aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSiCongLi <sicong.li@arm.com>2021-10-06 15:25:57 +0100
committerSiCong Li <sicong.li@arm.com>2021-10-28 11:00:52 +0000
commit1af5416917268692fcd4b34b1d7ffebd3a2aea8a (patch)
tree81833ecad401eeb0101fb0d464728df8b699caf8
parent49956ccf029ff4c1873e3a6702b5bede95d81f7a (diff)
downloadComputeLibrary-1af5416917268692fcd4b34b1d7ffebd3a2aea8a.tar.gz
Add experimental PostOp interface to ClGemmMatrixMultiplyReshapedKernel Part 1
This interface supports the fusion of multiple elementwise operations Partially resolves: COMPMID-4435 Change-Id: If68dd7dd98dcf239fde7cb1f0a4a6d4d1e899a6f Signed-off-by: SiCongLi <sicong.li@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6483 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
-rw-r--r--Android.bp4
-rw-r--r--SConscript6
-rw-r--r--arm_compute/core/KernelDescriptors.h69
-rw-r--r--arm_compute/core/Types.h6
-rw-r--r--arm_compute/core/experimental/IPostOp.h162
-rw-r--r--arm_compute/core/experimental/Types.h5
-rw-r--r--src/core/CL/CLUtils.cpp97
-rw-r--r--src/core/CL/CLUtils.h86
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h101
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl1404
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h262
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h113
-rw-r--r--src/core/CL/cl_kernels/common/gemm.cl6
-rw-r--r--src/core/experimental/PostOp.h171
-rw-r--r--src/gpu/cl/ClKernelLibrary.cpp8
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp42
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h1
-rw-r--r--src/runtime/CL/functions/CLBatchNormalizationLayer.cpp3
-rw-r--r--tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp354
-rw-r--r--tests/validation/fixtures/GEMMFixture.h261
-rw-r--r--tests/validation/reference/PostOps.cpp76
-rw-r--r--tests/validation/reference/PostOps.h47
-rw-r--r--utils/TypePrinter.h163
23 files changed, 3391 insertions, 56 deletions
diff --git a/Android.bp b/Android.bp
index adcafa65d5..4ec0475605 100644
--- a/Android.bp
+++ b/Android.bp
@@ -27,6 +27,10 @@ opencl_srcs = [
"src/core/CL/cl_kernels/common/elementwise_operation.cl",
"src/core/CL/cl_kernels/common/elementwise_operation_quantized.cl",
"src/core/CL/cl_kernels/common/elementwise_unary.cl",
+ "src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h",
+ "src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl",
+ "src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h",
+ "src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h",
"src/core/CL/cl_kernels/common/fft.cl",
"src/core/CL/cl_kernels/common/fft_digit_reverse.cl",
"src/core/CL/cl_kernels/common/fft_scale.cl",
diff --git a/SConscript b/SConscript
index 6c5839122a..468d7388cd 100644
--- a/SConscript
+++ b/SConscript
@@ -277,7 +277,10 @@ if env['opencl'] and env['embed_kernels']:
'src/core/CL/cl_kernels/repeat.h',
'src/core/CL/cl_kernels/tile_helpers.h',
'src/core/CL/cl_kernels/types.h',
- 'src/core/CL/cl_kernels/warp_helpers.h'
+ 'src/core/CL/cl_kernels/warp_helpers.h',
+ 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h',
+ 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h',
+ 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h',
]
# Common kernels
@@ -307,6 +310,7 @@ if env['opencl'] and env['embed_kernels']:
'src/core/CL/cl_kernels/common/floor.cl',
'src/core/CL/cl_kernels/common/gather.cl',
'src/core/CL/cl_kernels/common/gemm.cl',
+ 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl',
'src/core/CL/cl_kernels/common/gemv.cl',
'src/core/CL/cl_kernels/common/gemmlowp.cl',
'src/core/CL/cl_kernels/common/generate_proposals.cl',
diff --git a/arm_compute/core/KernelDescriptors.h b/arm_compute/core/KernelDescriptors.h
index a6e5c3372e..bc6ec1f6c5 100644
--- a/arm_compute/core/KernelDescriptors.h
+++ b/arm_compute/core/KernelDescriptors.h
@@ -26,6 +26,7 @@
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Types.h"
+#include "arm_compute/core/experimental/IPostOp.h"
namespace arm_compute
{
@@ -52,48 +53,52 @@ struct FFTRadixStageKernelInfo
bool is_first_stage{ false }; /**< Flags if the FFT kernels is the first stage of a decomposed FFT. */
};
+class ITensorInfo;
/** Descriptor used by the GEMM kernels */
struct GEMMKernelInfo
{
GEMMKernelInfo() = default;
GEMMKernelInfo(
- unsigned int im,
- unsigned int in,
- unsigned int ik,
- unsigned int idepth_output_gemm3d,
- bool ireinterpret_input_as_3d,
- bool ibroadcast_bias,
- bool ifp_mixed_precision,
- bool ihas_pad_y,
- ActivationLayerInfo iactivation_info,
- int inmult_transpose1xW_width,
- int imult_interleave4x4_height,
- GEMMLHSMatrixInfo ilhs_info,
- GEMMRHSMatrixInfo irhs_info,
- int32_t ina_offset,
- int32_t inb_offset)
+ unsigned int im,
+ unsigned int in,
+ unsigned int ik,
+ unsigned int idepth_output_gemm3d,
+ bool ireinterpret_input_as_3d,
+ bool ibroadcast_bias,
+ bool ifp_mixed_precision,
+ bool ihas_pad_y,
+ ActivationLayerInfo iactivation_info,
+ int inmult_transpose1xW_width,
+ int imult_interleave4x4_height,
+ GEMMLHSMatrixInfo ilhs_info,
+ GEMMRHSMatrixInfo irhs_info,
+ int32_t ina_offset,
+ int32_t inb_offset,
+ const experimental::PostOpList<ITensorInfo *> &ipost_ops = experimental::PostOpList<ITensorInfo *> {})
: m(im), n(in), k(ik), depth_output_gemm3d(idepth_output_gemm3d), reinterpret_input_as_3d(ireinterpret_input_as_3d), broadcast_bias(ibroadcast_bias), fp_mixed_precision(ifp_mixed_precision),
has_pad_y(ihas_pad_y), activation_info(iactivation_info), mult_transpose1xW_width(inmult_transpose1xW_width), mult_interleave4x4_height(imult_interleave4x4_height), lhs_info(ilhs_info),
- rhs_info(irhs_info), a_offset(ina_offset), b_offset(inb_offset)
+ rhs_info(irhs_info), a_offset(ina_offset), b_offset(inb_offset), post_ops(ipost_ops)
{
}
- unsigned int m{ 0 }; /**< Number of LHS rows*/
- unsigned int n{ 0 }; /**< Number of RHS columns*/
- unsigned int k{ 0 }; /**< Number of LHS columns or RHS rows */
- unsigned int depth_output_gemm3d{ 0 }; /**< Depth of the output tensor in case is reinterpreted as 3D */
- bool reinterpret_input_as_3d{ false }; /**< Flag used to reinterpret the input as 3D */
- bool broadcast_bias{ false }; /**< Flag used to broadcast the bias addition */
- bool fp_mixed_precision{ false }; /**< Flag used to indicate wider accumulators (32 bit instead of 16 for FP16). */
- bool has_pad_y{ false }; /**< Flag used to indicate if the input/output tensors have internal pad on the y direction */
- ActivationLayerInfo activation_info{}; /**< Activation function to perform after the matrix multiplication */
- int mult_transpose1xW_width{ 1 }; /**< Multiplication factor for the width of the 1xW transposed block */
- int mult_interleave4x4_height{ 1 }; /**< Multiplication factor for the height of the 4x4 interleaved block */
- GEMMLHSMatrixInfo lhs_info{}; /**< LHS matrix information used to retrieve the number of rows processed by each thread */
- GEMMRHSMatrixInfo rhs_info{}; /**< RHS matrix information used for reshaping the RHS matrix */
- int32_t a_offset{ 0 }; /**< Offset to be added to each element of the matrix A */
- int32_t b_offset{ 0 }; /**< Offset to be added to each element of the matrix B */
- GEMMLowpOutputStageInfo output_stage{}; /**< GEMMLowp output stage information */
+ unsigned int m{ 0 }; /**< Number of LHS rows*/
+ unsigned int n{ 0 }; /**< Number of RHS columns*/
+ unsigned int k{ 0 }; /**< Number of LHS columns or RHS rows */
+ unsigned int depth_output_gemm3d{ 0 }; /**< Depth of the output tensor in case is reinterpreted as 3D */
+ bool reinterpret_input_as_3d{ false }; /**< Flag used to reinterpret the input as 3D */
+ bool broadcast_bias{ false }; /**< Flag used to broadcast the bias addition */
+ bool fp_mixed_precision{ false }; /**< Flag used to indicate wider accumulators (32 bit instead of 16 for FP16). */
+ bool has_pad_y{ false }; /**< Flag used to indicate if the input/output tensors have internal pad on the y direction */
+ ActivationLayerInfo activation_info{}; /**< Activation function to perform after the matrix multiplication */
+ int mult_transpose1xW_width{ 1 }; /**< Multiplication factor for the width of the 1xW transposed block */
+ int mult_interleave4x4_height{ 1 }; /**< Multiplication factor for the height of the 4x4 interleaved block */
+ GEMMLHSMatrixInfo lhs_info{}; /**< LHS matrix information used to retrieve the number of rows processed by each thread */
+ GEMMRHSMatrixInfo rhs_info{}; /**< RHS matrix information used for reshaping the RHS matrix */
+ int32_t a_offset{ 0 }; /**< Offset to be added to each element of the matrix A */
+ int32_t b_offset{ 0 }; /**< Offset to be added to each element of the matrix B */
+ GEMMLowpOutputStageInfo output_stage{}; /**< GEMMLowp output stage information */
+ experimental::PostOpList<ITensorInfo *> post_ops{}; /**< (EXPERIMENTAL_POST_OPS) Specifies a list of post ops to be fused after the main op. Note unsupported post ops would not be executed.
+ * If specified, automatically disable the @ref activation_info */
};
/** Compute descriptor used by the depthwise convolution native kernel */
diff --git a/arm_compute/core/Types.h b/arm_compute/core/Types.h
index b2b09825c1..bfe85ea937 100644
--- a/arm_compute/core/Types.h
+++ b/arm_compute/core/Types.h
@@ -382,7 +382,11 @@ struct BorderSize
/** Container for 2D padding size */
using PaddingSize = BorderSize;
-/** Policy to handle overflow */
+/** Policy to handle integer overflow
+ * @note: This is ignored by floating point operations where the overflow behavior adheres to the IEEE-754 standard
+ * which states that in case of overflow ±infinity is returned for the round-to-nearest modes (and follows the
+ * rounding rules for the directed rounding modes) by default.
+ */
enum class ConvertPolicy
{
WRAP, /**< Wrap around */
diff --git a/arm_compute/core/experimental/IPostOp.h b/arm_compute/core/experimental/IPostOp.h
new file mode 100644
index 0000000000..cd6b8fc4cc
--- /dev/null
+++ b/arm_compute/core/experimental/IPostOp.h
@@ -0,0 +1,162 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_EXPERIMENTAL_IPOSTOP
+#define ARM_COMPUTE_EXPERIMENTAL_IPOSTOP
+
+#include <memory>
+#include <numeric>
+#include <vector>
+
+namespace arm_compute
+{
+namespace experimental
+{
+/** Type of Post Op */
+enum class PostOpType
+{
+ Activation,
+ Eltwise_Add,
+};
+/** An ordered sequence of type of Post Ops */
+using PostOpTypeSequence = std::vector<PostOpType>;
+/** An elementwise n-ary operation that can be appended to and fused with (at kernel-level) other operators
+ * It contains:
+ * 1. The attributes of the original operator.
+ * 2. Any additional tensor argument.
