aboutsummaryrefslogtreecommitdiff
path: root/verif/tosa_test_gen.py
diff options
context:
space:
mode:
authorJeremy Johnson <jeremy.johnson@arm.com>2021-12-14 16:34:05 +0000
committerJeremy Johnson <jeremy.johnson@arm.com>2022-01-06 11:38:19 +0000
commit2ec3494060ffdafec072fe1b2099a8177b8eca6a (patch)
treefbe9d2dfdc4abeff9ba374a90065b7ed98e97509 /verif/tosa_test_gen.py
parenta1d49853082f5454144209c1d95dc9203f510746 (diff)
downloadreference_model-2ec3494060ffdafec072fe1b2099a8177b8eca6a.tar.gz
Reorganize verif and create packages
Split generator and runner scripts Add package setup Add py-dev-env.sh/.bash to allow editing source files during dev Update README.md with installation info Signed-off-by: Jeremy Johnson <jeremy.johnson@arm.com> Change-Id: I172fe426d99e2e9aeeacedc8b8f3b6a79c8bd39d
Diffstat (limited to 'verif/tosa_test_gen.py')
-rw-r--r--verif/tosa_test_gen.py6874
1 files changed, 0 insertions, 6874 deletions
diff --git a/verif/tosa_test_gen.py b/verif/tosa_test_gen.py
deleted file mode 100644
index 0d29704..0000000
--- a/verif/tosa_test_gen.py
+++ /dev/null
@@ -1,6874 +0,0 @@
-#!/usr/bin/env python3
-
-# Copyright (c) 2020-2022, ARM Limited.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import numpy as np
-import argparse
-import sys
-import re
-import os
-import subprocess
-import shlex
-import json
-import glob
-import math
-import queue
-import threading
-import traceback
-import math
-import itertools
-from copy import deepcopy
-
-from enum import IntEnum, Enum, unique
-from tosa_ref_run import TosaReturnCode
-
-# Include the ../thirdparty/serialization_lib/python directory in PYTHONPATH
-parent_dir = os.path.dirname(os.path.realpath(__file__))
-sys.path.append(
- os.path.join(parent_dir, "..", "thirdparty", "serialization_lib", "python")
-)
-import tosa_serializer as ts
-from tosa_serializer import *
-import tosa
-from tosa_error_if import ErrorIf
-
-# Convenience variables to the flatc-generated types that should be enums, but aren't
-from tosa.DType import DType
-from tosa.Op import Op
-from tosa.ResizeMode import ResizeMode
-
-
-def valueToName(item, value):
- """Get the name of an attribute with the given value.
-
- This convenience function is needed to print meaningful names for
- the values of the tosa.Op.Op and tosa.DType.DType classes.
- This would not be necessary if they were subclasses of Enum, or
- IntEnum, which, sadly, they are not.
-
- Args:
- item: The class, or object, to find the value in
- value: The value to find
-
- Example, to get the name of a DType value:
-
- name = valueToName(DType, DType.INT8) # returns 'INT8'
- name = valueToName(DType, 4) # returns 'INT8'
-
- Returns:
- The name of the first attribute found with a matching value,
-
- Raises:
- ValueError if the value is not found
- """
- for attr in dir(item):
- if getattr(item, attr) == value:
- return attr
- raise ValueError(f'value ({value}) not found')
-
-def allDTypes(*, excludes=None):
- """Get a set of all DType values, optionally excluding some values.
-
- This convenience function is needed to provide a sequence of DType values.
- This would be much easier if DType was a subclass of Enum, or IntEnum,
- as we could then iterate over the values directly, instead of using
- dir() to find the attributes and then check if they are what we want.
-
- Args:
- excludes: iterable of DTYPE values (e.g. [DType.INT8, DType.BOOL])
-
- Returns:
- A set of DType values
- """
- excludes = () if not excludes else excludes
- return {getattr(DType, t) for t in dir(DType)
- if not callable(getattr(DType, t)) and not t.startswith('__')
- and getattr(DType, t) not in excludes}
-
-def usableDTypes(*, excludes=None):
- """Get a set of usable DType values, optionally excluding some values.
-
- Excludes (DType.UNKNOWN, DType.UINT8) in addition to the excludes
- specified by the caller, as the serializer lib does not support them.
- If you wish to include 'UNKNOWN' or 'UINT8' use allDTypes instead.
-
- Args:
- excludes: iterable of DType values (e.g. [DType.INT8, DType.BOOL])
-
- Returns:
- A set of DType values
- """
- omit = {DType.UNKNOWN, DType.UINT8}
- omit.update(excludes if excludes else ())
- return allDTypes(excludes=omit)
-
-def product(shape):
- value = 1
- for n in shape:
- value *= n
- return value
-
-
-class TosaQuantGen:
- """QuantizedInfo random generator helper functions. Specify with 'qgen': in the operator defintion"""
-
- def __init__(self):
- pass
-
- @staticmethod
- def getQinfo(testGen, dtype, error_name=None):
-
- if dtype == DType.INT8:
- return testGen.randInt(-128, 128)
- elif dtype == DType.UINT8:
- return testGen.randInt(0, 256)
- elif error_name in [ErrorIf.InputZeroPointNotZero, ErrorIf.WeightZeroPointNotZero, ErrorIf.OutputZeroPointNotZero]:
- zero_point = testGen.randInt(-128, 128)
- if zero_point == 0:
- zero_point = 1
- return zero_point
- return 0
-
- @staticmethod
- def qgUnary(testGen, op, dtype, error_name=None):
- qinfo = ts.TosaSerializerQuantInfo()
- if error_name == ErrorIf.InputZeroPointNotZero:
- qinfo.UnaryQuantInfo(
- TosaQuantGen.getQinfo(testGen, dtype, error_name), TosaQuantGen.getQinfo(testGen, dtype)
- )
- elif error_name == ErrorIf.OutputZeroPointNotZero:
- qinfo.UnaryQuantInfo(
- TosaQuantGen.getQinfo(testGen, dtype), TosaQuantGen.getQinfo(testGen, dtype, error_name)
- )
- else:
- qinfo.UnaryQuantInfo(
- TosaQuantGen.getQinfo(testGen, dtype), TosaQuantGen.getQinfo(testGen, dtype)
- )
- return qinfo
-
- @staticmethod
- def qgConv(testGen, op, dtype_or_dtypeList, error_name=None):
- qinfo = ts.TosaSerializerQuantInfo()
- if isinstance(dtype_or_dtypeList, list):
- # a list of [input, weights, accumulator] dtypes
- dtypeList = dtype_or_dtypeList
- else:
- # an int, [input, weights, accumulator] dtypes are the same
- dtypeList = [dtype_or_dtypeList] * 3
-
- if error_name == ErrorIf.InputZeroPointNotZero:
- input_zp = TosaQuantGen.getQinfo(testGen, dtypeList[0], error_name)
- weights_zp = TosaQuantGen.getQinfo(testGen, dtypeList[1])
- elif error_name == ErrorIf.WeightZeroPointNotZero:
- input_zp = TosaQuantGen.getQinfo(testGen, dtypeList[0])
- weights_zp = TosaQuantGen.getQinfo(testGen, dtypeList[1], error_name)
- else:
- input_zp = TosaQuantGen.getQinfo(testGen, dtypeList[0])
- weights_zp = TosaQuantGen.getQinfo(testGen, dtypeList[1])
-
- qinfo.ConvQuantInfo(input_zp, weights_zp)
- return qinfo
-
- @staticmethod
- def qgMatmul(testGen, op, dtype, error_name=None):
- qinfo = ts.TosaSerializerQuantInfo()
- if error_name == ErrorIf.InputZeroPointNotZero:
- qinfo.MatMulQuantInfo(
- TosaQuantGen.getQinfo(testGen, dtype, error_name), TosaQuantGen.getQinfo(testGen, dtype, error_name)
- )
- else:
- qinfo.MatMulQuantInfo(
- TosaQuantGen.getQinfo(testGen, dtype), TosaQuantGen.getQinfo(testGen, dtype)
- )
- return qinfo
-
- @staticmethod
- def qgPad(testGen, op, dtype, error_name=None):
- qinfo = ts.TosaSerializerQuantInfo()
- if error_name == ErrorIf.InputZeroPointNotZero:
- qinfo.PadQuantInfo(TosaQuantGen.getQinfo(testGen, dtype, error_name))
- else:
- qinfo.PadQuantInfo(TosaQuantGen.getQinfo(testGen, dtype))
- return qinfo
-
- @staticmethod
- def computeMultiplierAndShift(scaleFp, scale32):
- # Derived from computeMultiplierAndShiftTosaScale32
- # Provide a floating-point scaling factor and the scale32 parameter
- # to compute the multiplier and shift
-
- if scale32:
- scaleBits = 31
- else:
- scaleBits = 15
-
- m, shift = math.frexp(scaleFp)
-
- if scaleFp < 0.0:
- m = -m
-
- multiplier = round(m * (1 << scaleBits))
- assert multiplier <= (1 << scaleBits)
-
- if multiplier == (1 << scaleBits):
- multiplier = multiplier // 2
- shift = shift + 1
-
- shift = (-shift) + scaleBits
- #print('scalefp {} scaleBits {} m {} mult {} shift {}'.format(scaleFp, scaleBits, m, multiplier, shift))
-
- # Adjust multiplier such that shift is in allowed value range.
- if shift == 0:
- multiplier = multiplier // 4
- shift = shift + 2
- elif shift == 1:
- multiplier = multiplier // 2
- shift = shift + 1
- elif shift == 63:
- multiplier = multiplier * 2
- shift = shift - 1
-
- assert multiplier <= (1 << scaleBits)
- assert shift >= 2 and shift <= 62
-
- return multiplier, shift
-
-
-class TosaTensorGen:
- """Tensor generators create a shape list for the placeholder and const tensor
- data operands for the operator. The actual random data is generated separately for each test."""
-
- def __init__(self):
- pass
-
- @staticmethod
- def tgBasic(testGen, opName, rank, error_name=None):
- pl, const = opName["operands"]
- shape = testGen.makeShape(rank)
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- shape = TosaErrorIfArgGen.eiRestrictDimensions(shape)
-
- shape_list = []
- for i in range(pl + const):
- shape_list.append(shape.copy())
-
- if error_name == ErrorIf.RankMismatch:
- if rank == 1 and i != 1:
- shape = testGen.makeShape(rank + testGen.rng.choice([1, 2, 3]))
- elif i != 1:
- shape = testGen.makeShape(rank + testGen.rng.choice([-1, 1]))
-
- return shape_list
-
- @staticmethod
- def tgNHWC(testGen, opName, rank, error_name=None):
- pl, const = opName["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 4
-
- shape = testGen.makeShape(rank)
-
- # Constrict the batch size?
- if testGen.args.max_batch_size:
- shape[0] = (shape[0] % testGen.args.max_batch_size) + 1
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name and error_name != ErrorIf.MaxDimExceeded:
- shape = TosaErrorIfArgGen.eiRestrictDimensions(shape)
-
- shape_list = []
- for i in range(pl + const):
- shape_list.append(shape.copy())
-
- return shape_list
-
- @staticmethod
- def tgScatter(testGen, opName, rank, error_name=None):
- pl, const = opName["operands"]
-
- assert pl == 2
- assert const == 0
- if error_name != ErrorIf.WrongRank:
- assert rank == 3
-
- values_in_shape = testGen.makeShape(rank)
-
- # ignore max batch size if target shape is set
- if testGen.args.max_batch_size and not testGen.args.target_shapes:
- values_in_shape[0] = (values_in_shape[0] % testGen.args.max_batch_size) + 1
-
- W = testGen.randInt(
- testGen.args.tensor_shape_range[0], testGen.args.tensor_shape_range[1]
- )
- # Constrict W if one dimension is too large to keep tensor size reasonable
- if max(values_in_shape) > 5000:
- W = testGen.randInt(0, 16)
-
- input_shape = [values_in_shape[0], W, values_in_shape[2]]
-
- shape_list = []
- shape_list.append(values_in_shape.copy())
- shape_list.append(input_shape.copy())
-
- return shape_list
-
- @staticmethod
- def tgBroadcastFuzz(testGen, op, rank, error_name=None):
- shape = testGen.makeShape(rank)
-
- pl, const = op["operands"]
-
- shape_list = []
-
- # Choose one of the inputs to broadcast
- # Note: Simplifies OutputShaper code if we don't change first shape for errors
- bcast_idx = testGen.randInt(0 if error_name == None else 1, pl + const)
- for i in range(pl + const):
- shape_bcast = shape.copy()
-
- # If the chosen input, pick a random index to broadcast
- if i == bcast_idx:
- fuzz_idx = testGen.randInt(0, rank)
- if error_name == ErrorIf.DimensionMismatch:
- shape_bcast[fuzz_idx] += 1
- elif error_name == ErrorIf.RankMismatch:
- # Add one rank to the shape (or more for rank of 1)
- extra_ranks = testGen.rng.choice([1, 2, 3]) if rank == 1 else 1
- shape_bcast = np.concatenate((shape_bcast, testGen.makeShape(extra_ranks)))
- if rank != 1:
- # Either keep the extra rank, or remove it
- new_len = testGen.rng.choice([-2, len(shape_bcast)])
- shape_bcast = shape_bcast[:new_len]
- else:
- shape_bcast[fuzz_idx] = 1
-
- shape_list.append(shape_bcast)
-
- return shape_list
-
- @staticmethod
- def tgConv2D(testGen, op, rank, error_name=None):
- pl, const = op["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 4
-
- # IFM dimensions are NHWC
- ifm_shape = testGen.makeShape(rank)
-
- # Constrict the batch size?
