguments
- IMAGE_DECLARATION(eltwise_operand),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z,
- uint eltwise_operand_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- ,
- const int M,
- const int N,
- const int K)
-{
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (N0)
-#define RHS_STEP_X ((N0) * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (N0)
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
-
- // Compute RHS reshaped matrix address
- uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_offset += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zin0=0,zin1=0,zin2=0,... zin7=0;
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); //uint zero0=0,zero1=0,zero2=0,... zero7=0;
-
-#if defined(REINTERPRET_INPUT_AS_3D)
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0;
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
-
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b0;
-
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(0, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 1 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(1, a, b0, c);
-#if K0 > 2
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 2 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(2, a, b0, c);
-#endif // K0 > 2
-#if K0 > 3
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 3 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(3, a, b0, c);
-#endif // K0 > 3
-#if K0 > 4
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 4 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(4, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 5 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(5, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 6 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(6, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 7 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(7, a, b0, c);
-#endif // K0 > 4
-#if K0 > 8
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 8 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(8, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 9 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(9, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 10 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(A, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 11 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(B, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 12 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(C, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 13 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(D, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 14 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(E, a, b0, c);
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 15 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(F, a, b0, c);
-#endif // K0 > 8
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- rhs_offset += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE);
- }
-
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
-#if M0 > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
-#endif // M0 > 7
-
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b0;
-
- b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
- VFMA_M0xN0(0, a, b0, c);
-
- lhs_offset += sizeof(DATA_TYPE);
- rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE);
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
-
- LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- // c = act(c)
- POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
- // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
- POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
- // c = act(c)
- POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
-
- // Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-#undef RHS_STEP_LOOP
-}
-#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
-
-#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
- * Post op 1: activation (optional)
- * Post op 2: elementwise op
- * Post op 3: activation (optional)
- *
- * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
- * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- *
- * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_nt_texture, with these additions:
- *
- * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
- * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
- * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
- * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
- * @param[in] M Number of rows in LHS matrix not reshaped.
- * @param[in] N Number of columns in RHS matrix not reshaped.
- * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
- */
-__kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
- __read_only image2d_t rhs_img,
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- // Post Op arguments
- IMAGE_DECLARATION(eltwise_operand),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z,
- uint eltwise_operand_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- ,
- const int M,
- const int N,
- const int K)
-{
- // Pixel unit
-#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
-
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (PIXEL_UNIT)
-#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (PIXEL_UNIT)
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- const uint z_rhs = (z % MATRIX_B_DEPTH);
-#else // defined(MATRIX_B_DEPTH)
- const uint z_rhs = z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Compute RHS matrix coordinates
- uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
- const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0);
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
-
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b0;
-
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(0, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(1, a, b0, c);
-#if K0 > 2
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(2, a, b0, c);
-#endif // K0 > 2
-#if K0 > 3
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(3, a, b0, c);
-#endif // K0 > 3
-#if K0 > 4
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(4, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(5, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(6, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(7, a, b0, c);
-#endif // K0 > 4
-#if K0 > 8
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(8, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(9, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(A, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(B, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(C, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(D, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(E, a, b0, c);
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
- VFMA_M0xN0(F, a, b0, c);
-#endif // K0 > 8
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP;
- }
-
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
-#if M0 > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
-#endif // M0 > 7
-
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b0;
- b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
-
- VFMA_M0xN0(0, a, b0, c);
-
- lhs_offset += sizeof(DATA_TYPE);
- x_rhs += RHS_STEP_X;
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
-
- LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- // c = act(c)
- POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
- // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
- POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
- // c = act(c)
- POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
-
- // Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-#undef RHS_STEP_LOOP
-}
-#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
-#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)