+ * 3. The postion of the previous op's dst tensor in its argument list ( @ref prev_dst_pos )
+ *
+ * For example, a series of chained ops:
+ *
+ * div(src1, relu(conv(src0, weights, bias, conv_info), act_info), div_info)
+ *
+ * translates to
+ *
+ * dst = conv(src0, weights, bias, conv_info) // main op
+ * dst = relu(dst, act_info) // previous dst is placed in the first (and only) argument
+ * dst = div(src1, dst, div_info) // previous dst is placed in the second argument
+ *
+ * which in turn translates to:
+ *
+ * main op: conv(src0, weights, bias, conv_info)
+ * post op1: relu(act_info, prev_dst_pos = 0)
+ * post op2: div(div_info, src1, prev_dst_pos = 1)
+ *
+ * NOTE: PostOps do not own any resources pointed to by TensorRelatedT if it's a pointer type
+ * NOTE: If TensorRelatedT points to a resource, IPostOp assumes that resource is valid throughout its lifetime
+ * and the lifetime of its copies. This is almost guaranteed as IPostOp is only meant to be used at configure time
+ * after the ITensor or ITensorInfo objects are already constructed
+ */
+template <typename TensorRelatedT>
+struct IPostOp
+{
+ /** Get the arity of the post op
+ * NOTE: that this is one fewer than the arity of the original op, because we implicitly pass the previous op's dst
+ * tensor as one of the arguments
+ */
+ size_t arity() const
+ {
+ return arguments().size();
+ }
+ /** The position of previous op's dst in current op's argument list */
+ virtual int prev_dst_pos() const = 0;
+ /** The IPostOp type */
+ virtual PostOpType type() const = 0;
+ /** The argument tensors
+ * The order of the argument tensor is strictly preserved
+ */
+ virtual std::vector<TensorRelatedT *> arguments() = 0;
+ virtual std::vector<const TensorRelatedT *> arguments() const = 0;
+ /** Clone method used in cases where PostOps are owned by unique_ptr
+ * NOTE: This performs a shallow copy of the TensorRelatedT if TensorRelatedT points to a resource
+ */
+ virtual std::unique_ptr<IPostOp<TensorRelatedT>> clone() const = 0;
+ virtual ~IPostOp()
+ {
+ }
+};
+
+/** A sequence of PostOps that can be appended to the end of other operators */
+template <typename TensorRelatedT>
+class PostOpList
+{
+public:
+ /** Constructor */
+ PostOpList() = default;
+ /** Destructor */
+ ~PostOpList() = default;
+ PostOpList(const PostOpList &other)
+ {
+ for(const auto &op : other._post_ops)
+ {
+ this->_post_ops.push_back(op->clone());
+ }
+ }
+ PostOpList &operator=(const PostOpList &other)
+ {
+ PostOpList tmp{ other };
+ std::swap(tmp, *this);
+ return *this;
+ }
+ PostOpList(PostOpList &&other) = default;
+ PostOpList &operator=(PostOpList &&other) = default;
+
+ /** Add a new post op at the end of the list */
+ template <typename OpT, typename... Args>
+ void push_back_op(Args &&... args)
+ {
+ _post_ops.push_back(std::make_unique<OpT>(std::forward<Args>(args)...));
+ }
+
+ /** Number of post ops */
+ size_t size() const
+ {
+ return _post_ops.size();
+ }
+
+ /** Total number of post ops */
+ size_t total_num_arguments() const
+ {
+ return std::accumulate(_post_ops.begin(), _post_ops.end(), 0, [](size_t op1_arity, const auto & op2)
+ {
+ return op1_arity + op2->arity();
+ });
+ }
+
+ /** Get the underlying post op list */
+ std::vector<std::unique_ptr<IPostOp<TensorRelatedT>>> &get_list()
+ {
+ return _post_ops;
+ }
+ const std::vector<std::unique_ptr<IPostOp<TensorRelatedT>>> &get_list() const
+ {
+ return _post_ops;
+ }
+
+private:
+ std::vector<std::unique_ptr<IPostOp<TensorRelatedT>>> _post_ops{};
+};
+
+} // namespace experimental
+} // namespace arm_compute
+#endif //ARM_COMPUTE_EXPERIMENTAL_IPOSTOP \ No newline at end of file
diff --git a/arm_compute/core/experimental/Types.h b/arm_compute/core/experimental/Types.h
index a478513b1b..c8755dc26c 100644
--- a/arm_compute/core/experimental/Types.h
+++ b/arm_compute/core/experimental/Types.h
@@ -76,6 +76,11 @@ enum TensorType : int32_t
ACL_VEC_COL_SUM = ACL_SRC_4,
ACL_SHIFTS = ACL_SRC_5,
ACL_MULTIPLIERS = ACL_SRC_6,
+
+ // (EXPERIMENTAL_POST_OPS) Post ops arguments begin after everything else
+ EXPERIMENTAL_ACL_POST_OP_ARG = 2048,
+ EXPERIMENTAL_ACL_POST_OP_ARG_FIRST = EXPERIMENTAL_ACL_POST_OP_ARG,
+ EXPERIMENTAL_ACL_POST_OP_ARG_LAST = EXPERIMENTAL_ACL_POST_OP_ARG_FIRST + 1024, // Max number of post op arguments
};
namespace experimental
diff --git a/src/core/CL/CLUtils.cpp b/src/core/CL/CLUtils.cpp
index 67af240044..1da970e705 100644
--- a/src/core/CL/CLUtils.cpp
+++ b/src/core/CL/CLUtils.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -21,12 +21,18 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
+#include "arm_compute/core/CL/CLCompileContext.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Validate.h"
+#include "support/StringSupport.h"
#include "src/core/CL/CLUtils.h"
+#include "src/core/experimental/PostOp.h"
-cl::Image2D arm_compute::create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, DataType data_type, size_t image_row_pitch)
+namespace arm_compute
+{
+cl::Image2D create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, DataType data_type, size_t image_row_pitch)
{
cl_channel_type cl_data_type;
@@ -62,3 +68,90 @@ cl::Image2D arm_compute::create_image2d_from_buffer(const cl::Context &ctx, cons
return cl::Image2D(cl_image);
}
+
+namespace experimental
+{
+PostOpCLKernelUtils::PostOpCLKernelUtils(const Config &supported_config)
+ : _supported_config(supported_config)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(supported_config.empty(), "Empty PostOp CL kernel support configuration is not allowed");
+ for(auto it = _supported_config.begin(); it != _supported_config.end(); ++it)
+ {
+ auto post_op_sequence = it->first;
+ auto post_op_slots = std::get<1>(it->second);
+ ARM_COMPUTE_ERROR_ON_MSG(post_op_sequence.size() != post_op_slots.size(), "The number of PostOps must be the same as that of the assigned slots");
+ }
+}
+
+bool PostOpCLKernelUtils::are_post_op_shapes_compliant(const ITensorInfo *dst, const experimental::PostOpList<ITensorInfo *> &post_ops)
+{
+ // All post ops must be elementwise and must not alter the shape of the original dst tensor after broadcasting
+ for(const auto &op : post_ops.get_list())
+ {
+ for(const auto &tensor : op->arguments())
+ {
+ const TensorShape &out_shape = TensorShape::broadcast_shape(dst->tensor_shape(), (*tensor)->tensor_shape());
+ if(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0))
+ {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+bool PostOpCLKernelUtils::is_post_op_sequence_supported(const PostOpList<ITensorInfo *> &post_ops) const
+{
+ if(post_ops.size() == 0)
+ {
+ return true; // Always support cases where no post op is specified
+ }
+ const auto post_op_sequence = get_post_op_sequence(post_ops);
+
+ return _supported_config.find(post_op_sequence) != _supported_config.end();
+}
+
+void PostOpCLKernelUtils::set_post_ops_cl_build_options(CLBuildOptions &build_opts, const PostOpList<ITensorInfo *> &post_ops) const
+{
+ const auto post_op_sequence = get_post_op_sequence(post_ops);
+ const auto slots = std::get<1>(_supported_config.at(post_op_sequence));
+ for(size_t post_op_id = 0; post_op_id < post_ops.size(); ++post_op_id)
+ {
+ const auto &post_op = post_ops.get_list().at(post_op_id);
+ const auto slot_prefix = "-DP" + support::cpp11::to_string(slots[post_op_id]);
+ if(post_op->type() == experimental::PostOpType::Activation)
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const experimental::PostOpAct<ITensorInfo *> *>(post_op.get());
+ const auto act_type = slot_prefix + "_ACTIVATION_TYPE=" + lower_string(string_from_activation_func(_post_op->_act_info.activation()));
+ const auto act_a_val = slot_prefix + "_ACTIVATION_A_VAL=" + float_to_string_with_full_precision(_post_op->_act_info.a());
+ const auto act_b_val = slot_prefix + "_ACTIVATION_B_VAL=" + float_to_string_with_full_precision(_post_op->_act_info.b());
+ build_opts.add_option(act_type);
+ build_opts.add_option(act_a_val);
+ build_opts.add_option(act_b_val);
+ }
+ else if(post_op->type() == experimental::PostOpType::Eltwise_Add)
+ {
+ size_t arg_id = 1;
+ const auto eltwise_op = slot_prefix + "_ELTWISE_OP=ADD" + "_X_POS_" + support::cpp11::to_string(post_op->prev_dst_pos());
+ build_opts.add_option(eltwise_op);
+ for(const auto &tensor : post_op->arguments())
+ {
+ const auto height = slot_prefix + "_ELTWISE_ARG" + support::cpp11::to_string(arg_id) + "_HEIGHT=" + support::cpp11::to_string((*tensor)->dimension(1));
+ const auto width = slot_prefix + "_ELTWISE_ARG" + support::cpp11::to_string(arg_id) + "_WIDTH=" + support::cpp11::to_string((*tensor)->dimension(0));
+ build_opts.add_option(height);
+ build_opts.add_option(width);
+ ++arg_id;
+ }
+ }
+ }
+}
+
+void PostOpCLKernelUtils::set_post_ops_cl_kernel_name(std::string &kernel_name, const PostOpList<ITensorInfo *> &post_ops) const
+{
+ const auto post_op_sequence = get_post_op_sequence(post_ops);
+ const auto postfix = std::get<0>(_supported_config.at(post_op_sequence));
+ kernel_name += postfix;
+}
+} // namespace experimental
+
+} // namespace arm_compute \ No newline at end of file
diff --git a/src/core/CL/CLUtils.h b/src/core/CL/CLUtils.h
index b65d547756..d133e4fe6f 100644
--- a/src/core/CL/CLUtils.h
+++ b/src/core/CL/CLUtils.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -26,10 +26,13 @@
#define ARM_COMPUTE_CL_CLUTILS_H
#include "arm_compute/core/CL/OpenCL.h"
+#include "arm_compute/core/experimental/IPostOp.h"
namespace arm_compute
{
class TensorShape;
+class CLBuildOptions;
+class ITensorInfo;
/** Create a cl::Image2D object from an OpenCL buffer
*
@@ -51,6 +54,87 @@ class TensorShape;
*/
cl::Image2D create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, DataType data_type, size_t image_row_pitch);
+namespace experimental
+{
+/** @name (EXPERIMENTAL_POST_OPS)
+ * @{
+ */
+
+/** Manage validation, building and configurations of PostOp CL kernels */
+class PostOpCLKernelUtils final
+{
+public:
+ /** CL kernel name postfix for post ops */
+ using NamePostfix = std::string;
+ /** CL kernels that supports post ops assign each post op to a 'slot', in accordance with the postfix
+ * For example, for a kernel with postfix '_act_prelu_eltwiseadd', there are 3 slots
+ * slot 1: (unary) activation, slot 2: pRelu, slot 3: elementwise addition
+ *
+ * Some kernels may allow some slots to be optional, to support multiple combinations of post op sequences.
+ * In such cases, we need to explicitly set up a mapping between each post op and the slots for that kernel.
+ * For example, suppose we have 2 kernels with postfixes: _eltwiseadd_prelu, _act_eltwiseadd_act_prelu, where the activations in the
+ * second kernel are optional. Say we want to support an eltwise addition, followed by a prelu (sequence { eltwiseadd, prelu }).
+ * Now we can choose which one of the 2 kernels to use, since they both support this post op sequence.
+ * We can either:
+ * 1. assign the elementwise to slot 1 and prelu to slot 2 of kernel 1
+ * { { Eltwise_Add, PRelu } -> {"_eltwise_act", {1, 2} } } or
+ * 2. assign the elementwise to slot 2 and prelu to slot 4 of kernel 1
+ * { { Eltwise_Add, PRelu } -> {"_act_eltwiseadd_act_prelu", {2, 4} } }
+ */
+ using Slots = std::vector<unsigned int>;
+ using Config = std::map<PostOpTypeSequence, std::tuple<NamePostfix, Slots>>;
+
+public:
+ explicit PostOpCLKernelUtils(const Config &config);
+
+ /** Check if post op argument tensor shapes are compliant
+ * All post ops must not alter the shape of the original dst tensor (even after broadcasting)
+ *
+ * @param[in] dst Dst tensor to apply the post ops to
+ * @param[in] post_ops Post ops
+ *
+ * @return true if shapes are compliant and false otherwise
+ */
+ static bool are_post_op_shapes_compliant(const ITensorInfo *dst, const experimental::PostOpList<ITensorInfo *> &post_ops);
+ /** Check if the post op sequence is supported in the current configuration
+ *
+ * @param[in] post_ops Post ops
+ *
+ * @return true if the post op sequence is supported and false otherwise
+ */
+ bool is_post_op_sequence_supported(const PostOpList<ITensorInfo *> &post_ops) const;
+ /** Helper function to set PostOp related build options
+ * @note Convention
+ * 1. Each post op "slot" is prefixed with "P<slot number>", followed by the usual parameters for that post op.