- if testGen.args.max_batch_size:
- ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
-
- # Get the filter height/width from the operator parameters
- filter_hw = op["filter"]
-
- # Generate a random OFM depth
- ofm_depth = testGen.makeShape(1)[0]
-
- # The filter dimensions are OHWI
- filter_shape = np.asarray([ofm_depth, filter_hw[0], filter_hw[1], ifm_shape[3]])
-
- # The bias is OC
- bias_shape = np.asarray([ofm_depth])
-
- return [ifm_shape, filter_shape, bias_shape]
-
- @staticmethod
- def tgConv3D(testGen, op, rank, error_name=None):
- pl, const = op["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 5
-
- # IFM dimensions are NDHWC
- ifm_shape = testGen.makeShape(rank)
-
- # Constrict the batch size?
- if testGen.args.max_batch_size:
- ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
-
- # Get the filter depth/height/width from the operator parameters
- filter_dhw = op["filter"]
-
- # Generate a random OFM channel
- ofm_channel = testGen.makeShape(1)[0]
-
- # The filter dimensions are ODHWI
- filter_shape = np.asarray(
- [ofm_channel, filter_dhw[0], filter_dhw[1], filter_dhw[2], ifm_shape[4]]
- )
-
- # The bias is OC
- bias_shape = np.asarray([ofm_channel])
-
- return [ifm_shape, filter_shape, bias_shape]
-
- @staticmethod
- def tgTransposeConv2D(testGen, op, rank, error_name=None):
- pl, const = op["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 4
-
- # IFM dimensions are NHWC
- ifm_shape = testGen.makeShape(rank)
-
- # Constrict the batch size?
- if testGen.args.max_batch_size:
- ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
-
- # Get the filter height/width from the operator parameters
- filter_hw = op["filter"]
-
- # Generate a random OFM depth
- ofm_depth = testGen.makeShape(1)[0]
-
- # The filter dimensions are OHWI
- filter_shape = np.asarray([ofm_depth, filter_hw[0], filter_hw[1], ifm_shape[3]])
-
- # The bias is OC
- bias_shape = np.asarray([ofm_depth])
-
- return [ifm_shape, filter_shape, bias_shape]
-
- @staticmethod
- def tgDepthwiseConv2D(testGen, op, rank, error_name=None):
- pl, const = op["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 4
- assert pl == 1 and const == 2
-
- # IFM dimensions are NHWC
- ifm_shape = testGen.makeShape(rank)
-
- # Constrict the batch size?
- if testGen.args.max_batch_size:
- ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
-
- # Get the filter height/width from the operator parameters
- # Filter is KH, HW, C, M
- filter_hw = op["filter"]
-
- # Generate a random OFM depth, but don't let it get too big because
- # the output depth is M * C
- filter_m = (
- testGen.makeShape(1)[0] % (testGen.args.tensor_shape_range[1] // 4)
- ) + 1
-
- # The filter dimensions are HWCM
- filter_shape = np.asarray([filter_hw[0], filter_hw[1], ifm_shape[3], filter_m])
-
- # The bias is M * C
- bias_shape = np.asarray([ifm_shape[3] * filter_m])
-
- return [ifm_shape, filter_shape, bias_shape]
-
- @staticmethod
- def tgFullyConnected(testGen, op, rank, error_name=None):
- pl, const = op["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 2
-
- input_shape = testGen.makeShape(rank)
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- input_shape = TosaErrorIfArgGen.eiRestrictDimensions(input_shape)
-
- filter_oc = testGen.rng.integers(
- low=testGen.args.tensor_shape_range[0],
- high=testGen.args.tensor_shape_range[1],
- size=1,
- )[0]
- filter_shape = np.asarray([filter_oc, input_shape[1]])
-
- bias_shape = np.asarray([filter_oc])
-
- return [input_shape, filter_shape, bias_shape]
-
- @staticmethod
- def tgMatmul(testGen, op, rank, error_name=None):
- pl, const = op["operands"]
-
- if error_name != ErrorIf.WrongRank:
- assert rank == 3
- assert pl == 2 and const == 0
-
- a_shape = testGen.makeShape(rank)
-
- # Constrict the overall size of the shape when creating ERROR_IF tests
- if error_name:
- a_shape = TosaErrorIfArgGen.eiRestrictDimensions(a_shape)
-
- # Get a random number for b_oc even if target shape is defined
- b_oc = np.int32(
- testGen.rng.integers(
- low=testGen.args.tensor_shape_range[0],
- high=testGen.args.tensor_shape_range[1],
- size=1,
- )
- )[0]
- # If N or H is large let b_oc be 1 to reduce output tensor size
- if max(a_shape) > 1000:
- b_oc = 1
-
- b_shape = np.asarray([a_shape[0], a_shape[2], b_oc])
- return [a_shape, b_shape]
-
- @staticmethod
- def tgConcat(testGen, opName, rank, error_name=None):
- pl, const = opName["operands"]
- shape = testGen.makeShape(rank)
-
- # Create extra tensors to concat.
- # Take into account value of pl when getting maximum number of concats
- num_tensors = testGen.randInt(0, 4)
- shape_list = []
- for i in range(pl + const + num_tensors):
- if error_name == ErrorIf.ConcatInputRankMismatch and i != 0:
- remove = testGen.rng.choice([True, False])
- wrongShape = shape.copy()
-
- if remove and len(shape) > 1:
- wrongShape = wrongShape[1:]
- else:
- wrongShape = list(wrongShape)
- wrongShape.append(testGen.rng.integers(1, 10))
-
- shape_list.append(wrongShape)
- else:
- shape_list.append(shape.copy())
-
- return shape_list
-
- @staticmethod
- def tgConcatConstInput(testGen, shapeList, axis, error_name=None):
- if error_name in [ErrorIf.AxisSmallerZero, ErrorIf.AxisLargerRank, ErrorIf.ConcatInputRankMismatch]:
- return shapeList
-
- # Split concat shape along axis to allow for multiple const inputs
- # without making too many large tensors
- if len(shapeList) == 2 or shapeList[0][axis] < len(shapeList):
- # If axis can't be split we still need to invalidate other dimensions
- if error_name == ErrorIf.ConcatInputDimMismatch:
- for shape in shapeList[1:]:
- # Negative test shapeLists are created individually for each test,
- # so no need to copy the shape before altering it.
- shape[(axis + 1) % len(shape)] += testGen.rng.integers(5, 10)
- return shapeList
-
- # Create copy of shape we are going to split (so we don't alter shapeList)
- shape = shapeList[0].copy()
- # Add original shape as first input
- new_shapeList = [shape.copy()]
- length_on_axis = shape[axis]
- remaining_length = length_on_axis
- for i in range(len(shapeList) - 2):
- # Calculate split on axis and remaining value
- split_shape_val = int(shape[axis] / 2)
- remaining_length = remaining_length - split_shape_val
-
- # Append new shape, and set remaining shape
- shape[axis] = split_shape_val
- new_shapeList.append(shape.copy())
-
- # invalidate dimensions
- if error_name == ErrorIf.ConcatInputDimMismatch:
- shape[(axis + 1) % len(shape)] += testGen.rng.integers(5, 10)
- else:
- shape[axis] = remaining_length
-
- if i == len(shapeList) - 3:
- new_shapeList.append(shape.copy())
-
- return new_shapeList
-
-
-class TosaArgGen:
- """Argument generators create exhaustive or random lists of attributes for operators that take
- attributes or other parameters. The return value is a list of (descriptive_name, [arglist])
- tuples where the descriptive_name is appended to the test name and the arglist is expanded
- as arguments to the operator build function."""
-
- def __init__(self):
- pass
-
- @staticmethod
- def agNone(testGen, opName, shapeList, dtype, error_name=None):
- """A trivial argument generator for operators that don't take any
- non-tensor arguments"""
- return [("", [])]
-
- @staticmethod
- def agAxis(testGen, opName, shapeList, dtype, error_name=None):
- """Build the axis argument for operators that take a single axis"""
- axes = []
- shape = shapeList[0]
-
- if error_name == ErrorIf.AxisSmallerZero:
- small_axis = testGen.rng.integers(-5, 0)
- axes.append(("axis{}".format(small_axis), [small_axis]))
- elif error_name == ErrorIf.AxisLargerRank:
- large_axis = testGen.rng.integers(len(shape) + 1, len(shape) + 10)
- axes.append(("axis{}".format(large_axis), [large_axis]))
- else:
- for a in range(0, len(shape)):
- axes.append(("axis{}".format(a), [a]))
-
- return axes
-
- @staticmethod
- def agConv(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- ifm_shape = shapeList[0]
- filter_shape = shapeList[1]
- # determine the kernel shape from the operator name (e.g. "conv2d_3x3" => [3,3])
- k = [int(x) for x in opName.split("_")[-1].split("x")]
-
- # Check the rank
- rank = 5 if opName.startswith("conv3d") else 4
- if error_name != ErrorIf.WrongRank:
- assert len(ifm_shape) == rank
- assert len(filter_shape) == rank
-
- # kernel rank omits batch and channels
- k_rank = rank - 2
- assert len(k) == k_rank
-
- # Generate comprehensive argument lists
- # - except for named errors, which use specific invalid value(s)
- if error_name == ErrorIf.PadSmallerZero:
- p_vals = [testGen.rng.choice(range(-5, 0))]
- else:
- p_vals = [x for x in range(0, testGen.args.max_conv_padding + 1)]
- paddings = {x for x in itertools.product(*([p_vals] * k_rank * 2))}
- if error_name == ErrorIf.StrideSmallerOne:
- # Can't use stride=0, as it is used to derive output shape, as a divisor
- s_vals = [testGen.rng.choice(range(-5, 0))]
- else:
- s_vals = [x for x in range(1, testGen.args.max_conv_stride + 1)]
- strides = {x for x in itertools.product(*([s_vals] * k_rank))}
- if error_name == ErrorIf.DilationSmallerOne:
- d_vals = [testGen.rng.choice(range(-5, 1))]
- else:
- d_vals = [x for x in range(1, testGen.args.max_conv_dilation + 1)]
- dilations = {x for x in itertools.product(*([d_vals] * k_rank))}
-
- if not error_name:
- # add some oversize argument values
- if max(ifm_shape) < 64:
- bigPadding = 9
- paddings.update({x for x in itertools.product(*([[0, bigPadding]] * (k_rank * 2)))})
- bigStride = 8
- strides.update({x for x in itertools.product(*([[1, bigStride]] * k_rank))})
- bigDilation = 7
- dilations.update({x for x in itertools.product(*([[1, bigDilation]] * k_rank))})
-
- # There are too many parameter combinations, so generate them sparsely,
- # very sparse for negative tests
- sparsity_factor = 2 if error_name else 100
- sparsity = len(paddings) * len(strides) * len(dilations) // sparsity_factor + 1
- # If there are only a small number of tests, just select them all
- if sparsity < 13:
- sparsity = 1
- # To get a variety of parameter combinations sparsity should not be a multiple of 2, 3 or 5
- while sparsity % 2 == 0 or sparsity % 3 == 0 or sparsity % 5 == 0:
- sparsity += 1
-
- n = 0
- for s in sorted(list(strides)):
- for p in sorted(list(paddings)):
- for d in sorted(list(dilations)):
- if (n % sparsity == 0
- # padding must not exceed the kernel size ?
- # and p[0] < k[0] and p[1] < k[0] and p[2] < k[1] and p[3] < k[1]
- # and (k_rank < 3 or (p[4] < k[2] and p[5] < k[2]))
- # the padded shape must exceed the kernel size
- and (ifm_shape[1] + p[0] + p[1]) > k[0] and (ifm_shape[2] + p[2] + p[3]) > k[1]
- and (k_rank < 3 or ((ifm_shape[3] + p[4] + p[5]) > k[2]))
- # the padded shape must exceed the dilation
- and (ifm_shape[1] + p[0] + p[1]) > d[0] and (ifm_shape[2] + p[2] + p[3]) > d[1]
- and (k_rank < 3 or ((ifm_shape[3] + p[4] + p[5]) > d[2]))
- ):
- arg_list.append(
- (
- "st{}_pad{}_dilat{}".format(
- "".join([str(x) for x in s]),
- "".join([str(x) for x in p]),
- "".join([str(x) for x in d]),
- ),
- [s, p, d],
- )
- )
- n += 1
-
- return arg_list
-
- @staticmethod
- def agTransposeConv2D(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- ifm_shape = shapeList[0]
- filter_shape = shapeList[1]
-
- # Must be rank 4
- if error_name != ErrorIf.WrongRank:
- assert len(ifm_shape) == 4
- assert len(filter_shape) == 4
-
- # Generate comprehensive argument lists
- # - except for named errors, which use specific invalid value(s)
- if error_name == ErrorIf.PadSmallerZero:
- p_vals = [testGen.rng.choice(range(-5, 0))]
- else:
- p_vals = [x for x in range(0, testGen.args.max_conv_padding + 1)]
- paddings = {x for x in itertools.product(*([p_vals] * 2))}
- if error_name == ErrorIf.StrideSmallerOne:
- # Can't use stride=0, as it is used to derive output shape, as a divisor
- s_vals = [testGen.rng.choice(range(-5, 0))]
- else:
- s_vals = [x for x in range(1, testGen.args.max_conv_stride + 1)]
- strides = {x for x in itertools.product(*([s_vals] * 2))}
- if error_name == ErrorIf.DilationSmallerOne:
- d_vals = [testGen.rng.choice(range(-5, 1))]
- else:
- d_vals = [x for x in range(1, testGen.args.max_conv_dilation + 1)]
- dilations = {x for x in itertools.product(*([d_vals] * 2))}
-
- if not error_name:
- # add some oversize argument values
- if max(ifm_shape) < 64:
- bigPadding = 9
- paddings.update({x for x in itertools.product(*([[0, bigPadding]] * 2))})
- bigStride = 8
- strides.update({x for x in itertools.product(*([[1, bigStride]] * 2))})
- bigDilation = 7
- dilations.update({x for x in itertools.product(*([[1, bigDilation]] * 2))})
-
- # There are too many parameter combinations, so generate them sparsely,
- # very sparse for negative tests
- sparsity_factor = 2 if error_name else 100
- sparsity = len(paddings) * len(strides) * len(dilations) // sparsity_factor + 1
- # If there are only a small number of tests, just select them all
- if sparsity < 13:
- sparsity = 1
- # To get a variety of parameter combinations sparsity should not be a multiple of 2, 3 or 5
- while sparsity % 2 == 0 or sparsity % 3 == 0 or sparsity % 5 == 0:
- sparsity += 1
-
- n = 0
- for s in sorted(list(strides)):
- for p in sorted(list(paddings)):
- for d in sorted(list(dilations)):
- if n % sparsity == 0:
- # Determine the output shape
- oh = (
- ifm_shape[1]
- - filter_shape[1]
- - (filter_shape[1] - 1) * (d[0] - 1)
- + 2 * p[0]
- ) // s[0] + 1
- ow = (
- ifm_shape[2]
- - filter_shape[2]
- - (filter_shape[2] - 1) * (d[1] - 1)
- + 2 * p[1]
- ) // s[1] + 1
- os = [ifm_shape[0], oh, ow, filter_shape[0]]
- arg_list.append(
- (
- "st{}_pad{}_dilat{}_os{}".format(
- "".join([str(x) for x in s]),
- "".join([str(x) for x in p]),
- "".join([str(x) for x in d]),
- "x".join([str(x) for x in os]),
- ),
- [s, p, d, os],
- )
- )
- n += 1
-
- return arg_list
-
- @staticmethod
- def agPad(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
- rank = len(shapeList[0])
-
- # Exhaustively test combinations of padding on each side of each dimension
- # - the range of padding values is defined by pad_min and pad_max
- # - for padding >9, the name format needs to be more distinctive
- pad_min, pad_max = 0, 1
- pad_values = [x for x in range(pad_min, pad_max + 1)]
- if error_name == ErrorIf.PadSmallerZero:
- pad_values = [x for x in range(-2, 0)]
- axis_pad_values = [x for x in itertools.product(pad_values, pad_values)]
- shape_pad_values = itertools.product(*([axis_pad_values] * rank))
-
- if dtype in [DType.BOOL, DType.INT8, DType.INT16, DType.INT32]:
- pad_const_int = testGen.getRandNumberDType(dtype)
- pad_const_fp = 0
- elif dtype == DType.FLOAT:
- pad_const_int = 0
- pad_const_fp = testGen.getRandNumberDType(dtype)
- else:
- return []
-
- for paddings in shape_pad_values:
- name = "pad"
- for r in range(rank):
- before, after = paddings[r]
- name = f"{name}{before}{after}"
- arg_list.append((name, [np.array(paddings), pad_const_int, pad_const_fp]))
-
- return arg_list
-
- @staticmethod
- def agPooling(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- shape = shapeList[0]
- if error_name != ErrorIf.WrongRank:
- assert len(shape) == 4
-
- # Generate comprehensive argument lists
- p_vals = [x for x in range(0, testGen.args.max_pooling_padding + 1)]
- paddings = {x for x in itertools.product(*([p_vals] * 4))}
- s_vals = [x for x in range(1, testGen.args.max_pooling_stride + 1)]
- strides = {x for x in itertools.product(*([s_vals] * 2))}
- k_vals = [x for x in range(2, testGen.args.max_pooling_kernel + 2)]
- kernels = {x for x in itertools.product(*([k_vals] * 2))}
-
- # add some oversize argument values
- bigStride = 7
- strides.update({x for x in itertools.product(*([[1, bigStride]] * 2))})
- bigKernel = 6
- kernels.update({x for x in itertools.product(*([[2, bigKernel]] * 2))})
- if max(shape) < 64:
- # padding must be less than the kernel size
- bigPadding = bigKernel - 1
- paddings.update({x for x in itertools.product(*([[0, bigPadding]] * 4))})
-
- # There are too many parameter combinations, so generate them sparsely,
- # very sparse for negative tests
- sparsity_factor = 2 if error_name else 500
- sparsity = len(paddings) * len(strides) * len(kernels) // sparsity_factor + 1
-
- n = 0
- for s in sorted(list(strides)):
- for p in sorted(list(paddings)):
- for k in sorted(list(kernels)):
- if error_name in [ErrorIf.StrideSmallerOne, ErrorIf.KernelSmallerOne, ErrorIf.PadSmallerZero, ErrorIf.PadLargerEqualKernel]:
- sNew, pNew, kNew = TosaErrorIfArgGen.eiPoolingErrorIf(testGen, error_name, s, p, k)
- if None not in [sNew, pNew, kNew] and n % sparsity == 0:
- arg_list.append(
- (
- "st{}_kern{}_pad{}".format(
- "".join([str(x) for x in sNew]),
- "".join([str(x) for x in kNew]),
- "".join([str(x) for x in pNew]),
- ),
- [sNew, pNew, kNew],
- )
- )
- elif (n % sparsity == 0
- # padding must not exceed the kernel size
- and p[0] < k[0] and p[1] < k[0] and p[2] < k[1] and p[3] < k[1]
- # the padded shape must exceed the kernel size
- and (shape[1] + p[0] + p[1]) > k[0] and (shape[2] + p[2] + p[3]) > k[1]
- ):
- arg_list.append(
- (
- "st{}_kern{}_pad{}".format(
- "".join([str(x) for x in s]),
- "".join([str(x) for x in k]),
- "".join([str(x) for x in p]),
- ),
- [s, p, k],
- )
- )
- n += 1
-
- return arg_list
-
- @staticmethod
- def agCast(testGen, opName, shapeList, inDtype, error_name=None):
- arg_list = []
-
- # Enumerate the output types here
- if error_name == ErrorIf.WrongOutputType:
- dtypeList = TosaErrorIfArgGen.eiCastErrorIf(testGen, inDtype)
- elif inDtype == DType.INT8:
- dtypeList = [DType.BOOL, DType.INT16, DType.INT32, DType.FLOAT]
- elif inDtype == DType.INT16:
- dtypeList = [DType.BOOL, DType.INT8, DType.INT32, DType.FLOAT]
- elif inDtype == DType.INT32:
- dtypeList = [DType.BOOL, DType.INT8, DType.INT16, DType.FLOAT]
- elif inDtype == DType.BOOL:
- dtypeList = [DType.INT8, DType.INT16, DType.INT32]
- elif inDtype == DType.FLOAT:
- dtypeList = [DType.INT8, DType.INT16, DType.INT32]
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output type for incorrect input type
- dtypeList = [DType.BOOL, DType.INT8, DType.INT16, DType.FLOAT]
- else:
- raise Exception("Unexpected input dtype: {}".format(inDtype))
-
- for dtype in dtypeList:
- arg_list.append(("out{}".format(DTypeNames[dtype]), [dtype]))
-
- return arg_list
-
- @staticmethod
- def agRescale(testGen, opName, shapeList, inDtype, error_name=None):
- arg_list = []
-
- # Enumerate the output types here
- for dtype in [DType.UINT8, DType.INT8, DType.INT16, DType.INT32]:
- if dtype in [DType.UINT8, DType.INT8] and error_name == ErrorIf.OutputZeroPointNotZero:
- continue
- if inDtype == DType.UINT8 and dtype != DType.INT8 and error_name != ErrorIf.WrongOutputType:
- # The only output dtype for UINT8 is INT8, skip all other combinations
- continue
- if inDtype != DType.INT8 and dtype == DType.UINT8 and error_name != ErrorIf.WrongOutputType:
- # The only input dtype for UINT8 is INT8, skip all other combinations
- continue
- if error_name == ErrorIf.WrongOutputType and not TosaErrorIfArgGen.eiRescaleWrongOutputType(inDtype, dtype):
- continue
-
- for scale32 in [False, True]:
- if error_name == ErrorIf.ScaleTrue and scale32 == False:
- continue
- elif error_name == ErrorIf.ScaleNotTrue and scale32 == True:
- continue
- for double_round in [False, True]:
- if error_name == ErrorIf.ScaleNotTrue and double_round == False:
- continue
- for per_channel in [False, True]:
-
- if inDtype == DType.INT48 and scale32 and error_name != ErrorIf.ScaleTrue:
- # Illegal condition. Must be scale32=False
- continue
- if double_round and not scale32 and error_name != ErrorIf.ScaleNotTrue:
- # Illegal condition. ERROR_IF(!scale32 && double_round)
- continue
-
- arg_list.append(
- (
- "out{}_sc{}_dr{}_pc{}".format(
- DTypeNames[dtype],
- int(scale32),
- int(double_round),
- int(per_channel),
- ),
- [dtype, scale32, double_round, per_channel],
- )
- )
-
- return arg_list
-
- @staticmethod
- def agMul(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- if dtype is DType.INT32:
- for p in range(testGen.args.num_rand_permutations):
-
- shift = testGen.randInt(0, 32)
-
- arg_list.append(("perm{}_shift{}".format(p, shift), [shift]))
- else:
- arg_list.append(("perm0_shift0", [0]))
-
- return arg_list
-
- @staticmethod
- def agArithmeticRightShift(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- arg_list.append(("roundTrue", [True]))
- arg_list.append(("roundFalse", [False]))
-
- return arg_list
-
- # Helper function for reshape. Gets some factors of a larger number.