+ * E.g. If the first slot is an activation, we need to pass 3 definitions in this way:
+ * -P1_ACTIVATION_TYPE=... -P1_ACTIVATION_A_VAL=... -P1_ACTIVATION_B_VAL=...
+ *
+ * 2. For multi-ary post ops, to pass the position of the previous op's dest tensor,
+ * we append "_X_POS_<pos>" to the post op type.
+ * E.g. for a single post op add(dst, x), where dst is the result of the main op.
+ * In this case, the position of the previous op's dest is 0, so we pass
+ * -P1_ELTWISE_OP=ADD_X_POS_0
+ *
+ * @param[out] built_opts OpenCL kernel build options
+ * @param[in] post_ops Post ops
+ *
+ */
+ void set_post_ops_cl_build_options(CLBuildOptions &built_opts, const PostOpList<ITensorInfo *> &post_ops) const;
+ /** Helper function to set PostOp kernel name
+ *
+ * @param[out] kernel_name OpenCL kernel name
+ * @param[in] post_ops Post ops
+ *
+ */
+ void set_post_ops_cl_kernel_name(std::string &kernel_name, const PostOpList<ITensorInfo *> &post_ops) const;
+
+private:
+ Config _supported_config{};
+};
+/** @} */ // end of group (EXPERIMENTAL_POST_OPS)
+
+} // namespace experimental
+
} // arm_compute
#endif /* ARM_COMPUTE_CL_CLUTILS_H */
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h
new file mode 100644
index 0000000000..fc9704f13b
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h
@@ -0,0 +1,101 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_mixed_precision_helpers.h"
+
+/** (EXPERIMENTAL_POST_OPS) Post Op expansions for the post op sequence:
+ * act (optional): POST_OP1_ACTIVATION_OPTIONAL
+ * eltwise_op : POST_OP2_ELTWISE_OP
+ * act (optional): POST_OP3_ACTIVATION_OPTIONAL
+ */
+
+/** Post Op 1: Activation Block (Optional)
+ * @name POST_OP1_ACTIVATION_OPTIONAL
+ * Toggled by -DP1_ACTIVATION_TYPE
+ * params: same as those in @ref MIXED_PRECISION_ACTIVATION_BLOCK
+ * @{
+ */
+#if defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL)
+#define POST_OP1_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) \
+ MIXED_PRECISION_ACTIVATION_BLOCK(N, P1_ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, DATA_TYPE_ACCUMULATOR);
+#else // defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL)
+#define POST_OP1_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) // noop
+#endif // defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL)
+/** @} */ // end of group POST_OP1_ACTIVATION_OPTIONAL
+
+/** Post Op 2: Eltwise Op Block
+ * Handles both broadcasting and non-broadcasting cases
+ * @name POST_OP2_ELTWISE_OP
+ *
+ * @param[in] P2_ELTWISE_ARG1_HEIGHT Height (number of rows) of the @ref ELTWISE_OPERAND_NAME tensor
+ * @param[in] P2_ELTWISE_ARG1_WIDTH Width (number of columns) of the @ref ELTWISE_OPERAND_NAME tensor
+ * @param[in] OP The elementwise post op
+ * @param[in] M0 The number of consecutive rows
+ * @param[in] N0 The number of consecutive columns
+ * @param[in] BASENAME The basename of the result variables
+ * @param[in] ELTWISE_OPERAND_NAME The basename of the other operand variables
+ * @param[in] DATA_TYPE Data type of the result variables
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @param[in] ZERO Zero vector for z offset
+ * @param[in] PARTIAL_LOAD_M0 The partial size in y, for partial blocks. Supported: [0, @p M0)
+ * @param[in] PARTIAL_LOAD_N0 The partial size in x, for partial blocks. Supported: [0, @p N0)
+ * @param[in] PARTIAL_COND_Y Condition on the y axis to perform the partial load Y. True to use PARTIAL_LOAD_M0 rather than M0.
+ * @param[in] PARTIAL_COND_X Condition on the x axis to perform the partial load X. True to use PARTIAL_LOAD_N0 rather than N0.
+ * @{
+ */
+#if defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+#if P2_ELTWISE_ARG1_HEIGHT == 1
+#if P2_ELTWISE_ARG1_WIDTH == 1 // Case 1: Broadcasting in both X and Y; op2 arg tile shape[YxX] == [1x1]
+#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \
+ VEC_DATA_TYPE(DATA_TYPE, 1) \
+ ELTWISE_OPERAND_NAME##0 = VLOAD(1)(0, (__global DATA_TYPE *)ELTWISE_OPERAND_NAME##_addr); \
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, 1, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp);
+#else // P2_ELTWISE_ARG1_WIDTH == 1; Case 2: Broadcasting in only Y; op2 arg tile shape[YxX] == [1xN0]
+#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, ELTWISE_OPERAND_NAME, ELTWISE_OPERAND_NAME##_addr, 0, ELTWISE_OPERAND_NAME##_stride_y, ZERO, 1, PARTIAL_LOAD_N0, false, PARTIAL_COND_X); \
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp);
+#endif // P2_ELTWISE_ARG1_WIDTH == 1
+#else // P2_ELTWISE_ARG1_HEIGHT == 1; Case 3: No broadcasting; op2 arg tile shape[YxX] == [M0xN0]
+#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * ELTWISE_OPERAND_NAME##_stride_y) + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, ELTWISE_OPERAND_NAME, ELTWISE_OPERAND_NAME##_addr, 0, ELTWISE_OPERAND_NAME##_stride_y, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X); \
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp);
+#endif // P2_ELTWISE_ARG1_HEIGHT == 1
+#endif // defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+/** @} */ // end of group POST_OP2_ELTWISE_OP
+
+/** Post Op 3: Activation Block (Optional)
+ * @name POST_OP3_ACTIVATION_OPTIONAL
+ * Toggled by -DP3_ACTIVATION_TYPE
+ * params: same as those in @ref MIXED_PRECISION_ACTIVATION_BLOCK
+ * @{
+ */
+#if defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL)
+#define POST_OP3_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) \
+ MIXED_PRECISION_ACTIVATION_BLOCK(N, P3_ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, DATA_TYPE_ACCUMULATOR);
+#else // defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL)
+#define POST_OP3_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) // noop
+#endif // defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL)
+/** @} */ // end of group POST_OP3_ACTIVATION_OPTIONAL
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
new file mode 100644
index 0000000000..9404c5e6db
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
@@ -0,0 +1,1404 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_post_ops_act_eltwise_op_act.h"
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped kernel */
+
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+
+#if defined(MIXED_PRECISION)
+#if K0 == 2
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ })
+#elif K0 == 3 // K0 == 3
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ })
+#elif K0 == 4 // K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ c += a.s3 * b.s3; \
+ })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ c += a.s3 * b.s3; \
+ c += a.s4 * b.s4; \
+ c += a.s5 * b.s5; \
+ c += a.s6 * b.s6; \
+ c += a.s7 * b.s7; \
+ })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ c += a.s3 * b.s3; \
+ c += a.s4 * b.s4; \
+ c += a.s5 * b.s5; \
+ c += a.s6 * b.s6; \
+ c += a.s7 * b.s7; \
+ c += a.s8 * b.s8; \
+ c += a.s9 * b.s9; \
+ c += a.sA * b.sA; \
+ c += a.sB * b.sB; \
+ c += a.sC * b.sC; \
+ c += a.sD * b.sD; \
+ c += a.sE * b.sE; \
+ c += a.sF * b.sF; \
+ })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0 conditions
+#else // defined(MIXED_PRECISION)
+#if K0 == 2
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ })
+#elif K0 == 3 // K0 == 3
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ })
+#elif K0 == 4 // K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ c = fma(a.s3, b.s3, c); \
+ })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ c = fma(a.s3, b.s3, c); \
+ c = fma(a.s4, b.s4, c); \
+ c = fma(a.s5, b.s5, c); \
+ c = fma(a.s6, b.s6, c); \
+ c = fma(a.s7, b.s7, c); \
+ })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ c = fma(a.s3, b.s3, c); \
+ c = fma(a.s4, b.s4, c); \
+ c = fma(a.s5, b.s5, c); \
+ c = fma(a.s6, b.s6, c); \
+ c = fma(a.s7, b.s7, c); \
+ c = fma(a.s8, b.s8, c); \
+ c = fma(a.s9, b.s9, c); \
+ c = fma(a.sA, b.sA, c); \
+ c = fma(a.sB, b.sB, c); \
+ c = fma(a.sC, b.sC, c); \
+ c = fma(a.sD, b.sD, c); \
+ c = fma(a.sE, b.sE, c); \
+ c = fma(a.sF, b.sF, c); \
+ })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0 conditions
+#endif // defined(MIXED_PRECISION)
+
+#if defined(ARM_DOT_K0XN0)
+#undef ARM_DOT_K0XN0
+#endif // defined(ARM_DOT_K0XN0)
+
+#if N0 == 2
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ })
+#elif N0 == 3 // N0 == 3
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ })
+#elif N0 == 4 // N0 == 4
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ })
+#elif N0 == 8 // N0 == 8
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ })
+#elif N0 == 16 // N0 == 16
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ ARM_DOT_K0((a), (b##8), (c.s8)); \
+ ARM_DOT_K0((a), (b##9), (c.s9)); \
+ ARM_DOT_K0((a), (b##A), (c.sA)); \
+ ARM_DOT_K0((a), (b##B), (c.sB)); \
+ ARM_DOT_K0((a), (b##C), (c.sC)); \
+ ARM_DOT_K0((a), (b##D), (c.sD)); \
+ ARM_DOT_K0((a), (b##E), (c.sE)); \
+ ARM_DOT_K0((a), (b##F), (c.sF)); \
+ })
+#else // N0 not supported
+#error "N0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
+ (get_global_id(2) * lhs_stride_z);
+
+ // Compute RHS matrix address
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += get_global_id(2) * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+ for(int i = 0; i < k; i += K0)
+ {
+ // Supported cases (M0, K0):
+ // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
+ // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
+ // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
+ // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
+ // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
+ // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
+ // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
+ // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
+
+ // Load values from RHS matrix
+ LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X * sizeof(DATA_TYPE), zero);
+
+ // Accumulate
+ ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef LHS_STEP_LOOP
+#undef RHS_STEP_LOOP
+}
+
+#if defined(OPENCL_IMAGE_SUPPORT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t_texture, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
+
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X (PIXEL_UNIT * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X PIXEL_UNIT
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
+ (get_global_id(2) * lhs_stride_z);
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = get_global_id(2);
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+ for(int i = 0; i < K; i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
+
+ // Load values from RHS matrix stored in a cl_image
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+
+ // Accumulate
+ ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
+
+ x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef PIXEL_UNIT
+#undef LHS_STEP_LOOP
+#undef RHS_STEP_LOOP
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT)
+
+#if defined(LHS_TRANSPOSE)
+
+#define VTYPE(TYPE, SIZE) VEC_DATA_TYPE(TYPE, SIZE)
+
+#if defined(MIXED_PRECISION)
+
+#if(GPU_ARCH == GPU_ARCH_MIDGARD)
+#define ARM_VFMA(N0, a, b, c) c += (CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))) * (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0)));
+#else // GPU_ARCH == GPU_ARCH_MIDGARD
+#define ARM_VFMA(N0, a, b, c) c = fma((CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (c));
+#endif // GPU_ARCH == GPU_ARCH_MIDGARD
+
+#else // defined(MIXED_PRECISION
+
+#if(GPU_ARCH == GPU_ARCH_MIDGARD)
+#define ARM_VFMA(N0, a, b, c) c += (a) * (b);
+#else // GPU_ARCH == GPU_ARCH_MIDGARD
+#define ARM_VFMA(N0, a, b, c) c = fma((a), (b), (c));
+#endif // GPU_ARCH == GPU_ARCH_MIDGARD
+
+#endif // defined(MIXED_PRECISION)
+
+#define ARM_VVM_T_NT_1xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a), b, (C##0)); \
+ })
+#define ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s0), b, (C##0)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s1), b, (C##1)); \
+ })
+#define ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s2), b, (C##2)); \
+ })
+#define ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s3), b, (C##3)); \
+ })
+#define ARM_VVM_T_NT_8xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s4), b, (C##4)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s5), b, (C##5)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s6), b, (C##6)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s7), b, (C##7)); \
+ })
+
+// Factory macro for the column-vector (transposed) by row-vector (not transposed) multiplication. K0 = 1
+// a is the column-vector (transposed)
+// b is the row-vector (not transposed)
+// C is the output matrix
+// Lower case is a vector (a, b)
+// Upper case is a matrix (C)
+#define ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, a, b, C) ARM_VVM_T_NT_##M0##xN0x1(N0, TYPE, a, b, C)
+
+#define ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##0), (B##0), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##1), (B##1), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##2), (B##2), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##3), (B##3), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##4), (B##4), C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##5), (B##5), C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##6), (B##6), C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##7), (B##7), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x16(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##8), (B##8), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##9), (B##9), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##A), (B##A), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##B), (B##B), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##C), (B##C), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##D), (B##D), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##E), (B##E), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##F), (B##F), C); \
+ })
+
+// Factory macro for the matrix (transposed) by matrix (not transposed) multiplication.