- @staticmethod
- def getFactors(val, start=1):
- factors = []
-
- for i in range(start, int(np.sqrt(val)) + 1):
- if (val % i) == 0:
- factors.append(i)
-
- return factors
-
- @staticmethod
- def agReshape(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- origShape = shapeList[0]
-
- totalElements = 1
- for s in origShape:
- totalElements *= s
-
- # This code is NOT fast. Fortunately, the numbers are fairly small.
- factors = TosaArgGen.getFactors(totalElements)
-
- for p in range(testGen.args.num_rand_permutations):
- newRank = testGen.randInt(1, 7)
- if len(factors) < newRank:
- continue
-
- found = True
- # escape_counter breaks while loop if it continues on for too long
- escape_counter = 0
- while found:
- newShape = []
- # Generate newShape ensuring it isn't a duplicate
- remainingElements = totalElements
- shuffledFactors = testGen.rng.permutation(factors)
- for i in range(1, newRank):
- # pick rank-1 factors
- newShape.append(shuffledFactors[0])
- remainingElements = remainingElements // shuffledFactors[0]
- shuffledFactors = testGen.rng.permutation(
- TosaArgGen.getFactors(remainingElements)
- )
- newShape.append(remainingElements)
-
- # Toss in a -1 sometimes
- minusOne = testGen.randInt(0, newRank * 4)
- if minusOne < newRank:
- newShape[minusOne] = -1
-
- # Check for duplicates
- found = False
- for name, other_shape in arg_list:
- if other_shape[0] == newShape:
- found = True
- break
-
- escape_counter += 1
- if escape_counter >= 100:
- break
-
- if not found:
- arg_list.append(("perm{}_rank{}".format(p, newRank), [newShape]))
-
- return arg_list
-
- @staticmethod
- def agTranspose(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- ifm_shape = shapeList[0]
-
-
- if error_name == ErrorIf.IndexOutsideBounds:
- incorrect_large_index = range(len(ifm_shape)+1, 2*len(ifm_shape)+1)
- incorrect_small_index = range(-len(ifm_shape), 0)
- permutations = [p for p in itertools.permutations(incorrect_large_index)]
- permutations.extend([p for p in itertools.permutations(incorrect_small_index)])
- elif error_name == ErrorIf.IndexUsedTwice:
- # Create list with a duplicated index
- perm_range = list(range(len(ifm_shape)))
- index_choice = testGen.rng.choice(range(len(perm_range)))
- perm_range[(index_choice + 1) % len(perm_range)] = perm_range[index_choice]
- permutations = [p for p in itertools.permutations(perm_range)]
-
-
- else:
- # Get all permutations
- permutations = [p for p in itertools.permutations(range(len(ifm_shape)))]
-
- # Limit to possible permutations from shape dimension or argument setting
- limit = min(len(permutations), testGen.args.num_rand_permutations)
-
- # Get random permutation generator that uses all permutations
- random_permutations = testGen.rng.permutation(permutations)
-
- # Create list of required amount of permutations
- arg_list = [
- ("perm{}".format(p), [random_permutations[p].tolist()])
- for p in range(limit)
- ]
- return arg_list
-
- @staticmethod
- def agSlice(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- ifm_shape = shapeList[0]
- rank = len(ifm_shape)
-
- for p in range(testGen.args.num_rand_permutations):
- start = []
- size = []
-
- valid = True
-
- for i in range(rank):
- if ifm_shape[i] > 1:
- start.append(testGen.randInt(0, ifm_shape[i]))
- size.append(testGen.randInt(0, ifm_shape[i] - start[i]))
-
- # Invalid slice size?
- if size[i] == 0:
- valid = False
- else:
- start.append(0)
- size.append(1)
-
- if valid:
- # If ERROR_IF test required then incorrect start, size will be returned
- start, size = TosaErrorIfArgGen.eiSliceErrorIf(testGen, error_name, ifm_shape, start, size)
- arg_list.append(("perm{}".format(p), [start, size]))
- return arg_list
-
- @staticmethod
- def agTile(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- ifm_shape = shapeList[0]
- rank = len(ifm_shape)
-
- for p in range(testGen.args.num_rand_permutations):
-
- # Pick a few random, but small multiple values
- # because otherwise this has a tendency to generate
- # enormous tensors
- multiples = []
- for i in range(rank):
- if ifm_shape[i] > 1000:
- # Multiple of 1 if ifm_shape dimension is large to reduce tensor size
- multiples.append(1)
- elif max(ifm_shape) > 1000:
- multiples.append(2)
- else:
- multiples.append(testGen.randInt(1, 4))
- arg_list.append(("perm{}".format(p), [multiples]))
-
- return arg_list
-
- @staticmethod
- def agResize(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- ifm_shape = shapeList[0]
- for mode in [ResizeMode.NEAREST, ResizeMode.BILINEAR]:
-
- # Exclude illegal {mode, type} configurations. Pick legal output types
- if mode == ResizeMode.NEAREST and dtype == DType.INT8:
- outputDTypeList = [DType.INT8]
- elif mode == ResizeMode.NEAREST and dtype == DType.INT16:
- outputDTypeList = [DType.INT16]
- elif mode == ResizeMode.BILINEAR and dtype == DType.INT8:
- outputDTypeList = [DType.INT32]
- elif mode == ResizeMode.BILINEAR and dtype == DType.INT16:
- outputDTypeList = [DType.INT48]
- elif dtype == DType.FLOAT:
- outputDTypeList = [DType.FLOAT]
- elif error_name == ErrorIf.WrongInputType:
- # If an incorrect input type is used then we set a 'correct'
- # output type to avoid other errors
- outputDTypeList = [DType.INT8, DType.INT16, DType.INT32]
- else:
- continue
-
- for outputDType in outputDTypeList:
- for perm in range(testGen.args.num_rand_permutations):
- # Randomly generate legal output dimensions and shift
- # and then compute the stride and offset based on them
- # A output_dim of 1 will cause offset to exceed allowed range
- # so minimum value 2 produced below
- output_dims = [testGen.randInt(1) + 1, testGen.randInt(1) + 1]
- while ((float(ifm_shape[1]) / float(output_dims[0])) >= 16):
- output_dims[0] += 1
- while ((float(ifm_shape[2]) / float(output_dims[1])) >= 16):
- output_dims[1] += 1
-
- in_center_h = (ifm_shape[1] - 1) / 2.0
- in_center_w = (ifm_shape[2] - 1) / 2.0
- out_center_h = (output_dims[0] - 1) / 2.0
- out_center_w = (output_dims[1] - 1) / 2.0
-
- fp_stride_y = float(ifm_shape[1]) / float(output_dims[0])
- fp_stride_x = float(ifm_shape[2]) / float(output_dims[1])
- fp_offset_y = in_center_h - fp_stride_y * out_center_h
- fp_offset_x = in_center_w - fp_stride_x * out_center_w
-
- if outputDType == DType.FLOAT:
- float_op = True
- arg_str = "mode{}_shift{}_odim{}x{}_out{}_st{:.2f}x{:.2f}_off{:.2f}x{:.2f}"
- shift = 0
- stride = [0, 0]
- offset = [0, 0]
- stride_fp = [fp_stride_y, fp_stride_x]
- offset_fp = [fp_offset_y, fp_offset_x]
-
- else:
- float_op = False
- arg_str = "mode{}_shift{}_odim{}x{}_out{}_st{}x{}_off{}x{}"
- shift = testGen.randInt(1,12)
- # Now search for a shift value (1 to 11) that will produce
- # a valid and predictable resize operation
- count = 0
- while (count < 12):
- unit = float(1 << shift)
- stride_y = int(round(fp_stride_y * unit))
- stride_x = int(round(fp_stride_x * unit))
- offset_y = int(round(fp_offset_y * unit))
- offset_x = int(round(fp_offset_x * unit))
-
- if (
- stride_y <= 0
- or stride_x <= 0
- or stride_y >= (16 << shift)
- or stride_x >= (16 << shift)
- or offset_y >= (16 << shift)
- or offset_x >= (16 << shift)
- or offset_y <= (-16 << shift)
- or offset_x <= (-16 << shift)
- ):
- # Change the shift value and check again
- count += 1
- shift = (shift % 11) + 1
- continue
-
- def RESIZE_REQUIRE_CALC(length_in, length_out, stride, offset, shift):
- # Perform the pseudo loop to look for out of bounds
- for pos in range(0,length_out):
- a = pos * stride + offset
- ia = a >> shift
- ia0 = max(ia, 0)
- ia1 = min(ia+1, length_in-1)
- if ia0 > ia1:
- # Found a problem value
- break
- return ia0, ia1
-
- iy0, iy1 = RESIZE_REQUIRE_CALC(ifm_shape[1], output_dims[0], stride_y, offset_y, shift)
- ix0, ix1 = RESIZE_REQUIRE_CALC(ifm_shape[2], output_dims[1], stride_x, offset_x, shift)
- if ix0 > ix1 or iy0 > iy1:
- # Change the shift value and check again
- count += 1
- shift = (shift % 11) + 1
- continue
- break
-
- if count >= 12:
- # Couldn't find a good set of values for this test, skip it
- continue
-
- stride = [stride_y, stride_x]
- offset = [offset_y, offset_x]
-
- stride_fp = [0.0, 0.0]
- offset_fp = [0.0, 0.0]
-
- # Common for all data types
- if error_name is not None:
- shift, stride, stride_fp, offset, offset_fp, outputDTypeNew = TosaErrorIfArgGen.eiResizeErrorIf(
- testGen,
- error_name,
- mode,
- dtype,
- shapeList,
- outputDType,
- shift,
- stride,
- stride_fp,
- offset,
- offset_fp
- )
- else:
- outputDTypeNew = outputDType
-
- arg_list.append(
- (
- arg_str.format(
- "N" if mode == ResizeMode.NEAREST else "B",
- shift,
- output_dims[0],
- output_dims[1],
- testGen.typeStr(outputDTypeNew),
- stride_fp[0] if float_op else stride[0],
- stride_fp[1] if float_op else stride[1],
- offset_fp[0] if float_op else offset[0],
- offset_fp[1] if float_op else offset[1]
- ),
- [
- mode,
- stride,
- offset,
- shift,
- stride_fp,
- offset_fp,
- output_dims,
- dtype,
- outputDTypeNew,
- ],
- )
- )
-
- return arg_list
-
- @staticmethod
- def agTable(testGen, opName, shapeList, dtype, error_name=None):
- arg_list = []
-
- if dtype == DType.INT8:
- table = np.int32(
- testGen.rng.integers(low=-128, high=128, size=[256])
- ).tolist()
- else: # INT16
- table = np.int32(
- testGen.rng.integers(low=-32768, high=32768, size=[513])
- ).tolist()
-
- arg_list.append(
- (
- "",
- [table],
- )
- )
- return arg_list
-
- def agCondIf(testGen, opName, shapeList, dtype, error_name=None):
- # CondIf generates the condition values here.