+// The dimensions for this matrix multiplications are defined through M0, N0 and K0
+// The dimensions supported are:
+// M0: 1, 2, 3, 4, 8
+// N0: 1, 2, 3, 4, 8, 16
+// K0: 1, 2, 3, 4, 8, 16
+// This macro calls the vector-by-matrix macro K0 times
+// A, B and C are matrices
+#define ARM_MM_T_NT(M0, N0, K0, TYPE, A, B, C) \
+ CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
+ (M0, N0, TYPE, A, B, C)
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (M0)
+#define LHS_STEP_X ((M0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (M0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (N0)
+#define RHS_STEP_X ((N0) * (H0))
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (N0)
+#endif // defined(RHS_INTERLEAVE)
+
+ const uint x = get_global_id(0);
+ const uint y = get_global_id(1);
+ const uint z = get_global_id(2);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
+
+ // Compute RHS matrix address
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+ __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
+ __global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
+
+ for(int i = 0; i < k; i += K0)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, M0)
+ a0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+#if K0 > 1
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 1
+
+#if K0 > 2
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 2
+
+#if K0 > 3
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 3
+
+#if K0 > 4
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 4
+
+#if K0 > 8
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 8
+
+#ifndef LHS_INTERLEAVE
+ lhs += (M0 * K0 * (V0 - 1));
+#endif // LHS_INTERLEAVE
+
+#ifndef RHS_INTERLEAVE
+ rhs += (N0 * K0 * (H0 - 1));
+#endif // RHS_INTERLEAVE
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#if defined(OPENCL_IMAGE_SUPPORT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt_texture, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
+
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (M0)
+#define LHS_STEP_X ((M0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (M0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (PIXEL_UNIT)
+#endif // defined(RHS_INTERLEAVE)
+
+ const uint x = get_global_id(0);
+ const uint y = get_global_id(1);
+ const uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (z % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+ __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
+
+ for(int i = 0; i < K; i += K0)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, M0)
+ a0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+#if K0 > 1
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 1
+
+#if K0 > 2
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 2
+
+#if K0 > 3
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 3
+
+#if K0 > 4
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 4
+
+#if K0 > 8
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 8
+
+#ifndef LHS_INTERLEAVE
+ lhs += (M0 * K0 * (V0 - 1));
+#endif // LHS_INTERLEAVE
+
+ x_rhs += K0 * RHS_STEP_X;
+#ifndef RHS_INTERLEAVE
+ x_rhs += (PIXEL_UNIT * K0 * (H0 - 1));
+#endif // RHS_INTERLEAVE
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef PIXEL_UNIT
+#undef LHS_STEP_LOOP
+#undef RHS_STEP_LOOP
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT)
+
+#endif // defined(LHS_TRANSPOSE)
+#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h
new file mode 100644
index 0000000000..9ddf51a13c
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h
@@ -0,0 +1,262 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+/** (EXPERIMENTAL_POST_OPS) Macros for (binary) elementwise operations */
+
+/** List of (binary) elementwise operators, accounting for the argument position of argument X
+ * @note X_Pos denotes the position of argument X. e.g. X_POS_0 means X is in the first place whereas X_POS_1 means X is in the second place
+ * @name elementwise_post_ops
+ * @{
+ */
+#if defined(N0) && !defined(VEC_SIZE)
+#define VEC_SIZE N0
+#endif // defined(N0) && !defined(VEC_SIZE)
+
+#if defined(VEC_SIZE) && defined(DATA_TYPE)
+
+#define ADD_X_POS_0(x, y) (x) + (y)
+#define SUB_X_POS_0(x, y) (x) - (y)
+#define MAX_X_POS_0(x, y) max(x, y)
+#define MIN_X_POS_0(x, y) min(x, y)
+#define SQUARED_DIFF_X_POS_0(x, y) (x - y) * (x - y)
+#define POWER_X_POS_0(x, y) pow(x, y)
+#if VEC_SIZE == 1
+#define PRELU_X_POS_0(x, y) (x > 0 ? x : x * y)
+#else // VEC_SIZE == 1
+#define PRELU_X_POS_0(x, y) (select(y * x, x, CONVERT((x > (DATA_TYPE)0), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))))
+#endif // VEC_SIZE == 1
+#define DIV_X_POS_0(x, y) (x / y)
+#define AND_X_POS_0(x, y) (CONVERT((x && y), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) & ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))1))
+#define OR_X_POS_0(x, y) (CONVERT((x || y), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) & ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))1))
+
+#define ADD_X_POS_1(x, y) ADD_X_POS_0(x, y)
+#define SUB_X_POS_1(x, y) (y) - (x)
+#define MAX_X_POS_1(x, y) MAX_X_POS_0(x, y)
+#define MIN_X_POS_1(x, y) MIN_X_POS_0(x, y)
+#define SQUARED_DIFF_X_POS_1(x, y) SQUARED_DIFF_X_POS_0(x, y)
+#define POWER_X_POS_1(x, y) pow(y, x)
+#if VEC_SIZE == 1
+#define PRELU_X_POS_1(x, y) (y > 0 ? y : y * x)
+#else // VEC_SIZE == 1
+#define PRELU_X_POS_1(x, y) (select(x * y, y, CONVERT((y > (DATA_TYPE)0), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))))
+#endif // VEC_SIZE == 1
+#define DIV_X_POS_1(x, y) (y / x)
+#define AND_X_POS_1(x, y) AND_X_POS_0(x, y)
+#define OR_X_POS_1(x, y) OR_X_POS_0(x, y)
+
+// By default use the order of the arguments as they are passed in, ie. _X_POS_0
+#define ADD(x, y) ADD_X_POS_0(x, y)
+#define SUB(x, y) SUB_X_POS_0(x, y)
+#define MAX(x, y) MAX_X_POS_0(x, y)
+#define MIN(x, y) MIN_X_POS_0(x, y)
+#define SQUARED_DIFF(x, y) SQUARED_DIFF_X_POS_0(x, y)
+#define POWER(x, y) POWER_X_POS_0(x, y)
+#define PRELU(x, y) PRELU_X_POS_0(x, y)
+#define DIV(x, y) DIV_X_POS_0(x, y)
+#define AND(x, y) AND_X_POS_0(x, y)
+#define OR(x, y) OR_X_POS_0(x, y)
+
+#endif // defined(VEC_SIZE) && defined(DATA_TYPE)
+/** @} */ // end of group elementwise_post_ops
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name ELTWISE_OP_ROW_n
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in, out] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_ROW_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##0 = OP(OPERAND1##0, OPERAND2##0);
+
+#define ELTWISE_OP_ROW_2(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##1 = OP(OPERAND1##1, OPERAND2##1);
+
+#define ELTWISE_OP_ROW_3(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_2(OP, OPERAND1, OPERAND2) \
+ OPERAND1##2 = OP(OPERAND1##2, OPERAND2##2);
+
+#define ELTWISE_OP_ROW_4(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_3(OP, OPERAND1, OPERAND2) \
+ OPERAND1##3 = OP(OPERAND1##3, OPERAND2##3);
+
+#define ELTWISE_OP_ROW_5(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_4(OP, OPERAND1, OPERAND2) \
+ OPERAND1##4 = OP(OPERAND1##4, OPERAND2##4);
+
+#define ELTWISE_OP_ROW_6(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_5(OP, OPERAND1, OPERAND2) \
+ OPERAND1##5 = OP(OPERAND1##5, OPERAND2##5);
+
+#define ELTWISE_OP_ROW_7(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_6(OP, OPERAND1, OPERAND2) \
+ OPERAND1##6 = OP(OPERAND1##6, OPERAND2##6);
+
+#define ELTWISE_OP_ROW_8(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_7(OP, OPERAND1, OPERAND2) \
+ OPERAND1##7 = OP(OPERAND1##7, OPERAND2##7);
+
+#define ELTWISE_OP_ROW_9(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_8(OP, OPERAND1, OPERAND2) \
+ OPERAND1##8 = OP(OPERAND1##8, OPERAND2##8);
+
+#define ELTWISE_OP_ROW_10(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_9(OP, OPERAND1, OPERAND2) \
+ OPERAND1##9 = OP(OPERAND1##9, OPERAND2##9);
+
+#define ELTWISE_OP_ROW_11(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_10(OP, OPERAND1, OPERAND2) \
+ OPERAND1##A = OP(OPERAND1##A, OPERAND2##A);
+
+#define ELTWISE_OP_ROW_12(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_11(OP, OPERAND1, OPERAND2) \
+ OPERAND1##B = OP(OPERAND1##B, OPERAND2##B);
+
+#define ELTWISE_OP_ROW_13(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_12(OP, OPERAND1, OPERAND2) \
+ OPERAND1##C = OP(OPERAND1##C, OPERAND2##C);
+
+#define ELTWISE_OP_ROW_14(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_13(OP, OPERAND1, OPERAND2) \
+ OPERAND1##D = OP(OPERAND1##D, OPERAND2##D);
+
+#define ELTWISE_OP_ROW_15(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_14(OP, OPERAND1, OPERAND2) \
+ OPERAND1##E = OP(OPERAND1##E, OPERAND2##E);
+
+#define ELTWISE_OP_ROW_16(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_15(OP, OPERAND1, OPERAND2) \
+ OPERAND1##F = OP(OPERAND1##F, OPERAND2##F);
+
+/** @} */ // end of group ELTWISE_OP_ROW_n
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name ELTWISE_OP_BLOCK
+ *
+ * Supported cases are N=1,2,3,...,16
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] N The number of vectors in the block
+ * @param[in] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_BLOCK_STR(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_ROW_##N(OP, OPERAND1, OPERAND2)
+#define ELTWISE_OP_BLOCK(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_BLOCK_STR(OP, N, OPERAND1, OPERAND2)
+/** @} */ // end of group ELTWISE_OP_BLOCK
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) with broadcasting
+ * @name ELTWISE_OP_ROW_BROADCAST_n
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in, out] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the broadcast operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_ROW_BROADCAST_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##0 = OP(OPERAND1##0, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_2(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##1 = OP(OPERAND1##1, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_3(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_2(OP, OPERAND1, OPERAND2) \
+ OPERAND1##2 = OP(OPERAND1##2, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_4(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_3(OP, OPERAND1, OPERAND2) \
+ OPERAND1##3 = OP(OPERAND1##3, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_5(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_4(OP, OPERAND1, OPERAND2) \
+ OPERAND1##4 = OP(OPERAND1##4, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_6(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_5(OP, OPERAND1, OPERAND2) \
+ OPERAND1##5 = OP(OPERAND1##5, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_7(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_6(OP, OPERAND1, OPERAND2) \
+ OPERAND1##6 = OP(OPERAND1##6, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_8(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_7(OP, OPERAND1, OPERAND2) \
+ OPERAND1##7 = OP(OPERAND1##7, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_9(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_8(OP, OPERAND1, OPERAND2) \
+ OPERAND1##8 = OP(OPERAND1##8, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_10(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_9(OP, OPERAND1, OPERAND2) \
+ OPERAND1##9 = OP(OPERAND1##9, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_11(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_10(OP, OPERAND1, OPERAND2) \
+ OPERAND1##A = OP(OPERAND1##A, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_12(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_11(OP, OPERAND1, OPERAND2) \
+ OPERAND1##B = OP(OPERAND1##B, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_13(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_12(OP, OPERAND1, OPERAND2) \
+ OPERAND1##C = OP(OPERAND1##C, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_14(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_13(OP, OPERAND1, OPERAND2) \
+ OPERAND1##D = OP(OPERAND1##D, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_15(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_14(OP, OPERAND1, OPERAND2) \
+ OPERAND1##E = OP(OPERAND1##E, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_16(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_15(OP, OPERAND1, OPERAND2) \
+ OPERAND1##F = OP(OPERAND1##F, OPERAND2);
+
+/** @} */ // end of group ELTWISE_OP_ROW_BROADCAST_n
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) with broadcasting
+ * @name ELTWISE_OP_BLOCK_BROADCAST
+ * @note Only support:
+ * case 1 broadcast in Y dimension : Operand1 [YxX] + Operand2 [1xX];
+ * case 2 broadcast in both Y and X dimensions : Operand1 [YxX] + Operand2 [1x1] (scalar);
+ * Does NOT support broad cast in X dimension: Operand1 [YxX] + Operand2 [Yx1];
+ *
+ * Supported cases are N=1,2,3,...,16
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] N The number of vectors in the block
+ * @param[in] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_BLOCK_BROADCAST_STR(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_ROW_BROADCAST_##N(OP, OPERAND1, OPERAND2)
+#define ELTWISE_OP_BLOCK_BROADCAST(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_BLOCK_BROADCAST_STR(OP, N, OPERAND1, OPERAND2)
+/** @} */ // end of group ELTWISE_OP_BLOCK_BROADCAST \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h
new file mode 100644
index 0000000000..e8df121142
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h
@@ -0,0 +1,113 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_elementwise_op_helpers.h"
+#include "gemm_helpers.h"
+#include "load_store_utility.h"
+
+/** (EXPERIMENTAL_POST_OPS) Convenience macros for automatically handling mixed precision (fp16 and fp32) operations
+ * -DMIXED_PRECISION toggles mixed precision mode
+ */
+
+/** Mixed-Precision-Aware Activation Block
+ * @name MIXED_PRECISION_ACTIVATION_BLOCK
+ * params N ... B_VAL: same as those in @ref ACTIVATION_BLOCK
+ *
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL, DATA_TYPE_ACCUMULATOR) \
+ ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME, A_VAL, B_VAL);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL, DATA_TYPE_ACCUMULATOR) \
+ ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_ACTIVATION_BLOCK
+
+/** Mixed-Precision-Aware Elementwise Op Block
+ * Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name MIXED_PRECISION_ELTWISE_OP_BLOCK
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] M0 The number of consecutive rows
+ * @param[in] N0 The number of consecutive columns
+ * @param[in] OPERAND1 The basename of the first and result operand variables
+ * @param[in] OPERAND2 The basename of the second operand variables
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @param[in] CONVERTED_OPERAND2 The basename of the second operand variables converted to higher-precision in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, OPERAND2, CONVERTED_OPERAND2); \
+ ELTWISE_OP_BLOCK(OP, M0, OPERAND1, CONVERTED_OPERAND2);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ ELTWISE_OP_BLOCK(OP, M0, OPERAND1, OPERAND2);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_ELTWISE_OP_BLOCK
+
+/** Mixed-Precision-Aware Elementwise Op Broadcast Block
+ * Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST
+ * @note Only support:
+ * case 1 broadcast in Y dimension : Operand1 [YxX] + Operand2 [1xX]; this means @p N0 > 1
+ * case 2 broadcast in both Y and X dimensions : Operand1 [YxX] + Operand2 [1x1] (scalar) ; this means @p N0 == 1
+ * Does NOT support broad cast in X dimension: Operand1 [YxX] + Operand2 [Yx1]; this means @p M0 should never == 1
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] M0 The number of consecutive rows, > 1
+ * @param[in] N0 The number of consecutive columns, >= 1
+ * @param[in] OPERAND1 The basename of the first and result operand variables
+ * @param[in] OPERAND2 The basename of the second operand variables
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @param[in] CONVERTED_OPERAND2 The basename of the second operand variables converted to higher-precision in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, OPERAND2, CONVERTED_OPERAND2); \
+ ELTWISE_OP_BLOCK_BROADCAST(OP, M0, OPERAND1, CONVERTED_OPERAND2##0);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ ELTWISE_OP_BLOCK_BROADCAST(OP, M0, OPERAND1, OPERAND2##0);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST
+
+/** Mixed-Precision-Aware Boundary-Aware Store Block
+ * @name MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE
+ * params M0 ... PARTIAL_COND_X, same as those in STORE_BLOCK_BOUNDARY_AWARE
+ *
+ * @param[in] BASENAME_LP The name of the low precision variables, converted from BASENAME, in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X, BASENAME_LP) \
+ CONVERT_BLOCK(M0, N0, DATA_TYPE, BASENAME, BASENAME_LP); \
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME_LP, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X, BASENAME_LP) \
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl
index 431c97becc..dd03147ad6 100644
--- a/src/core/CL/cl_kernels/common/gemm.cl
+++ b/src/core/CL/cl_kernels/common/gemm.cl
@@ -2524,6 +2524,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The data type used for the accumulators must be passed at compile time using -DDATA_TYPE_ACCUMULATOR (e.g. -DDATA_TYPE_ACCUMULATOR=float)
@@ -2798,6 +2799,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
@@ -3179,6 +3181,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
@@ -3560,6 +3563,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
@@ -3929,7 +3933,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#endif // defined(LHS_TRANSPOSE)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
diff --git a/src/core/experimental/PostOp.h b/src/core/experimental/PostOp.h
new file mode 100644
index 0000000000..64414d2050
--- /dev/null
+++ b/src/core/experimental/PostOp.h
@@ -0,0 +1,171 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_EXPERIMENTAL_POSTOP
+#define ARM_COMPUTE_EXPERIMENTAL_POSTOP
+
+#include "arm_compute/core/experimental/IPostOp.h"
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/experimental/Types.h"
+#include "support/Cast.h"
+
+#include <vector>
+
+/** (EXPERIMENTAL_POST_OPS) */
+namespace arm_compute
+{
+namespace experimental
+{
+template <typename TensorRelatedT>
+struct PostOpAct : public IPostOp<TensorRelatedT>
+{
+public:
+ PostOpAct(const ActivationLayerInfo &act_info)
+ : _act_info{ act_info }
+ {
+ }
+ // NOTE: PostOps do not own any resources pointed to by TensorRelatedT if it's a pointer type, thus allow shallow copy
+ ~PostOpAct() override = default;
+ PostOpAct(const PostOpAct &) = default;
+ PostOpAct &operator=(const PostOpAct &) = default;
+ PostOpAct(PostOpAct &&) = default;
+ PostOpAct &operator=(PostOpAct &&) = default;
+
+ int prev_dst_pos() const override
+ {
+ return 0;
+ }
+ PostOpType type() const override
+ {
+ return PostOpType::Activation;
+ }
+ std::vector<TensorRelatedT *> arguments() override
+ {
+ return {};
+ }
+ std::vector<const TensorRelatedT *> arguments() const override
+ {
+ return {};
+ }
+ std::unique_ptr<IPostOp<TensorRelatedT>> clone() const override
+ {
+ return std::make_unique<PostOpAct<TensorRelatedT>>(*this);
+ }
+ ActivationLayerInfo _act_info;
+};
+
+template <typename TensorRelatedT>
+struct PostOpEltwiseAdd : public IPostOp<TensorRelatedT>
+{
+public:
+ PostOpEltwiseAdd(TensorRelatedT addend, int prev_op_arg_pos, ConvertPolicy policy)
+ : _addend{ addend },
+ _prev_op_arg_pos{ prev_op_arg_pos },
+ _policy{ policy }
+ {
+ }
+ // NOTE: PostOps do not own any resources pointed to by TensorRelatedT if it's a pointer type, thus allow shallow copy
+ ~PostOpEltwiseAdd() override = default;
+ PostOpEltwiseAdd(const PostOpEltwiseAdd &) = default;
+ PostOpEltwiseAdd &operator=(const PostOpEltwiseAdd &) = default;
+ PostOpEltwiseAdd(PostOpEltwiseAdd &&) = default;
+ PostOpEltwiseAdd &operator=(PostOpEltwiseAdd &&) = default;
+ int prev_dst_pos() const override
+ {
+ return _prev_op_arg_pos;
+ }
+ PostOpType type() const override
+ {
+ return PostOpType::Eltwise_Add;
+ }
+ std::vector<TensorRelatedT *> arguments() override
+ {
+ return { &_addend };
+ }
+ std::vector<const TensorRelatedT *> arguments() const override
+ {
+ return { &_addend };
+ }
+ std::unique_ptr<IPostOp<TensorRelatedT>> clone() const override
+ {
+ return std::make_unique<PostOpEltwiseAdd<TensorRelatedT>>(*this);
+ }
+ TensorRelatedT _addend;
+ int _prev_op_arg_pos;
+ ConvertPolicy _policy;
+};
+
+/** Transform a PostOpList of type FromTensorT to one of type ToTensorT */
+template <typename FromTensorT, typename ToTensorT>
+PostOpList<ToTensorT> transform_post_op_list_arguments(const PostOpList<FromTensorT> &post_ops, std::function<ToTensorT(FromTensorT)> transform_arg)
+{
+ PostOpList<ToTensorT> transformed_post_ops;
+ int op_idx = 0;
+ for(const auto &post_op : post_ops.get_list())
+ {
+ switch(post_op->type())
+ {
+ case PostOpType::Activation:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const PostOpAct<FromTensorT> *>(post_op.get());
+ transformed_post_ops.template push_back_op<PostOpAct<ToTensorT>>(_post_op->_act_info);
+ break;
+ }
+ case PostOpType::Eltwise_Add:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const PostOpEltwiseAdd<FromTensorT> *>(post_op.get());
+ transformed_post_ops.template push_back_op<PostOpEltwiseAdd<ToTensorT>>(transform_arg(_post_op->_addend), _post_op->_prev_op_arg_pos, _post_op->_policy);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported PostOpType");
+ }
+ }
+ ++op_idx;
+ }
+ return transformed_post_ops;
+}
+
+/** Get post op argument TensorType from post op argument index in a flattened, ordered post op argument list */
+inline TensorType get_post_op_arg_type(size_t index)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(static_cast<int>(index) > EXPERIMENTAL_ACL_POST_OP_ARG_LAST - EXPERIMENTAL_ACL_POST_OP_ARG_FIRST, "Post Op argument index is out of range");
+ return static_cast<TensorType>(EXPERIMENTAL_ACL_POST_OP_ARG_FIRST + static_cast<int>(index));
+}
+
+template <typename T>
+PostOpTypeSequence get_post_op_sequence(const PostOpList<T> &post_ops)
+{
+ PostOpTypeSequence post_op_sequence;
+ for(const auto &op : post_ops.get_list())
+ {
+ post_op_sequence.push_back(op->type());
+ }
+ return post_op_sequence;
+}
+
+} // namespace experimental
+} // namespace arm_compute
+#endif //ARM_COMPUTE_EXPERIMENTAL_POSTOP \ No newline at end of file
diff --git a/src/gpu/cl/ClKernelLibrary.cpp b/src/gpu/cl/ClKernelLibrary.cpp
index 9d524f936e..cbc4caf5f6 100644
--- a/src/gpu/cl/ClKernelLibrary.cpp
+++ b/src/gpu/cl/ClKernelLibrary.cpp
@@ -276,6 +276,10 @@ const std::map<std::string, std::string> ClKernelLibrary::_kernel_program_map =
{ "gemm_mm_reshaped_lhs_nt_rhs_t_texture", "common/gemm.cl" },
{ "gemm_mm_reshaped_lhs_t_rhs_nt", "common/gemm.cl" },
{ "gemm_mm_reshaped_lhs_t_rhs_nt_texture", "common/gemm.cl" },
+ { "gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
+ { "gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
+ { "gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
+ { "gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
{ "gemm_mm_reshaped_only_rhs_nt", "common/gemm.cl" },
{ "gemm_mm_reshaped_only_rhs_nt_texture", "common/gemm.cl" },
{ "gemm_mm_reshaped_only_rhs_t", "common/gemm.cl" },
@@ -581,6 +585,10 @@ const std::map<std::string, std::string> ClKernelLibrary::_program_source_map =
#include "./cl_kernels/common/gemm.clembed"
},
{
+ "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl",
+#include "./cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.clembed"
+ },
+ {
"common/gemmlowp.cl",
#include "./cl_kernels/common/gemmlowp.clembed"
},
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
index 3a39128c0a..4b28e2badc 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
@@ -34,6 +34,7 @@
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/CL/CLUtils.h"
#include "src/core/CL/CLValidate.h"
+#include "src/core/experimental/PostOp.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/helpers/float_ops.h"
@@ -51,6 +52,16 @@ namespace
{
using ElementsProcessed = Steps;
+const auto post_op_utils = experimental::PostOpCLKernelUtils(
+{
+ // PostOp sequence -> {Kernel Postfix, PostOp Slots}
+ { {}, { "", {} } },
+ { { experimental::PostOpType::Activation }, { "", { 1 } } },
+ { { experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 2 } } },
+ { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 1, 2 } } },
+ { { experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 2, 3 } } },
+ { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 1, 2, 3 } } }
+});
Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
@@ -74,6 +85,7 @@ Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, cons