- # Convert to tensors in the build function, along with the
- # then and else blocks
- arg_list = []
-
- for c in [False, True]:
- arg_list.append(("cond{}".format(int(c)), [c]))
-
- return arg_list
-
- def agWhileLoop(testGen, opName, shapeList, dtype, error_name=None):
- # While loop: 0 iterations, 1, more than 1
- arg_list = []
-
- for iter in [0, 1, 4]:
- arg_list.append(("iter{}".format(iter), [iter]))
-
- return arg_list
-
-class TosaErrorIfArgGen:
-
- @staticmethod
- def eiResizeErrorIf(testGen, error_name, mode, dtype, shapeList, outputDType, shift, stride, stride_fp, offset, offset_fp):
-
- if outputDType == DType.FLOAT:
- if error_name == ErrorIf.StrideSmallerEqualZero:
- stride_fp = testGen.rng.random(size=[2]) - 2
- elif error_name == ErrorIf.ShiftNotZero:
- shift = testGen.rng.integers(1, 5)
- elif error_name == ErrorIf.StrideLargerDimension:
- shape = shapeList[0]
- transform_height = testGen.rng.choice([False, True])
- if transform_height:
- stride_fp[0] = shape[1] + testGen.rng.integers(1, 10)
- else:
- stride_fp[1] = shape[2] + testGen.rng.integers(1, 10)
- else:
- if error_name == ErrorIf.StrideSmallerEqualZero:
- stride = np.int16(testGen.rng.integers(-1, 1, size=[2]))
- elif error_name == ErrorIf.ShiftSmallerOne:
- shift = testGen.rng.integers(-3, 1)
- if shift <= 0:
- stride = [(16 >> -shift) - 1, (16 >> -shift) - 1] # avoids other ERROR_IF checks
- offset = [(16 >> -shift) - 1, (16 >> -shift) - 1] # avoids other ERROR_IF checks
- else:
- stride = [(16 << shift) - 1, (16 << shift) - 1] # avoids other ERROR_IF checks
- offset = [(16 << shift) - 1, (16 << shift) - 1] # avoids other ERROR_IF checks
- elif error_name == ErrorIf.ShiftLargerEleven:
- shift = np.int16(testGen.rng.integers(12, 15))
- elif error_name == ErrorIf.StrideLargerDimension:
- shape = shapeList[0]
- transform_height = testGen.rng.choice([False, True])
- if transform_height:
- stride[0] = shape[1] + testGen.rng.integers(1, 10)
- else:
- stride[1] = shape[2] + testGen.rng.integers(1, 10)
- elif error_name == ErrorIf.StrideLargerEqualMax:
- stride = [(16 << shift) + 1, (16 << shift) + 1]
- elif error_name == ErrorIf.OffsetLargerEqualMax:
- offset = [(16 << shift) + 1, (16 << shift) + 1]
- elif error_name == ErrorIf.OffsetSmallerEqualMin:
- offset = [(-16 << shift) - 1, (-16 << shift) - 1]
-
-
- if error_name == ErrorIf.WrongOutputType:
- if mode == ResizeMode.NEAREST and dtype == DType.INT8:
- incorrect_types = (DType.INT4, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT)
- elif mode == ResizeMode.NEAREST and dtype == DType.INT16:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT32, DType.INT48, DType.FLOAT)
- elif mode == ResizeMode.BILINEAR and dtype == DType.INT8:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT48, DType.FLOAT)
- elif mode == ResizeMode.BILINEAR and dtype == DType.INT16:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.FLOAT)
- elif dtype == DType.FLOAT:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.INT48)
- outputDType = testGen.rng.choice(a=incorrect_types)
-
- return shift, stride, stride_fp, offset, offset_fp, outputDType
-
-
- @staticmethod
- def eiPoolingErrorIf(testGen, error_name, stride, pad, kernel):
- if (error_name == ErrorIf.StrideSmallerOne
- # padding must not exceed the kernel size
- and pad[0] < kernel[0] and pad[1] < kernel[0] and pad[2] < kernel[1] and pad[3] < kernel[1]):
- wrongStride = (testGen.rng.choice([0, -1, -2, -3]), testGen.rng.choice([0, -1, -2, -3]))
- return wrongStride, pad, kernel
- elif error_name == ErrorIf.PadSmallerZero:
- wrongPad = (testGen.rng.choice([-1, -2, -3]),
- testGen.rng.choice([-1, -2, -3]),
- testGen.rng.choice([-1, -2, -3]),
- testGen.rng.choice([-1, -2, -3]))
- return stride, wrongPad, kernel
- elif error_name == ErrorIf.KernelSmallerOne:
- wrongKernel = (testGen.rng.choice([0, -1, -2, -3]), testGen.rng.choice([0, -1, -2, -3]))
- return stride, pad, wrongKernel
- elif error_name == ErrorIf.PadLargerEqualKernel:
- wrongPad = (testGen.rng.choice([kernel[0], kernel[0]+1, kernel[0]+2]),
- testGen.rng.choice([kernel[0], kernel[0]+1, kernel[0]+2]),
- testGen.rng.choice([kernel[1], kernel[1]+1, kernel[1]+2]),
- testGen.rng.choice([kernel[1], kernel[1]+1, kernel[1]+2]))
- return stride, wrongPad, kernel
- else:
- return None, None, None
-
-
- @staticmethod
- def eiRescaleWrongOutputType(input_dtype, output_dtype):
- if input_dtype == DType.INT8:
- if output_dtype not in [DType.UINT8, DType.INT8, DType.INT16, DType.INT32]:
- return True
- if input_dtype in [DType.INT16, DType.INT32]:
- if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
- return True
- elif input_dtype == DType.INT48:
- if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
- return True
- elif input_dtype == DType.UINT8:
- if output_dtype != DType.INT8:
- return True
- return False
-
-
- @staticmethod
- def eiInvalidateInputOutputList(testGen, error_name, input_list, output_list):
- # Mess up input/output tensors for ERROR_IF checks
- if error_name == "WrongInputList":
- add_input = testGen.rng.choice([True, False])
- if add_input:
- input_list.append('eiDummyInput')
- else:
- input_list = input_list[:-1]
- elif error_name == "WrongOutputList":
- add_output = testGen.rng.choice([True, False])
- if add_output:
- output_list.append('eiDummyOutput')
- else:
- output_list = []
- return input_list, output_list
-
- @staticmethod
- def eiRestrictDimensions(shape, max_dim=32, max_items=100000):
- """Restrict the dimensions and overall size of a shape to max_dim and max_items."""
- new_shape = [min(d, max_dim) for d in shape] if max(shape) > max_dim else shape
- while product(new_shape) > max_items:
- new_shape = [max(d - 1, 1) for d in new_shape]
- return new_shape
-
- def eiSliceErrorIf(testGen, error_name, input_shape, start, size):
- if error_name == ErrorIf.StartSmallerZero:
- newStart = []
- for i in range(len(input_shape)):
- newStart.append(testGen.rng.choice([-3, -2, -1]))
- return newStart, size
- elif error_name == ErrorIf.SizeSmallerEqualZero:
- newSize = []
- for i in range(len(input_shape)):
- newSize.append(testGen.rng.choice([-3, -2, -1, 0]))
- return start, newSize
- elif error_name == ErrorIf.StartSizeOutsideBounds:
- newStart, newSize = [], []
- for i in range(len(input_shape)):
- newStart.append(input_shape[i]-1)
- newSize.append(testGen.rng.choice([2, 3, 4]))
- return newStart, newSize
- elif error_name == ErrorIf.InputSizeStartLengthMismatch:
- remove = testGen.rng.choice([True, False])
- if remove:
- newStart = start[1:]
- newSize = size[1:]
- else:
- newStart = start
- newStart.append(1)
- newSize = size
- newSize.append(1)
- return newStart, newSize
- else:
- return start, size
-
- @staticmethod
- def eiCastErrorIf(testGen, input_dtype):
- if input_dtype in [DType.BOOL, DType.FLOAT]:
- outputDType = [DType.BOOL, DType.INT48, DType.FLOAT]
- elif input_dtype in [DType.INT8, DType.INT16, DType.INT32]:
- outputDType = [DType.INT48]
- else:
- assert True, f"input_dtype ({input_dtype}) not supported"
- return outputDType
-
-
-class TosaErrorValidator:
-
- @staticmethod
- def evValidateErrorIfs(serializer, validator_fcns, error_name, **kwargs):
- """Check ERROR_IF statements are caught and set the expected result.
-
- Args:
- serializer: the serializer to set the expected result in
- validator_fcns: a sequence of validator functions to verify the result
- error_name: the name of the ERROR_IF condition to check for
- kwargs: keyword arguments for the validator functions
- Returns:
- True if the result matches the expected result; otherwise False
- """
- overall_result = True
- for val_fcn in validator_fcns:
- val_result = val_fcn(True, **kwargs)
- validator_name = val_result['error_name']
- error_result = val_result['error_result']
- error_reason = val_result['error_reason']
-
- # expect an error IFF the error_name and validator_name match
- expected_result = error_result == (error_name == validator_name)
- overall_result &= expected_result
-
- if expected_result and error_result:
- serializer.setExpectedReturnCode(2, error_reason)
- elif error_result: # and not expected_result
- print(f"Unexpected ERROR_IF: Op: {valueToName(Op, kwargs['op']['op'])}"
- f" Expected: {error_name}, Got: {validator_name}")
- elif not expected_result: # and not error_result
- print(f"Missed ERROR_IF: Op: {valueToName(Op, kwargs['op']['op'])}"
- f" Expected: {error_name}")
-
- if not expected_result:
- for k, v in sorted(kwargs.items()):
- if k != 'op':
- if k.endswith('dtype'):
- v = valueToName(DType, v)
- print(f' {k} = {v}')
-
- return overall_result
-
- @staticmethod
- def evWrongInputType(check=False, **kwargs):
- error_result = False
-
- # Find the unsupported input data types
- op = kwargs['op']
- input_dtypes = op['types']
- allowed_input_dtypes = {t[0] if isinstance(t, list) else t for t in input_dtypes}
- wrong_input_dtypes = list(usableDTypes(excludes=allowed_input_dtypes))
-
- if op['op'] == Op.CLAMP:
- wrong_input_dtypes.remove(DType.INT48)
-
- if check:
- input_dtype = kwargs['input_dtype']
- if input_dtype not in allowed_input_dtypes:
- error_result = True
-
- info_dict = {
- "error_name": ErrorIf.WrongInputType,
- "error_result": error_result,
- "error_reason": f"Input data type not supported for this operator",
- "param_reqs": {"rank": None, "dtype": wrong_input_dtypes, "shape": None}
- }
- return info_dict
-
- @staticmethod
- def evWrongOutputType(check=False, **kwargs):
- error_result = False
-
- if check:
- input_dtype = kwargs['input_dtype']
- output_dtype = kwargs['output_dtype']
- op = kwargs['op']
-
- if op['op'] == Op.RESIZE:
- mode = kwargs['mode']
- if (
- (mode == ResizeMode.NEAREST and input_dtype == DType.INT8 and output_dtype != DType.INT8) or
- (mode == ResizeMode.NEAREST and input_dtype == DType.INT16 and output_dtype != DType.INT16) or
- (mode == ResizeMode.BILINEAR and input_dtype == DType.INT8 and output_dtype != DType.INT32) or
- (mode == ResizeMode.BILINEAR and input_dtype == DType.INT16 and output_dtype != DType.INT48) or
- (input_dtype == DType.FLOAT and output_dtype != DType.FLOAT)
- ):
- error_result = True
-
- elif op['op'] == Op.RESCALE:
- if input_dtype == DType.INT8:
- if output_dtype not in [DType.UINT8, DType.INT8, DType.INT16, DType.INT32]:
- error_result = True
- if input_dtype in [DType.INT16, DType.INT32]:
- if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
- error_result = True
- elif input_dtype == DType.INT48:
- if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
- error_result = True
- elif input_dtype == DType.UINT8:
- if output_dtype != DType.INT8:
- error_result = True
-
- elif op['op'] in [Op.FULLY_CONNECTED, Op.MATMUL]:
- if (
- (input_dtype == DType.INT8 and output_dtype != DType.INT32) or
- (input_dtype == DType.INT16 and output_dtype != DType.INT48) or
- (input_dtype == DType.FLOAT and output_dtype != DType.FLOAT)
- ):
- error_result = True
-
- elif op['op'] == Op.ARGMAX:
- if input_dtype in [DType.INT8, DType.INT16, DType.FLOAT] and output_dtype != DType.INT32:
- error_result = True
-
- elif op['op'] == Op.MUL:
- if input_dtype != DType.FLOAT and output_dtype != DType.INT32:
- error_result = True
- elif input_dtype == DType.FLOAT and output_dtype != DType.FLOAT:
- error_result = True
-
- elif op['op'] == Op.TABLE:
- if input_dtype == DType.INT8 and output_dtype != DType.INT8:
- error_result = True
- elif input_dtype == DType.INT16 and output_dtype != DType.INT32:
- error_result = True
-
- elif op['op'] in [Op.EQUAL, Op.GREATER_EQUAL, Op.GREATER]:
- if output_dtype != DType.BOOL:
- error_result = True
-
- elif op['op'] == Op.CAST:
- if (
- (input_dtype == DType.BOOL and output_dtype not in [DType.INT8, DType.INT16, DType.INT32])
- or (input_dtype == DType.INT8 and output_dtype not in [DType.BOOL, DType.INT16, DType.INT32, DType.FLOAT])
- or (input_dtype == DType.INT16 and output_dtype not in [DType.BOOL, DType.INT8, DType.INT32, DType.FLOAT])
- or (input_dtype == DType.INT32 and output_dtype not in [DType.BOOL, DType.INT8, DType.INT16, DType.FLOAT])
- or (input_dtype == DType.FLOAT and output_dtype not in [DType.INT8, DType.INT16, DType.INT32])
- ):
- error_result = True
-
- elif op['op'] in {Op.CONV2D, Op.CONV3D, Op.DEPTHWISE_CONV2D, Op.TRANSPOSE_CONV2D}:
- if (
- input_dtype == DType.INT8 and output_dtype != DType.INT32
- or input_dtype == DType.INT16 and output_dtype != DType.INT48