"Bias addition only supported with broadcast mode in case the input or dst has to be reinterpreted as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision && (src0->data_type() == DataType::F32), "Mixed precision only supported for F16 data type");
ARM_COMPUTE_RETURN_ON_ERROR(gemm::validate_image2d_support_on_rhs(*src1, rhs_info));
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.is_post_op_sequence_supported(gemm_info.post_ops), "The sequence of Post Ops is not supported");
const unsigned int m = gemm_info.m;
const unsigned int n = gemm_info.n;
@@ -117,6 +129,7 @@ Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, cons
const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.are_post_op_shapes_compliant(dst, gemm_info.post_ops), "The Post Op shapes are not compliant");
}
return Status{};
@@ -180,6 +193,7 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
_add_bias = src2 != nullptr;
_export_to_cl_image = rhs_info.export_to_cl_image;
_k = gemm_info.k;
+ _num_post_op_args = gemm_info.post_ops.total_num_arguments();
// Check if we need to slide the matrix B
const unsigned int num_dimensions_src0 = src0->num_dimensions();
@@ -222,9 +236,6 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
build_opts.add_option_if(lhs_info.transpose, "-DLHS_TRANSPOSE");
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
- build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
- build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
- build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
build_opts.add_option_if(enable_mixed_precision, "-DMIXED_PRECISION");
build_opts.add_option_if(rhs_info.export_to_cl_image, "-DOPENCL_IMAGE_SUPPORT");
build_opts.add_option("-DRHS_HEIGHT=" + support::cpp11::to_string(src1->dimension(1)));
@@ -240,11 +251,23 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
+ // If post_ops are used, then we disable the use of gemm_info.activation_info
+ if(gemm_info.post_ops.size() > 0)
+ {
+ post_op_utils.set_post_ops_cl_build_options(build_opts, gemm_info.post_ops);
+ }
+ else
+ {
+ build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
+ build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
+ build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
+ }
std::string kernel_name("gemm_mm_reshaped_");
kernel_name += lhs_info.transpose ? "lhs_t_" : "lhs_nt_";
kernel_name += rhs_info.transpose ? "rhs_t" : "rhs_nt";
kernel_name += rhs_info.export_to_cl_image ? "_texture" : "";
+ post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
@@ -360,6 +383,13 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
// dst buffer
add_2D_tensor_argument(idx, dst, slice);
+ // post op argument buffers
+ for(size_t i = 0; i < _num_post_op_args; ++i)
+ {
+ const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
+ add_2D_tensor_argument(idx, post_op_arg, slice);
+ }
+
// K dimension (not used if _export_to_cl_image == true)
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_k));
@@ -378,6 +408,12 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
// dst stride_z
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
+ // post op argument stride_z
+ for(size_t i = 0; i < _num_post_op_args; ++i)
+ {
+ const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(post_op_arg->info()->strides_in_bytes()[2]));
+ }
// Cross-plan padding (if _reinterpret_output_as_3d = true)
if(_reinterpret_output_as_3d)
{
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
index b320d318e9..09160ec0d1 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
@@ -106,6 +106,7 @@ private:
bool _add_bias{ false };
bool _export_to_cl_image{ false };
unsigned int _k{ 1 };
+ unsigned int _num_post_op_args{ 0 }; // (EXPERIMENTAL_POST_OPS) total number of post op arguments
};
} // namespace kernels
} // namespace opencl
diff --git a/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp b/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp
index e8affc0853..234a0df2aa 100644
--- a/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp
+++ b/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp
@@ -29,11 +29,10 @@
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
+#include "src/common/utils/Log.h"
#include "src/core/CL/kernels/CLBatchNormalizationLayerKernel.h"
-#include "src/common/utils/Log.h"
-
namespace arm_compute
{
CLBatchNormalizationLayer::CLBatchNormalizationLayer()
diff --git a/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp b/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp
index fd12dea4fe..b13c380470 100644
--- a/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp
+++ b/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp
@@ -26,6 +26,7 @@
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
+#include "src/core/experimental/PostOp.h"
#include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h"
#include "src/gpu/cl/kernels/ClGemmReshapeLhsMatrixKernel.h"
#include "src/gpu/cl/kernels/ClGemmReshapeRhsMatrixKernel.h"
@@ -61,11 +62,21 @@ using CLGEMMMatrixMultiplyReshaped = CLSynthetizeOperator<ClGemmMatrixMultiplyRe
template <typename T>
using CLGEMMMatrixMultiplyReshapedFixture = GEMMMatrixMultiplyReshapedValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped>;
+// Fixture for CLGEMMMatrixMultiplyReshaped with post ops
+template <typename T>
+using CLGEMMMatrixMultiplyReshapedWithPostOpsFixture =
+ GEMMMatrixMultiplyReshapedWithPostOpsValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped>;
+
// Fixture for CLGEMMMatrixMultiplyReshaped mixed precision
template <typename T>
using CLGEMMMatrixMultiplyReshapedMixedPrecisionFixture =
GEMMMatrixMultiplyReshapedValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped, true>;
+// Fixture for CLGEMMMatrixMultiplyReshaped mixed precision with post ops
+template <typename T>
+using CLGEMMMatrixMultiplyReshapedMixedPrecisionWithPostOpsFixture =
+ GEMMMatrixMultiplyReshapedWithPostOpsValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped, true>;
+
// Fixture for CLGEMMMatrixMultiplyReshaped3D
template <typename T>
using CLGEMMMatrixMultiplyReshaped3DFixture = GEMMMatrixMultiplyReshaped3DValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped>;
@@ -172,6 +183,65 @@ const auto broadcast_bias_values = framework::dataset::make("broadcast_bias", {
/** LHS transposed values */
const auto lhs_transpose_values = framework::dataset::make("lhs_transpose", { false, true } );
+/** Post Ops */
+using PostOpArgBroadcast = CLGEMMMatrixMultiplyReshapedWithPostOpsFixture<float>::PostOpArgBroadcast;
+experimental::PostOpList<PostOpArgBroadcast> empty_post_ops()
+{
+ return experimental::PostOpList<PostOpArgBroadcast>{};
+}
+
+experimental::PostOpList<PostOpArgBroadcast> post_ops_1()
+{
+ experimental::PostOpList<PostOpArgBroadcast> post_ops{};
+ post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::LINEAR, 0.5F, 0.0F});
+ post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
+ std::make_tuple(true, true, false), // If broadcast in dims 0, 1 and 2
+ 0,
+ ConvertPolicy::SATURATE);
+ post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::RELU, 2.1F, 1.3F});
+ return post_ops;
+}
+experimental::PostOpList<PostOpArgBroadcast> post_ops_2()
+{
+ experimental::PostOpList<PostOpArgBroadcast> post_ops{};
+ post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
+ std::make_tuple(false, true, true), // If broadcast in dims 0, 1 and 2
+ 1,
+ ConvertPolicy::SATURATE);
+ post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::RELU, 2.1F, 1.3F});
+ return post_ops;
+}
+experimental::PostOpList<PostOpArgBroadcast> post_ops_3()
+{
+ experimental::PostOpList<PostOpArgBroadcast> post_ops{};
+ post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::RELU, 2.1F, 1.3F});
+ post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
+ std::make_tuple(false, false, true), // If broadcast in dims 0, 1 and 2
+ 1,
+ ConvertPolicy::SATURATE);
+ return post_ops;
+}
+experimental::PostOpList<PostOpArgBroadcast> invalid_post_ops_1()
+{
+ experimental::PostOpList<PostOpArgBroadcast> post_ops{};
+ post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
+ std::make_tuple(true, true, false), // If broadcast in dims 0, 1 and 2
+ 1,
+ ConvertPolicy::SATURATE);
+ post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
+ std::make_tuple(false, true, false), // If broadcast in dims 0, 1 and 2
+ 0,
+ ConvertPolicy::SATURATE);
+ return post_ops;
+}
+
+/** Different Post Op Lists */
+const auto post_op_lists = framework::dataset::make("post_op_lists", {
+ post_ops_1(),
+ post_ops_2(),
+ post_ops_3(),
+ } );
+
} // namespace
TEST_SUITE(CL)
@@ -328,7 +398,7 @@ DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zi
framework::dataset::make("Expected", { true, true, false, false, false, true, true,true})),
input0_info ,input1_info, input2_info, output_info, lhs_info, rhs_info, gemm_info, expected)
{
- ARM_COMPUTE_EXPECT(bool(ClGemmMatrixMultiplyReshapedKernel::validate(&input0_info.clone()->set_is_resizable(true),
+ ARM_COMPUTE_EXPECT(bool(ClGemmMatrixMultiplyReshapedKernel::validate(&input0_info.clone()->set_is_resizable(true),
&input1_info.clone()->set_is_resizable(true),
&input2_info.clone()->set_is_resizable(true),
&output_info.clone()->set_is_resizable(true),1.f,1.f,
@@ -336,6 +406,116 @@ DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zi
rhs_info,
gemm_info)) == expected, framework::LogLevel::ERRORS);
}
+DATA_TEST_CASE(ValidateFusedPosOps, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zip(zip(
+ framework::dataset::make("Input0Info", { TensorInfo(TensorShape(64U, 5U, 2U), 1, DataType::F32), // OK. Empty post ops
+ TensorInfo(TensorShape(64U, 5U, 2U), 1, DataType::F32), // Invalid post op sequences
+ TensorInfo(TensorShape(64U, 5U, 2U), 1, DataType::F32), // OK. Supported post ops
+
+ }),
+ framework::dataset::make("Input1Info",{ TensorInfo(TensorShape(64U, 6U, 2U), 1, DataType::F32),
+ TensorInfo(TensorShape(64U, 6U, 2U), 1, DataType::F32),
+ TensorInfo(TensorShape(64U, 6U, 2U), 1, DataType::F32),
+
+ })),
+ framework::dataset::make("Input2Info", { TensorInfo(TensorShape(21U), 1, DataType::F32),
+ TensorInfo(TensorShape(21U), 1, DataType::F32),
+ TensorInfo(TensorShape(21U), 1, DataType::F32),
+
+ })),
+ framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(21U,17U,2U), 1, DataType::F32),
+ TensorInfo(TensorShape(21U,17U,2U), 1, DataType::F32),
+ TensorInfo(TensorShape(21U,17U,2U), 1, DataType::F32),
+
+ })),
+ framework::dataset::make("LHSMInfo",{
+ GEMMLHSMatrixInfo(4,4,1,false,true),
+ GEMMLHSMatrixInfo(4,4,1,false,true),
+ GEMMLHSMatrixInfo(4,4,1,false,true),
+
+ })),
+ framework::dataset::make("RHSMInfo",{
+ GEMMRHSMatrixInfo(4,4,1,true,true,false),
+ GEMMRHSMatrixInfo(4,4,1,true,true,false),
+ GEMMRHSMatrixInfo(4,4,1,true,true,false),
+
+
+ })),
+
+
+ framework::dataset::make("GEMMInfo",{
+ GEMMKernelInfo( 17 /**<M Number of LHS rows*/,
+ 21 /**<N Number of RHS columns*/,
+ 13 /**<K Number of LHS columns or RHS rows */, 0 /**< Depth of the output tensor in case is reinterpreted as 3D */,
+ false /**< reinterpret the input as 3D */,
+ true /**< Flag used to broadcast the bias addition */,
+ false /**< wider accumm */,
+ false /**< has pad y */,
+ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
+ 1 /**< Multiplication factor for the width of the 1xW transposed block */,
+ 1 /**< Multiplication factor for the height of the 4x4 interleaved block */,
+ GEMMLHSMatrixInfo(4,4,1,false,true),
+ GEMMRHSMatrixInfo(4,4,1,true,true,false),
+ 0 /**< Offset to be added to each element of the matrix A */,
+ 0 /**< Offset to be added to each element of the matrix B */),
+
+ GEMMKernelInfo( 17 /**<M Number of LHS rows*/,
+ 21 /**<N Number of RHS columns*/,
+ 13 /**<K Number of LHS columns or RHS rows */, 0 /**< Depth of the output tensor in case is reinterpreted as 3D */,
+ false /**< reinterpret the input as 3D */,
+ true /**< Flag used to broadcast the bias addition */,
+ false /**< wider accumm */,
+ false /**< has pad y */,
+ ActivationLayerInfo::ActivationFunction::IDENTITY,
+ 1 /**< Multiplication factor for the width of the 1xW transposed block */,
+ 1 /**< Multiplication factor for the height of the 4x4 interleaved block */,
+ GEMMLHSMatrixInfo(4,4,1,false,true),
+ GEMMRHSMatrixInfo(4,4,1,true,true,false),
+ 0 /**< Offset to be added to each element of the matrix A */,
+ 0 /**< Offset to be added to each element of the matrix B */),
+ GEMMKernelInfo( 17 /**<M Number of LHS rows*/,
+ 21 /**<N Number of RHS columns*/,
+ 13 /**<K Number of LHS columns or RHS rows */, 0 /**< Depth of the output tensor in case is reinterpreted as 3D */,