- or input_dtype == DType.FLOAT and output_dtype != DType.FLOAT
- ):
- error_result = True
- # invalid input types are ignored, to avoid reporting multiple errors
-
- else:
- if output_dtype != input_dtype:
- error_result = True
-
- info_dict = {
- "error_name": ErrorIf.WrongOutputType,
- "error_result": error_result,
- "error_reason": "Output data type not supported for this configuration of operator",
- "param_reqs": {"rank": None, "dtype": None, "shape": None}
- }
- return info_dict
-
- @staticmethod
- def evWrongRank(check=False, **kwargs):
- all_ranks = (1, 2, 3, 4, 5)
-
- # Make a list of incorrect ranks
- assert 'op' in kwargs
- op = kwargs['op']
- rmin, rmax = op['rank']
- rank_range = range(rmin, rmax + 1)
- incorrect_ranks = list(set(all_ranks) - set(rank_range))
- # Remove small incorrect ranks to avoid index errors
- incorrect_ranks = [rank for rank in incorrect_ranks if rank > rmin]
- # Set minimum incorrect rank to 3 to avoid index error
- if op['op'] in [Op.RESIZE]:
- incorrect_ranks = [3, 5]
- elif op['op'] in [Op.TRANSPOSE]:
- incorrect_ranks = [7, 8]
- elif op['op'] in [Op.CONV3D]:
- incorrect_ranks = [6, 7]
-
- error_name = ErrorIf.WrongRank
- param_reqs = {"rank": incorrect_ranks, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Rank not supported for this operator"
-
- if check:
- input_shape = kwargs['input_shape']
-
- if op['op'] in [Op.RESIZE, Op.AVG_POOL2D, Op.MAX_POOL2D] and len(input_shape) != 4:
- error_result = True
- elif op['op'] == Op.FULLY_CONNECTED and len(input_shape) != 2:
- error_result = True
- elif op['op'] == Op.MATMUL and len(input_shape) != 3:
- error_result = True
- else:
- if len(input_shape) not in rank_range:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evWrongInputList(check=False, **kwargs):
- error_name = ErrorIf.WrongInputList
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Op input list does not match expected input"
-
- if check:
- op = kwargs['op']
- input_list = kwargs['input_list']
- num_operands = kwargs['num_operands']
- if op['op'] in [Op.SCATTER, Op.GATHER]:
- # SCATTER/GATHER add an indices input tensor in their build functions
- num_operands += 1
- if len(input_list) != num_operands:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evWrongOutputList(check=False, **kwargs):
- error_name = ErrorIf.WrongOutputList
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Op output list does not match expected output"
-
- if check:
- output_list = kwargs['output_list']
- # Note this will be incorrect if an operator returns more than one output
- if len(output_list) != 1:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evMaxDimExceeded(check=False, **kwargs):
- error_name = ErrorIf.MaxDimExceeded
- param_reqs = {
- "rank": [4,4],
- "dtype": [DType.INT8],
- "shape": [[1, 16584, 5, 1], [1, 2, 16499, 4]]
- }
- error_result = False
- error_reason = "At least one maximum dimension is greater than or equal to 16384"
-
- if check:
- input_shape = kwargs['input_shape']
- output_shape = kwargs['output_shape'] # Note this is just (OH, OW)
- if ((input_shape[1] >= 16384) or
- (input_shape[2] >= 16384) or
- (output_shape[0] >= 16384) or
- (output_shape[1] >= 16384)):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evBatchMismatch(check=False, **kwargs):
- error_name = ErrorIf.BatchMismatch
- param_reqs = {"rank": [4,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input batch size not equal to output batch size"
-
- assert 'op' in kwargs
- op = kwargs['op']
- rmin, rmax = op['rank']
- rank_range = range(rmin, rmax + 1)
-
- if check:
- input_shape = kwargs['input_shape']
- output_shape = kwargs['result_tensor'].shape # Note this is just (N, OH, OW, C)
-
- if (len(input_shape) in rank_range) and (input_shape[0] != output_shape[0]):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evChannelMismatch(check=False, **kwargs):
- error_name = ErrorIf.ChannelMismatch
- param_reqs = {"rank": [4,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input channel size not equal to output channel size"
-
- assert 'op' in kwargs
- op = kwargs['op']
- rmin, rmax = op['rank']
- rank_range = range(rmin, rmax + 1)
-
- if check:
- input_shape = kwargs['input_shape']
- output_shape = kwargs['result_tensor'].shape # Note this is just (N, OH, OW, C)
- if (len(input_shape) in rank_range) and (input_shape[3] != output_shape[3]):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evStrideSmallerEqualZero(check=False, **kwargs):
- error_name = ErrorIf.StrideSmallerEqualZero
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Stride value smaller than or equal zero"
-
- if check:
- input_dtype = kwargs['input_dtype']
- output_dtype = kwargs['output_dtype']
- if input_dtype != DType.FLOAT and output_dtype == DType.FLOAT:
- stride = kwargs['stride'] # Work around wrong input/output type tests
- elif output_dtype == DType.FLOAT:
- stride = kwargs['stride_fp']
- elif input_dtype == DType.FLOAT and output_dtype != DType.FLOAT:
- stride = kwargs['stride_fp'] # Work around wrong input/output type tests
- else:
- stride = kwargs['stride']
-
- if min(stride) <= 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evStrideLargerEqualMax(check=False, **kwargs):
- error_name = ErrorIf.StrideLargerEqualMax
- param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
- error_result = False
- error_reason = "Stride value larger than or equal to maximum value"
-
- if check:
- shift = kwargs['shift']
- input_dtype = kwargs['input_dtype']
- stride = kwargs['stride']
- if input_dtype in [DType.INT8, DType.INT16]:
- if shift >= 0 and (stride[0] >= (16 << shift) or stride[1] >= (16 << shift)):
- error_result = True
- elif shift < 0 and (stride[0] >= (16 >> -shift) or stride[1] >= (16 >> -shift)):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evStrideLargerDimension(check=False, **kwargs):
- error_name = ErrorIf.StrideLargerDimension
- param_reqs = {"rank": None, "dtype": [DType.FLOAT], "shape": None}
- error_result = False
- error_reason = "Stride value larger than or equal to H/W dimension"
-
- if check:
- shape = kwargs['input_shape']
- input_dtype = kwargs['input_dtype']
- stride = kwargs['stride_fp']
-
- if input_dtype == DType.FLOAT and (stride[0] > shape[1]) or (stride[1] > shape[2]):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evOffsetSmallerEqualMin(check=False, **kwargs):
- error_name = ErrorIf.OffsetSmallerEqualMin
- param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
- error_result = False
- error_reason = "Offset value smaller than or equal to minimum value"
-
- if check:
- shift = kwargs['shift']
- output_dtype = kwargs['output_dtype']
- if output_dtype == DType.FLOAT:
- offset = kwargs['offset_fp']
- else:
- offset = kwargs['offset']
-
- if shift >= 0 and (offset[0] <= (-16 << shift) or offset[1] <= (-16 << shift)):
- error_result = True
- elif shift < 0 and (offset[0] <= (-16 >> -shift) or offset[1] <= (-16 >> -shift)):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evOffsetLargerEqualMax(check=False, **kwargs):
- error_name = ErrorIf.OffsetLargerEqualMax
- param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
- error_result = False
- error_reason = "Offset value larger than or equal to maximum value"
-
- if check:
- shift = kwargs['shift']
- output_dtype = kwargs['output_dtype']
- if output_dtype == DType.FLOAT:
- offset = kwargs['offset_fp']
- else:
- offset = kwargs['offset']
-
- if shift >= 0:
- if offset[0] >= (16 << shift) or offset[1] >= (16 << shift):
- error_result = True
-
- if shift >= 0 and (offset[0] >= (16 << shift) or offset[1] >= (16 << shift)):
- error_result = True
- elif shift < 0 and (offset[0] >= (16 >> -shift) or offset[1] >= (16 >> -shift)):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evShiftNotZero(check=False, **kwargs):
- error_name = ErrorIf.ShiftNotZero
- param_reqs = {"rank": None, "dtype": [DType.FLOAT], "shape": None}
- error_result = False
- error_reason = "Shift value must be zero for float input"
-
- if check:
- shift = kwargs['shift']
- input_dtype = kwargs['input_dtype']
- output_dtype = kwargs['output_dtype']
- if input_dtype == DType.FLOAT and output_dtype == DType.FLOAT and shift != 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evShiftSmallerOne(check=False, **kwargs):
- error_name = ErrorIf.ShiftSmallerOne
- param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
- error_result = False
- error_reason = "Shift value smaller than one"
-
- if check:
- shift = kwargs['shift']
- input_dtype = kwargs['input_dtype']
- output_dtype = kwargs['output_dtype']
- if shift < 1 and input_dtype != DType.FLOAT and output_dtype != DType.FLOAT:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evShiftLargerEleven(check=False, **kwargs):
- error_name = ErrorIf.ShiftLargerEleven
- param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
- error_result = False
- error_reason = "Shift value larger than eleven"
-
- if check:
- shift = kwargs['shift']
- if shift > 11:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evRankMismatch(check=False, **kwargs):
- error_name = ErrorIf.RankMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input Rank does not match output rank"
-
- if check:
- input1_shape = kwargs['input1'].shape
- input2_shape = kwargs['input2'].shape
- # In case of SELECT op
- input3_shape = kwargs['input3'].shape if 'input3' in kwargs else input2_shape
- output_shape = kwargs['result_tensor'].shape
- if (
- (len(input1_shape) != len(output_shape)) or
- (len(input2_shape) != len(output_shape)) or
- (len(input3_shape) != len(output_shape))
- ):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evDimensionMismatch(check=False, **kwargs):
- error_name = ErrorIf.DimensionMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input Dimensions do not match output"
-
- if check:
- input1_shape = kwargs['input1'].shape
- input2_shape = kwargs['input2'].shape
- # In case of SELECT op
- input3_shape = kwargs['input3'].shape if 'input3' in kwargs else input2_shape
- output_shape = kwargs['result_tensor'].shape
- for i in range(min(len(input1_shape), len(input2_shape), len(input3_shape))):
- if (
- (input1_shape[i] != 1 and input1_shape[i] != output_shape[i]) or
- (input2_shape[i] != 1 and input2_shape[i] != output_shape[i]) or
- (input3_shape[i] != 1 and input3_shape[i] != output_shape[i])
- ):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evInputZeroPointNotZero(check=False, **kwargs):
- op = kwargs['op']
- error_result = False
-
- # Quantizable types
- qTypes = (DType.INT8, DType.UINT8)
-
- # This does not apply to quantizable types
- inputDtypes = [
- dtype for dtype in op['types']
- if (isinstance(dtype, list) and dtype[0] not in qTypes) or
- (not isinstance(dtype, list) and dtype not in qTypes)
- ]
-
- if check:
- input_dtype = kwargs['input_dtype']
- if isinstance(kwargs['qinfo'], tuple):
- qinfo = kwargs['qinfo']
- input_zero_point = qinfo[0]
- else:
- # For use: qinfo.ints[0][1] = input_zp, qinfo.ints[1][1] = output_zp
- qinfo = kwargs['qinfo'].ints
- input_zero_point = qinfo[0][1]
-
- if op['op'] == Op.MATMUL:
- qinfo = kwargs['qinfo'].ints
- for dtype, zp in (
- (kwargs['input_dtype'], qinfo[0][1]),
- (kwargs['input2_dtype'], qinfo[1][1]),
- ):
- if dtype not in qTypes and zp != 0:
- error_result = True
- break
- else:
- error_result = input_dtype not in qTypes and input_zero_point != 0
-
- info_dict = {
- "error_name": ErrorIf.InputZeroPointNotZero,
- "error_result": error_result,
- "error_reason": "Input DType not INT8 and zero point not 0",
- "param_reqs": {"rank": None, "dtype": inputDtypes, "shape": None}
- }
- return info_dict
-
-
- @staticmethod
- def evWeightZeroPointNotZero(check=False, **kwargs):
- op = kwargs['op']
-
- # exclude inputs with INT8 weights
- inputDtypes = [t for t in op['types']
- if not isinstance(t, list) or t[1] != DType.INT8]
-
- error_name = ErrorIf.WeightZeroPointNotZero
- param_reqs = {
- "rank": None,
- "dtype": inputDtypes,
- "shape": None
- }
- error_result = False
- error_reason = "Weight DType not INT8 and zero point not 0"
-
- if check:
- weight_dtype = kwargs['weight_dtype']
- # For use: qinfo.ints[0][1] = input_zp, qinfo.ints[1][1] = weight_zp
- qinfo = kwargs['qinfo'].ints
- weight_zero_point = qinfo[1][1]
- if weight_dtype != DType.INT8 and weight_zero_point != 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evOutputZeroPointNotZero(check=False, **kwargs):
- op = kwargs['op']
- inputDtypes = op['types'].copy()
- if DType.INT8 in inputDtypes:
- inputDtypes.remove(DType.INT8)
- if DType.UINT8 in inputDtypes:
- inputDtypes.remove(DType.UINT8)
-
- error_name = ErrorIf.OutputZeroPointNotZero
- param_reqs = {
- "rank": None,
- "dtype": inputDtypes,
- "shape": None
- }
- error_result = False
- error_reason = "Output DType not INT8 and zero point not 0"
-
- if check:
- input_dtype = kwargs['input_dtype']
- output_dtype = kwargs['output_dtype']
- if isinstance(kwargs['qinfo'], tuple):
- qinfo = kwargs['qinfo']
- output_zero_point = qinfo[1]
- else:
- # For use: qinfo.ints[0][1] = input_zp, qinfo.ints[1][1] = output_zp
- qinfo = kwargs['qinfo'].ints
- output_zero_point = qinfo[1][1]
- if op['op'] == Op.AVG_POOL2D:
- if input_dtype != DType.INT8 and output_zero_point != 0:
- error_result = True
- elif output_dtype not in [DType.INT8, DType.UINT8] and output_zero_point != 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evAxisSmallerZero(check=False, **kwargs):
- error_name = ErrorIf.AxisSmallerZero
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Axis smaller than zero"
-
- if check:
- axis = kwargs['axis']
- if axis < 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evAxisLargerRank(check=False, **kwargs):
- error_name = ErrorIf.AxisLargerRank
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Axis larger than rank"
-
- if check:
- axis = kwargs['axis']
- shape = kwargs['input_shape']
- if axis > len(shape):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evShapeOfAxisNotOne(check=False, **kwargs):
- error_name = ErrorIf.ShapeOfAxisNotOne
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "shape[axis] is not equal to 1"
-
- if check:
- axis = kwargs['axis']
- shape = kwargs['output_shape']
- if (0 <= axis < len(shape)) and shape[axis] != 1:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evPadSmallerZero(check=False, **kwargs):
- error_name = ErrorIf.PadSmallerZero
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "At least one pad is smaller than zero"
-
- if check:
- op = kwargs['op']
- pad = kwargs['pad']
- if op['op'] == Op.PAD:
- for padding in pad:
- if min(padding) < 0:
- error_result = True
- else:
- if min(pad) < 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evPadLargerEqualKernel(check=False, **kwargs):
- error_name = ErrorIf.PadLargerEqualKernel
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "At least one pad is larger than kernel dimension"
-
- if check:
- pad = kwargs['pad']
- kernel = kwargs['kernel']
- if min(pad) > 0 and min(kernel) > 1:
- if pad[0] >= kernel[0] or pad[1] >= kernel[0] or pad[2] >= kernel[1] or pad[3] >= kernel[1]:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evPoolingOutputShapeMismatch(check=False, **kwargs):
- error_name = ErrorIf.PoolingOutputShapeMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Mismatch between output shape provided and expected output shape"
-
- if check:
- pad = kwargs['pad']
- pad_top, pad_bottom, pad_left, pad_right = pad[0], pad[1], pad[2], pad[3]
-
- kernel = kwargs['kernel']
- kernel_y, kernel_x = kernel[0], kernel[1]
-
- input_shape = kwargs['input_shape']
- IH, IW = input_shape[1], input_shape[2]
-
- output_shape = kwargs['output_shape']
- OH, OW = output_shape[1], output_shape[2]
-
- stride = kwargs['stride']
- stride_y, stride_x = stride[0], stride[1]
-
- # calculate correct height, width dimensions
- if stride_x != 0 and stride_y != 0:
- y_correct = (IH + pad_top + pad_bottom + stride_y - kernel_y) // stride_y
- x_correct = (IW + pad_left + pad_right + stride_x - kernel_x) // stride_x
-
- # ensure parameters are valid
- params_valid = (min(kernel) >= 1 and min(stride) >= 1 and min(pad) >= 0
- and not (pad[0] >= kernel[0] or pad[1] >= kernel[0] or pad[2] >= kernel[1] or pad[3] >= kernel[1]))
-
- if params_valid and (OH != y_correct or OW != x_correct):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evArgmaxOutputShapeMismatch(check=False, **kwargs):
- error_name = ErrorIf.ArgmaxOutputShapeMismatch
- param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Mismatch between output shape provided and expected output shape"
-
- if check:
- output_shape = kwargs['output_shape']
- input_shape = kwargs['input_shape']
- axis = kwargs['axis']
-
- dimension_match = True
- axis_shift = 0
-
- # Check that rank is correct before trying to check dimensions
- if (len(input_shape) - 1) == len(output_shape):
- for i in range(len(input_shape)):
- if i == axis:
- axis_shift = 1
- continue
- if input_shape[i] != output_shape[i - axis_shift]:
- dimension_match = False
-
- if not dimension_match:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evArgmaxOutputRankMismatch(check=False, **kwargs):
- error_name = ErrorIf.ArgmaxOutputRankMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Mismatch between output shape provided and expected output shape"
-
- if check:
- output_shape = kwargs['output_shape']
- input_shape = kwargs['input_shape']
- axis = kwargs['axis']
- valid_params = axis >= 0 and axis < len(input_shape)
-
- if valid_params and (len(input_shape) - 1) != len(output_shape):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evKernelSmallerOne(check=False, **kwargs):
- error_name = ErrorIf.KernelSmallerOne
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "At least one kernel dimension is smaller than zero"
-
- if check:
- kernel = kwargs['kernel']
- if min(kernel) < 1:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evStrideSmallerOne(check=False, **kwargs):
- error_name = ErrorIf.StrideSmallerOne
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "At least one stride dimension is smaller than zero"
-
- if check:
- stride = kwargs['stride']
- if min(stride) < 1:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evDilationSmallerOne(check=False, **kwargs):
- error_result = check and min(kwargs['dilation']) < 1
- return {
- "error_name": ErrorIf.DilationSmallerOne,
- "error_reason": "At least one dilation is smaller than one",
- "param_reqs": {"rank": None, "dtype": None, "shape": None},
- "error_result": error_result
- }
-
- @staticmethod
- def evScaleTrue(check=False, **kwargs):
- error_name = ErrorIf.ScaleTrue
- param_reqs = {"rank": None, "dtype": [DType.INT48], "shape": None}
- error_result = False
- error_reason = "Scale set to true but input type is INT48"
-
- if check:
- input_dtype = kwargs['input_dtype']
- scale32 = kwargs['scale32']
- if scale32 and input_dtype == DType.INT48:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evScaleNotTrue(check=False, **kwargs):
- error_name = ErrorIf.ScaleNotTrue
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Scale set to false but double round set to true"
-
- if check:
- scale32 = kwargs['scale32']
- double_round = kwargs['double_round']
- if not scale32 and double_round:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evTensorSizeInputOutputMismatch(check=False, **kwargs):
- error_name = ErrorIf.TensorSizeInputOutputMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input tensor size does not match output tensor size"
-
- if check:
- input_shape = kwargs['input_shape']
- output_shape = kwargs['output_shape']
- input_size = np.prod(input_shape)
- output_size = np.prod(output_shape)
- if input_size != output_size:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evStartSmallerZero(check=False, **kwargs):
- error_name = ErrorIf.StartSmallerZero
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Starting point smaller than zero"
-
- if check:
- input_shape = kwargs['input_shape']
- start = kwargs['start']
- rank = len(input_shape)
- if len(start) == rank:
- for index in range(rank):
- if start[index] < 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evSizeSmallerEqualZero(check=False, **kwargs):
- error_name = ErrorIf.SizeSmallerEqualZero
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Size smaller than or equal to zero"
-
- if check:
- input_shape = kwargs['input_shape']
- size = kwargs['size']
- rank = len(input_shape)
- if len(size) == rank:
- for index in range(rank):
- if size[index] <= 0:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evStartSizeOutsideBounds(check=False, **kwargs):
- error_name = ErrorIf.StartSizeOutsideBounds
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "starting point plus size larger than input dimension"
-
- if check:
- input_shape = kwargs['input_shape']
- start = kwargs['start']
- size = kwargs['size']
- rank = len(input_shape)
- if len(start) == rank and len(size) == rank:
- for index in range(rank):
- if start[index] + size[index] > input_shape[index]:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evSizeOutputShapeMismatch(check=False, **kwargs):
- error_name = ErrorIf.SizeOutputShapeMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Size does not match output dimension"
-
- if check:
- input_shape = kwargs['input_shape']
- output_shape = kwargs['output_shape']
- size = kwargs['size']
- rank = len(input_shape)
- if len(size) == rank:
- for index in range(rank):
- if size[index] != output_shape[index]:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evInputSizeStartLengthMismatch(check=False, **kwargs):
- error_name = ErrorIf.InputSizeStartLengthMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "rank of input not equal to length of start or size"
-
- if check:
- input_shape = kwargs['input_shape']
- start = kwargs['start']
- size = kwargs['size']
- rank = len(input_shape)
- if rank != len(start) or rank != len(size):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evIndexOutsideBounds(check=False, **kwargs):
- error_name = ErrorIf.IndexOutsideBounds
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Index outside of allowed bounds"
-
- if check:
- input_shape = kwargs['input_shape']
- perms = kwargs['perms']
- rank = len(input_shape)
-
- for index in perms:
- if index < 0 or index > rank:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evIndexUsedTwice(check=False, **kwargs):
- error_name = ErrorIf.IndexUsedTwice
- param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Index used multiple times"
-
- if check:
- input_shape = kwargs['input_shape']
- perms = kwargs['perms']
- rank = len(input_shape)
-
- unique_indices = []
- for index in perms:
- if index in unique_indices:
- error_result = True
- else:
- unique_indices.append(index)
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evMaxSmallerMin(check=False, **kwargs):
- error_name = ErrorIf.MaxSmallerMin
- param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Max value smaller than min value"
-
- if check:
- max_val = kwargs['max_val']
- min_val = kwargs['min_val']
- if max_val < min_val:
- error_result = True
-
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evConcatInputRankMismatch(check=False, **kwargs):
- error_name = ErrorIf.ConcatInputRankMismatch
- param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input ranks are not identical"
-
- if check:
- inputs = kwargs['inputs']
- input_shape = kwargs['input_shape']
- for input in inputs:
- if len(input.shape) != len(input_shape):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evConcatInputDimMismatch(check=False, **kwargs):
- error_name = ErrorIf.ConcatInputDimMismatch
- param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input dimensions differ on too many axes"
-
- if check:
- inputs = kwargs['inputs']
- input_shape = kwargs['input_shape']
- axis = kwargs['axis']
-
- # Ensure rank is valid before checking dims.
- valid_rank = True
- for input in inputs:
- if len(input.shape) != len(input_shape):
- valid_rank = False
-
- if valid_rank:
- for input in inputs:
- for i, dim in enumerate(input.shape):
- if dim != input_shape[i] and axis != i:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evConcatShapeSumMismatch(check=False, **kwargs):
- error_name = ErrorIf.ConcatShapeSumMismatch
- param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
- error_result = False
- error_reason = "Sum of dimensions on axis not equal to output dimension"
-
- if check:
- inputs = kwargs['inputs']
- input_shape = kwargs['input_shape']
- output_shape = kwargs['output_shape']
- axis = kwargs['axis']
-
- # Ensure rank is valid before checking dims.