+ false /**< reinterpret the input as 3D */,
+ true /**< Flag used to broadcast the bias addition */,
+ false /**< wider accumm */,
+ false /**< has pad y */,
+ ActivationLayerInfo::ActivationFunction::IDENTITY,
+ 1 /**< Multiplication factor for the width of the 1xW transposed block */,
+ 1 /**< Multiplication factor for the height of the 4x4 interleaved block */,
+ GEMMLHSMatrixInfo(4,4,1,false,true),
+ GEMMRHSMatrixInfo(4,4,1,true,true,false),
+ 0 /**< Offset to be added to each element of the matrix A */,
+ 0 /**< Offset to be added to each element of the matrix B */),
+ })),
+ framework::dataset::make("PostOps",{
+ empty_post_ops(),
+ invalid_post_ops_1(),
+ post_ops_1(),
+ })),
+ framework::dataset::make("Expected", { true, false, true})),
+ input0_info ,input1_info, input2_info, output_info, lhs_info, rhs_info, gemm_info, post_ops, expected)
+{
+ // Create TensorInfo for post op arguments
+ std::vector<TensorInfo> post_op_tensor_infos;
+ auto populated_post_ops = experimental::transform_post_op_list_arguments<PostOpArgBroadcast, ITensorInfo*>(post_ops,
+ [&output_info, &post_op_tensor_infos](auto broadcast){
+ post_op_tensor_infos.emplace_back(TensorShape{
+ std::get<0>(broadcast) ? 1 : output_info.dimension(0),
+ std::get<1>(broadcast) ? 1 : output_info.dimension(1),
+ std::get<2>(broadcast) ? 1 : output_info.dimension(2)
+ }, 1, output_info.data_type());
+ return &post_op_tensor_infos.back();
+ });
+ GEMMKernelInfo gemm_info_with_post_ops(std::move(gemm_info));
+ gemm_info_with_post_ops.post_ops = populated_post_ops;
+ ARM_COMPUTE_EXPECT(bool(ClGemmMatrixMultiplyReshapedKernel::validate(&input0_info.clone()->set_is_resizable(true),
+ &input1_info.clone()->set_is_resizable(true),
+ &input2_info.clone()->set_is_resizable(true),
+ &output_info.clone()->set_is_resizable(true),1.f,1.f,
+ lhs_info,
+ rhs_info,
+ gemm_info_with_post_ops)) == expected, framework::LogLevel::ERRORS);
+}
TEST_SUITE(Float)
TEST_SUITE(FP32)
@@ -438,6 +618,37 @@ FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyReshaped3DFixture<float>,
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
+TEST_SUITE(FusedPostOps)
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedWithPostOpsFixture<float>, framework::DatasetMode::ALL,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ framework::dataset::make("interleave_lhs", { false })),
+ framework::dataset::make("interleave_rhs", { false })),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values_precommit),
+ beta_values_precommit),
+ framework::dataset::make("broadcast_bias", { true } )),
+ lhs_transpose_values),
+ act_values),
+ post_op_lists)
+ )
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+}
+
+TEST_SUITE_END() // FusedPostOps
+
TEST_SUITE(ExportToCLImage)
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zip(
framework::dataset::make("Input0Info", { TensorInfo(TensorShape(256U, 16U, 2U), 1, DataType::F32), // OK or incorrect if cl_khr_image2d_from_buffer not supported
@@ -704,6 +915,45 @@ FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyReshaped3DFixture<float>,
framework::ARM_COMPUTE_PRINT_INFO();
}
}
+TEST_SUITE(FusedPostOps)
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedWithPostOpsFixture<float>, framework::DatasetMode::ALL,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ framework::dataset::make("interleave_lhs", { false })),
+ framework::dataset::make("interleave_rhs", { false })),
+ framework::dataset::make("export_to_cl_image_rhs", true)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values_precommit),
+ beta_values_precommit),
+ framework::dataset::make("broadcast_bias", { true } )),
+ lhs_transpose_values),
+ act_values),
+ post_op_lists)
+ )
+{
+ // Validate output only if validate() is successful
+ if(validate_result)
+ {
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+ }
+ else
+ {
+ ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped");
+ framework::ARM_COMPUTE_PRINT_INFO();
+ }
+}
+
+TEST_SUITE_END() // FusedPostOps
+
TEST_SUITE_END() // ExportToCLImage
TEST_SUITE_END() // FP32
@@ -809,6 +1059,37 @@ FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyReshaped3DFixture<half>,
validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
}
+TEST_SUITE(FusedPostOps)
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedWithPostOpsFixture<half>, framework::DatasetMode::ALL,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ framework::dataset::make("interleave_lhs", { false })),
+ framework::dataset::make("interleave_rhs", { false })),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values_precommit),
+ beta_values_precommit),
+ framework::dataset::make("broadcast_bias", { true } )),
+ lhs_transpose_values),
+ act_values),
+ post_op_lists)
+ )
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
+}
+
+TEST_SUITE_END() // FusedPostOps
+
TEST_SUITE(ExportToCLImage)
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zip(
framework::dataset::make("Input0Info", { TensorInfo(TensorShape(256U, 16U, 2U), 1, DataType::F16), // OK or incorrect if cl_khr_image2d_from_buffer not supported
@@ -1075,6 +1356,45 @@ FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyReshaped3DFixture<half>,
framework::ARM_COMPUTE_PRINT_INFO();
}
}
+TEST_SUITE(FusedPostOps)
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedWithPostOpsFixture<half>, framework::DatasetMode::ALL,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ framework::dataset::make("interleave_lhs", { false })),
+ framework::dataset::make("interleave_rhs", { false })),
+ framework::dataset::make("export_to_cl_image_rhs", true)),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values_precommit),
+ beta_values_precommit),
+ framework::dataset::make("broadcast_bias", { true } )),
+ lhs_transpose_values),
+ act_values),
+ post_op_lists)
+ )
+{
+ // Validate output only if validate() is successful
+ if(validate_result)
+ {
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
+ }
+ else
+ {
+ ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped");
+ framework::ARM_COMPUTE_PRINT_INFO();
+ }
+}
+
+TEST_SUITE_END() // FusedPostOps
+
TEST_SUITE_END() // ExportToCLImage
TEST_SUITE_END() // FP16
@@ -1179,6 +1499,38 @@ FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyReshaped3DMixedPrecisionF
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f16_mixed_precision, 0.f, abs_tolerance_f16_mixed_precision);
}
+
+TEST_SUITE(FusedPostOps)
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedMixedPrecisionWithPostOpsFixture<half>, framework::DatasetMode::ALL,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ framework::dataset::make("interleave_lhs", { false })),
+ framework::dataset::make("interleave_rhs", { false })),
+ framework::dataset::make("export_to_cl_image_rhs", { true, false })),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values_precommit),
+ beta_values_precommit),
+ framework::dataset::make("broadcast_bias", { true } )),
+ lhs_transpose_values),
+ act_values),
+ post_op_lists)
+ )
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16_mixed_precision, 0.f, abs_tolerance_f16_mixed_precision);
+}
+
+TEST_SUITE_END() // FusedPostOps
+
TEST_SUITE_END() // MixedPrecision
TEST_SUITE_END() // Float
TEST_SUITE_END() // GEMMMatrixMultiplyReshaped
diff --git a/tests/validation/fixtures/GEMMFixture.h b/tests/validation/fixtures/GEMMFixture.h
index 5f5fa3b653..e1191587d5 100644
--- a/tests/validation/fixtures/GEMMFixture.h
+++ b/tests/validation/fixtures/GEMMFixture.h
@@ -27,6 +27,8 @@
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
+#include "arm_compute/core/experimental/IPostOp.h"
+#include "src/core/experimental/PostOp.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
@@ -34,7 +36,9 @@
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
+#include "tests/validation/reference/ElementwiseOperations.h"
#include "tests/validation/reference/GEMM.h"
+#include "tests/validation/reference/PostOps.h"
#include <random>
@@ -915,6 +919,263 @@ protected:
SimpleTensor<T> _reference{};
};
+/** (EXPERIMENTAL_POST_OPS)*/
+template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSOperatorType, typename ReshapeRHSOperatorType, typename GEMMOperatorType, bool fp_mixed_precision = false>
+class GEMMMatrixMultiplyReshapedWithPostOpsValidationFixture : public framework::Fixture
+{
+public:
+ using PostOpArgBroadcast = std::tuple<bool, bool, bool>; // Instruct fixture if we need broadcasting in dimension 0, 1, 2 of each PostOp argument
+public:
+ template <typename...>
+ void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
+ bool interleave_rhs, bool export_to_cl_image, DataType data_type, float alpha, float beta, bool broadcast_bias, bool lhs_transpose, const ActivationLayerInfo &act_info,
+ const experimental::PostOpList<PostOpArgBroadcast> &post_ops)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = m0;
+ lhs_info.k0 = k0;
+ lhs_info.v0 = v0;
+ lhs_info.interleave = interleave_lhs;
+ lhs_info.transpose = lhs_transpose;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = n0;
+ rhs_info.k0 = k0;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = interleave_rhs;
+ rhs_info.transpose = !lhs_transpose;
+ rhs_info.export_to_cl_image = export_to_cl_image;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+ const TensorShape bias_shape(n,
+ broadcast_bias ? 1 : m,
+ broadcast_bias ? 1 : batch_size);
+ auto post_ops_with_shapes = experimental::transform_post_op_list_arguments<PostOpArgBroadcast, TensorShape>(post_ops,
+ [ = ](auto broadcast)
+ {
+ return TensorShape
+ {
+ std::get<0>(broadcast) ? 1 : n,
+ std::get<1>(broadcast) ? 1 : m,
+ std::get<2>(broadcast) ? 1 : batch_size,
+ };
+ });
+
+ _target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, act_info, post_ops_with_shapes);
+ if(validate_result)
+ {
+ _reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info, post_ops_with_shapes);
+ }
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ static_assert(std::is_floating_point<T>::value || std::is_same<T, half>::value, "Only floating point data types supported.");
+ using DistributionType = typename std::conditional<std::is_same<T, half>::value, arm_compute::utils::uniform_real_distribution_16bit<T>, std::uniform_real_distribution<T>>::type;
+
+ DistributionType distribution{ T(-1.0f), T(1.0f) };
+ library->fill(tensor, distribution, i);
+
+ // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
+ DistributionType distribution_inf{ T(std::numeric_limits<float>::infinity()), T(std::numeric_limits<float>::infinity()) };
+ library->fill_borders_with_garbage(tensor, distribution_inf, i);
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info, const experimental::PostOpList<TensorShape> &post_ops)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
+ TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
+
+ // Create post op tensors and populate post op with them
+ std::vector<TensorType> post_op_tensors_holder{};
+ auto populated_post_ops = experimental::transform_post_op_list_arguments<TensorShape, ITensorInfo *>(post_ops,
+ [&post_op_tensors_holder, &data_type](auto shape)
+ {
+ auto t = create_tensor<TensorType>(shape, data_type, 1);
+ post_op_tensors_holder.push_back(std::move(t));
+ return post_op_tensors_holder.back().info();
+ });
+ TensorType lhs_reshaped;
+ TensorType rhs_reshaped;
+ TensorType dst;
+
+ const unsigned int M = lhs_shape[1];
+ const unsigned int N = rhs_shape[0];
+ const unsigned int K = lhs_shape[0];
+ GEMMKernelInfo kernel_info;
+ kernel_info.m = M;
+ kernel_info.n = N;
+ kernel_info.k = K;
+ kernel_info.depth_output_gemm3d = 0;
+ kernel_info.reinterpret_input_as_3d = false;
+ kernel_info.broadcast_bias = broadcast_bias;
+ kernel_info.activation_info = act_info;
+ kernel_info.fp_mixed_precision = fp_mixed_precision;
+ kernel_info.post_ops = populated_post_ops;
+
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ ReshapeLHSOperatorType reshape_lhs;
+ ReshapeRHSOperatorType reshape_rhs;
+ GEMMOperatorType gemm;
+
+ validate_result = bool(reshape_rhs.validate(rhs.info(), rhs_reshaped.info(), rhs_info));
+ validate_result = validate_result || !rhs_info.export_to_cl_image;
+ if(!validate_result)
+ {
+ return nullptr;
+ }
+
+ reshape_lhs.configure(lhs.info(), lhs_reshaped.info(), lhs_info);
+ reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
+ gemm.configure(lhs_reshaped.info(), rhs_reshaped.info(), bias.info(), dst.info(), alpha, beta, lhs_info, rhs_info, kernel_info);
+
+ ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
+ for(const auto &tensor : post_op_tensors_holder)
+ {
+ ARM_COMPUTE_ASSERT(tensor.info()->is_resizable());
+ }
+
+ // We do not pad when using image as it needs to comply to strict pitch alignment restrictions
+ if(!rhs_info.export_to_cl_image)
+ {
+ add_padding_x({ &lhs, &rhs, &lhs_reshaped, &rhs_reshaped, &bias, &dst });
+ for(auto &tensor : post_op_tensors_holder)
+ {
+ add_padding_x({ &tensor });
+ }
+ }
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ lhs_reshaped.allocator()->allocate();
+ rhs_reshaped.allocator()->allocate();
+ bias.allocator()->allocate();
+ dst.allocator()->allocate();
+ for(auto &tensor : post_op_tensors_holder)
+ {
+ tensor.allocator()->allocate();
+ }
+
+ ARM_COMPUTE_ASSERT(!lhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!rhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!lhs_reshaped.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!rhs_reshaped.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+ for(const auto &tensor : post_op_tensors_holder)
+ {
+ ARM_COMPUTE_ASSERT(!tensor.info()->is_resizable());
+ }
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+ fill(AccessorType(bias), 2);
+ for(size_t i = 0; i < post_op_tensors_holder.size(); ++i)
+ {
+ fill(AccessorType(post_op_tensors_holder.at(i)), 3 + i);
+ }
+
+ // Compute GEMM
+ ITensorPack reshape_lhs_pack = { { ACL_SRC, &lhs }, { ACL_DST, &lhs_reshaped } };
+ reshape_lhs.run(reshape_lhs_pack);
+ ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
+ reshape_rhs.run(reshape_rhs_pack);
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs_reshaped },
+ { ACL_SRC_1, &rhs_reshaped },
+ { ACL_SRC_2, &bias },
+ { ACL_DST, &dst }
+ });
+ for(size_t i = 0; i < post_op_tensors_holder.size(); ++i)
+ {
+ gemm_pack.add_tensor(experimental::get_post_op_arg_type(i), &post_op_tensors_holder.at(i));
+ }
+ gemm.run(gemm_pack);
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
+ const ActivationLayerInfo &act_info, const experimental::PostOpList<TensorShape> &post_ops)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape[0] = rhs_shape[0];
+ dst_shape[1] = lhs_shape[1];
+
+ // Create reference
+ SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<T> bias{ dst_shape, data_type, 1 };
+ // Create post op tensors and populate post op with them
+ auto populated_post_ops = experimental::transform_post_op_list_arguments<TensorShape, SimpleTensor<T>>(post_ops, [&data_type](auto shape)
+ {
+ return SimpleTensor<T> { shape, data_type, 1 };
+ });
+
+ const int n = rhs_shape[0];
+ const int m = lhs_shape[1];
+ const int batch_size = lhs_shape[2];
+
+ // Fill reference
+ int tensor_idx = 0;
+ fill(lhs, tensor_idx++);
+ fill(rhs, tensor_idx++);
+ fill(bias, tensor_idx++);
+ for(auto &op : populated_post_ops.get_list())
+ {
+ for(auto tensor : op->arguments())
+ {
+ fill(*tensor, tensor_idx++);
+ }
+ }
+
+ if(broadcast_bias)
+ {
+ // In case of broadcast, we need simply copy the first into the following "M" ones
+ for(int i = 1; i < m * batch_size; i++)
+ {
+ memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
+ }
+ }
+
+ SimpleTensor<T> out;
+ if(fp_mixed_precision)
+ {
+ out = reference::gemm_mixed_precision<T>(lhs, rhs, bias, alpha, beta);
+ }
+ else
+ {
+ out = reference::gemm<T>(lhs, rhs, bias, alpha, beta);
+ }
+ // Ignore activation info if post ops are used instead
+ if(populated_post_ops.size() > 0)
+ {
+ out = reference::post_ops<T>(out, populated_post_ops);
+ }
+ else
+ {
+ out = reference::activation_layer(out, act_info);
+ }
+ return out;
+ }
+
+ bool validate_result = true;
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSOperatorType, typename ReshapeRHSOperatorType, typename GEMMOperatorType, bool fp_mixed_precision = false>
class GEMMMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture
{
diff --git a/tests/validation/reference/PostOps.cpp b/tests/validation/reference/PostOps.cpp
new file mode 100644
index 0000000000..1a8fb990c8
--- /dev/null
+++ b/tests/validation/reference/PostOps.cpp
@@ -0,0 +1,76 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "PostOps.h"
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/Types.h"
+#include "src/core/experimental/PostOp.h"
+#include "tests/validation/reference/ActivationLayer.h"
+#include "tests/validation/reference/ElementwiseOperations.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace reference
+{
+template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type>
+SimpleTensor<T> post_ops(const SimpleTensor<T> &a, experimental::PostOpList<SimpleTensor<T>> post_ops)
+{
+ // Create reference
+ SimpleTensor<T> dst{ a };
+
+ for(auto &post_op : post_ops.get_list())
+ {
+ switch(post_op->type())
+ {
+ case experimental::PostOpType::Activation:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const experimental::PostOpAct<SimpleTensor<T>> *>(post_op.get());
+ dst = reference::activation_layer(dst, _post_op->_act_info);
+ break;
+ }
+ case experimental::PostOpType::Eltwise_Add:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const experimental::PostOpEltwiseAdd<SimpleTensor<T>> *>(post_op.get());
+ dst = reference::arithmetic_operation(ArithmeticOperation::ADD, dst, _post_op->_addend, dst, _post_op->_policy);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported PostOpType");
+ }
+ }
+ }
+ return dst;
+}
+
+template SimpleTensor<float> post_ops(const SimpleTensor<float> &a, experimental::PostOpList<SimpleTensor<float>> post_ops);
+template SimpleTensor<half> post_ops(const SimpleTensor<half> &a, experimental::PostOpList<SimpleTensor<half>> post_ops);
+} // namespace reference
+} // namespace validation
+} // namespace test
+} // namespace arm_compute \ No newline at end of file
diff --git a/tests/validation/reference/PostOps.h b/tests/validation/reference/PostOps.h
new file mode 100644
index 0000000000..5fe0fe71f5
--- /dev/null
+++ b/tests/validation/reference/PostOps.h
@@ -0,0 +1,47 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_TEST_POSTOPS_H
+#define ARM_COMPUTE_TEST_POSTOPS_H
+
+#include "arm_compute/core/experimental/IPostOp.h"
+#include "tests/SimpleTensor.h"
+#include "tests/validation/Helpers.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace reference
+{
+/** (EXPERIMENTAL_POST_OPS) */
+template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type = 0>
+SimpleTensor<T> post_ops(const SimpleTensor<T> &a, experimental::PostOpList<SimpleTensor<T>> post_ops);
+
+} // namespace reference
+} // namespace validation
+} // namespace test
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_TEST_POSTOPS_H */
diff --git a/utils/TypePrinter.h b/utils/TypePrinter.h
index 220c3ac189..64694f0e7c 100644
--- a/utils/TypePrinter.h
+++ b/utils/TypePrinter.h
@@ -36,12 +36,13 @@
#include "arm_compute/core/Strides.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
+#include "arm_compute/core/experimental/IPostOp.h"
#include "arm_compute/runtime/CL/CLTunerTypes.h"
#include "arm_compute/runtime/CL/CLTypes.h"
#include "arm_compute/runtime/FunctionDescriptors.h"
#include "arm_compute/runtime/common/LSTMParams.h"
+#include "src/core/experimental/PostOp.h"
#include "support/StringSupport.h"
-
#include <ostream>
#include <sstream>
#include <string>
@@ -135,6 +136,133 @@ std::string to_string(const std::vector<T> &args)
return str.str();
}
+/** @name (EXPERIMENTAL_POST_OPS)
+ * @{
+ */
+/** Formmated output of the @ref experimental::PostOpType type
+ *
+ * @param[out] os Output stream.
+ * @param[in] post_op_type Type to output.
+ *
+ * @return Modified output stream.
+ */
+inline ::std::ostream &operator<<(::std::ostream &os, experimental::PostOpType post_op_type)
+{
+ os << "type=";
+ switch(post_op_type)
+ {
+ case experimental::PostOpType::Activation:
+ {
+ os << "Activation";
+ break;
+ }
+ case experimental::PostOpType::Eltwise_Add:
+ {
+ os << "Eltwise_Add";
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported PostOpType");
+ break;
+ }
+ }
+ return os;
+}
+/** Converts a @ref experimental::PostOpType to string
+ *
+ * @param[in] post_op_type PostOpType value to be converted
+ *
+ * @return String representing the corresponding PostOpType
+ */
+inline std::string to_string(experimental::PostOpType post_op_type)
+{
+ std::stringstream str;
+ str << post_op_type;
+ return str.str();
+}
+/** Formatted output of the @ref experimental::IPostOp type.
+ *
+ * @param[out] os Output stream.
+ * @param[in] post_op Type to output.
+ *
+ * @return Modified output stream.
+ */
+template <typename T>
+inline ::std::ostream &operator<<(::std::ostream &os, const experimental::IPostOp<T> &post_op)
+{
+ os << "<";
+ os << post_op.type() << ",";
+ os << "prev_op_arg_pos=" << post_op.prev_dst_pos() << ",";
+ switch(post_op.type())
+ {
+ case experimental::PostOpType::Activation:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const experimental::PostOpAct<T> *>(&post_op);
+ os << "act_info=" << &(_post_op->_act_info);
+ break;
+ }
+ case experimental::PostOpType::Eltwise_Add:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const experimental::PostOpEltwiseAdd<T> *>(&post_op);
+ os << "convert_policy=" << _post_op->_policy;
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported PostOpType");
+ break;
+ }
+ }
+ os << ">";
+ return os;
+}
+/** Converts an @ref experimental::IPostOp to string
+ *
+ * @param[in] post_op IPostOp value to be converted
+ *
+ * @return String representing the corresponding IPostOp
+ */
+template <typename T>
+inline std::string to_string(const experimental::IPostOp<T> &post_op)
+{
+ std::stringstream str;
+ str << post_op;
+ return str.str();
+}
+/** Formatted output of the @ref experimental::PostOpList type.
+ *
+ * @param[out] os Output stream.
+ * @param[in] post_ops Type to output.
+ *
+ * @return Modified output stream.
+ */
+template <typename T>
+inline ::std::ostream &operator<<(::std::ostream &os, const experimental::PostOpList<T> &post_ops)
+{
+ os << "[";
+ for(const auto &post_op : post_ops.get_list())
+ {
+ os << *post_op << ",";
+ }
+ os << "]";
+ return os;
+}
+/** Converts a @ref experimental::PostOpList to string
+ *
+ * @param[in] post_ops PostOpList value to be converted
+ *
+ * @return String representing the corresponding PostOpList
+ */
+template <typename T>
+inline std::string to_string(const experimental::PostOpList<T> &post_ops)
+{
+ std::stringstream str;
+ str << post_ops;
+ return str.str();
+}
+/** @} */ // end of group (EXPERIMENTAL_POST_OPS)
+
/** Formatted output of the Dimensions type.
*
* @param[out] os Output stream.
@@ -244,8 +372,9 @@ inline ::std::ostream &operator<<(::std::ostream &os, const GEMMKernelInfo &gemm
os << " fp_mixed_precision= " << gemm_info.fp_mixed_precision;
os << " mult_transpose1xW_width= " << gemm_info.mult_transpose1xW_width;
os << " mult_interleave4x4_height= " << gemm_info.mult_interleave4x4_height;
- os << " a_offset = " << gemm_info.a_offset;
- os << " b_offset = " << gemm_info.b_offset;
+ os << " a_offset= " << gemm_info.a_offset;
+ os << " b_offset= " << gemm_info.b_offset;
+ os << "post_ops= " << gemm_info.post_ops;
os << ")";
return os;
}
@@ -487,7 +616,7 @@ inline ::std::ostream &operator<<(::std::ostream &os, const ActivationLayerInfo:
/** Formatted output of the activation function info type.
*
- * @param[in] info Type to output.
+ * @param[in] info ActivationLayerInfo to output.
*
* @return Formatted string.
*/
@@ -501,25 +630,35 @@ inline std::string to_string(const arm_compute::ActivationLayerInfo &info)
return str.str();
}
-/** Formatted output of the activation function info type.
+/** Formatted output of the activation function info.
*
- * @param[in] info Type to output.
+ * @param[out] os Output stream.
+ * @param[in] info ActivationLayerInfo to output.
*
* @return Formatted string.
*/
-inline std::string to_string(const arm_compute::ActivationLayerInfo *info)
+inline ::std::ostream &operator<<(::std::ostream &os, const ActivationLayerInfo *info)
{
- std::string ret_str = "nullptr";
if(info != nullptr)
{
- std::stringstream str;
if(info->enabled())
{
- str << info->activation();
+ os << info->activation();
+ os << "(";
+ os << "VAL_A=" << info->a() << ",";
+ os << "VAL_B=" << info->b();
+ os << ")";
+ }
+ else
+ {
+ os << "disabled";
}
- ret_str = str.str();
}
- return ret_str;
+ else
+ {
+ os << "nullptr";
+ }
+ return os;
}
/** Formatted output of the activation function type.