- valid_params = True
- for input in inputs:
- if len(input.shape) != len(input_shape):
- valid_params = False
- if axis < 0 or axis > len(input_shape):
- valid_params = False
-
- if valid_params:
- axis_dim_sum = 0
- for input in inputs:
- axis_dim_sum += input.shape[axis]
-
- if axis_dim_sum != output_shape[axis]:
- error_result = True
-
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
- @staticmethod
- def evInputListThenGraphMismatch(check=False, **kwargs):
- error_name = ErrorIf.CondIfInputListThenGraphMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input list shape does not match then-graph shape"
-
- if check:
- a = kwargs['a']
- b = kwargs['b']
- basicBlocks = kwargs['basicBlocks']
- then_block = basicBlocks[1]
- then_inputs = then_block.inputs
- then_tens = then_block.tensors
- if (a.shape != then_tens[then_inputs[0]].shape) or (b.shape != then_tens[then_inputs[1]].shape):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evInputListElseGraphMismatch(check=False, **kwargs):
- error_name = ErrorIf.CondIfInputListElseGraphMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input list shape does not match else-graph shape"
-
- if check:
- a = kwargs['a']
- b = kwargs['b']
- basicBlocks = kwargs['basicBlocks']
- else_block = basicBlocks[2]
- else_inputs = else_block.inputs
- else_tens = else_block.tensors
- if (a.shape != else_tens[else_inputs[0]].shape) or (b.shape != else_tens[else_inputs[1]].shape):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evOutputListThenGraphMismatch(check=False, **kwargs):
- error_name = ErrorIf.CondIfOutputListThenGraphMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Output list shape does not match then-graph shape"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- cond_block = basicBlocks[0]
- cond_outputs = cond_block.outputs
- cond_tens = cond_block.tensors
- then_block = basicBlocks[1]
- then_outputs = then_block.outputs
- then_tens = then_block.tensors
- if then_tens[then_outputs[0]].shape != cond_tens[cond_outputs[0]].shape:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evOutputListElseGraphMismatch(check=False, **kwargs):
- error_name = ErrorIf.CondIfOutputListElseGraphMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Output list shape does not match else-graph shape"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- cond_block = basicBlocks[0]
- cond_outputs = cond_block.outputs
- cond_tens = cond_block.tensors
- else_block = basicBlocks[2]
- else_outputs = else_block.outputs
- else_tens = else_block.tensors
- if else_tens[else_outputs[0]].shape != cond_tens[cond_outputs[0]].shape:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evInputListOutputListMismatch(check=False, **kwargs):
- error_name = ErrorIf.InputListOutputListMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input list does not match output list"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- while_block = basicBlocks[0]
- while_inputs = while_block.inputs
- while_outputs = while_block.outputs
- while_tens = while_block.tensors
- if while_tens[while_inputs[1]].shape != while_tens[while_outputs[0]].shape:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evInputListCondGraphMismatch(check=False, **kwargs):
- error_name = ErrorIf.InputListCondGraphMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input list does not match cond graph"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- while_block = basicBlocks[0]
- while_inputs = while_block.inputs
- while_tens = while_block.tensors
- cond_block = basicBlocks[1]
- cond_inputs = cond_block.inputs
- cond_tens = cond_block.tensors
- if ((while_tens[while_inputs[0]].shape != cond_tens[cond_inputs[0]].shape) or
- (while_tens[while_inputs[1]].shape != cond_tens[cond_inputs[2]].shape)):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evInputListBodyGraphInputMismatch(check=False, **kwargs):
- error_name = ErrorIf.InputListBodyGraphInputMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input list does not match body graph input"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- while_block = basicBlocks[0]
- while_inputs = while_block.inputs
- while_tens = while_block.tensors
- body_block = basicBlocks[2]
- body_outputs = body_block.inputs
- body_tens = body_block.tensors
- if ((while_tens[while_inputs[0]].shape != body_tens[body_outputs[0]].shape) or
- (while_tens[while_inputs[1]].shape != body_tens[body_outputs[2]].shape)):
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evInputListBodyGraphOutputMismatch(check=False, **kwargs):
- error_name = ErrorIf.InputListBodyGraphOutputMismatch
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Input list does not match body graph output"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- while_block = basicBlocks[0]
- while_inputs = while_block.inputs
- while_tens = while_block.tensors
- body_block = basicBlocks[2]
- body_outputs = body_block.outputs
- body_tens = body_block.tensors
- if ((while_tens[while_inputs[0]].shape != body_tens[body_outputs[0]].shape) or
- (while_tens[while_inputs[1]].shape != body_tens[body_outputs[2]].shape)):
- error_result = True
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
- @staticmethod
- def evCondGraphOutputNotMatchingBool(check=False, **kwargs):
- error_name = ErrorIf.CondGraphOutputNotMatchingBool
- param_reqs = {"rank": None, "dtype": None, "shape": None}
- error_result = False
- error_reason = "Cond graph output is not a match list of booleans"
-
- if check:
- basicBlocks = kwargs['basicBlocks']
- cond_block = basicBlocks[1]
- cond_outputs = cond_block.outputs
- cond_tens = cond_block.tensors
- if cond_tens[cond_outputs[0]].dtype != DType.BOOL:
- error_result = True
-
- info_dict = {
- "error_name": error_name,
- "error_result": error_result,
- "error_reason": error_reason,
- "param_reqs": param_reqs
- }
- return info_dict
-
-
-class TosaInvalidValidator:
-
- @staticmethod
- def ivWrongDataTypeOrModeResize(**kwargs):
- input_dtype = kwargs["input_dtype"]
- args = kwargs["args"]
- mode = args[0]
- stride = args[1]
- stride_fp = args[4]
- output_dtype = args[8]
-
- if mode == ResizeMode.BILINEAR:
- # Invalid output data type / Invalid input datatype
- return (
- not (input_dtype == DType.INT8 and output_dtype == DType.INT32) or
- not (input_dtype == DType.INT16 and output_dtype == DType.INT48) or
- not (input_dtype == DType.FLOAT and output_dtype == DType.FLOAT) or
- (input_dtype not in [DType.INT8, DType.INT32, DType.FLOAT])
- )
- elif mode == ResizeMode.NEAREST:
- # Invalid output data type / Invalid input datatype
- return (
- (input_dtype != output_dtype) or
- (input_dtype not in [DType.INT8, DType.INT32, DType.FLOAT])
- )
- else:
- # Invalid resize mode
- return True
-
- @staticmethod
- def ivBadStride(**kwargs):
- input_dtype = kwargs["input_dtype"]
- args = kwargs["args"]
- stride_x = args[1][0]
- stride_y = args[1][1]
- stride_fp_x = args[4][0]
- stride_fp_y = args[4][1]
-
- if input_dtype == DType.FLOAT:
- if stride_fp_x <= 0 or stride_fp_y <= 0:
- # Negative or zero stride
- return True
- else:
- if stride_x <= 0 or stride_y <= 0:
- # Negative or zero stride
- return True
- return False
-
- @staticmethod
- def ivHeightWidthInvalid(**kwargs):
- opName = kwargs['opName']
-
- inputShapes = kwargs['shapeList']
- input_shape = inputShapes[0]
-
- args = kwargs['args']
- strides = args[0]
- padding = args[1]
-
- if opName.endswith("pool2d"):
- # avg_pool2d, max_pool2d
- kernel_shape = args[2]
- h = (input_shape[1] + padding[0] + padding[1] + strides[0] - kernel_shape[0]) // strides[0]
- w = (input_shape[2] + padding[2] + padding[3] + strides[1] - kernel_shape[1]) // strides[1]
- # return True if any dimension is < 1
- return h < 1 or w < 1
-
- if opName.startswith("transpose_conv2d"):
- # transpose_conv2d
- dilations = args[2]
- output_shape = args[3]
- filter_shape = inputShapes[1]
- kernel_shape = filter_shape[1:-1]
-
- def get_out_size(in_size, stride, kernel_size, dilation, out_pad, in_pad):
- """Calculate the transpose_conv2d output size for a dimension.
-
- Based on the keras function deconv_output_length, in
- https://github.com/keras-team/keras/blob/master/keras/utils/conv_utils.py
-
- Args:
- in_size: the input size - int
- stride: the stride - int
- kernel_size: the kernel size - int
- dilation: the kernel dilation - int
- out_pad: the output padding - int
- in_pad: the input padding - int
-
- Returns:
- the output size
- """
- dilated_kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
- return (in_size - 1) * stride + dilated_kernel_size - 2 * in_pad + out_pad
-
- for pad_h, pad_w in (
- (kernel_shape[0] - 1, kernel_shape[1] - 1), # FULL padding
- (kernel_shape[0] // 2, kernel_shape[1] // 2), # SAME padding
- (0, 0) # VALID padding
- ):
- h = get_out_size(input_shape[1], strides[0], kernel_shape[0], dilations[0],
- padding[0], pad_h)
- w = get_out_size(input_shape[2], strides[1], kernel_shape[1], dilations[1],
- padding[1], pad_w)
- if output_shape[1] == h and output_shape[2] == w:
- return False
-
- # output shape does not match the expected shape for any padding option
- return True
-
- if "conv2d" in opName or "conv3d" in opName:
- # conv2d, conv3d, depthwise_conv2d
- dilations = args[2]
- filter_shape = inputShapes[1]
- kernel_shape = filter_shape[0:2] if opName.startswith("depthwise_conv2d") else filter_shape[1:-1]
-
- for i in range(len(kernel_shape)):
- dim = (
- input_shape[i + 1]
- - kernel_shape[i]
- - (kernel_shape[i] - 1) * (dilations[i] - 1)
- + padding[i * 2 + 0]
- + padding[i * 2 + 1]
- ) // strides[i] + 1
- # return True if any dimension is < 1
- if dim < 1:
- return True
- return False
-
- assert False, f"Unrecognized Op: {opName}"
-
- @staticmethod
- def ivNonPositiveOutputShape(**kwargs):
- args = kwargs['args']
- output_shape = args[3]
- if output_shape[1] <= 0 or output_shape[2] <= 0:
- # Negative output shape
- return True
- return False
-
-
-class TosaTestGen:
- # Maximum rank of tensor supported by test generator.
- TOSA_TENSOR_MAX_RANK = 6
-
- def __init__(self, args):
- self.args = args
- self.basePath = args.output_dir
- self.random_seed = args.random_seed
- self.ser = None
- self.rng = np.random.default_rng(self.random_seed)
- self.createDynamicOpLists()
- self.initOpListDefaults()
- self.quantGen = TosaQuantGen()
- # Force makeShape to do a specific starting shape
- self.targetted_shape = None
-
- def createSerializer(self, opName, testPath):
- self.testPath = os.path.join(opName, testPath)
-
- fullPath = os.path.join(self.basePath, self.testPath)
- os.makedirs(fullPath, exist_ok=True)
- self.ser = ts.TosaSerializer(fullPath)
-
- def getSerializer(self):
- return self.ser
-
- def serialize(self, testName):
- with open(
- os.path.join(self.basePath, self.testPath, "{}.tosa".format(testName)), "wb"
- ) as fd:
- fd.write(self.ser.serialize())
-
- with open(os.path.join(self.basePath, self.testPath, "desc.json"), "w") as fd:
- fd.write(self.ser.writeJson("{}.tosa".format(testName)))
-
- def resetRNG(self, seed=None):
- if seed == None:
- seed = self.random_seed + 1
- self.rng = np.random.default_rng(seed)
-
- def getRandTensor(self, shape, dtype):
- if dtype == DType.BOOL:
- np_dt = np.bool
- return np.bool_(self.rng.choice(a=[False, True], size=shape))
- # TOSA specific INT4 weight range from -7 to 7
- elif dtype == DType.INT4:
- return np.int32(self.rng.integers(low=-7, high=8, size=shape))
- elif dtype == DType.INT8:
- return np.int32(self.rng.integers(low=-128, high=128, size=shape))
- elif dtype == DType.UINT8:
- return np.int32(self.rng.integers(low=0, high=256, size=shape))
- elif dtype == DType.INT16:
- return np.int32(self.rng.integers(low=-32768, high=32768, size=shape))
- elif dtype == DType.INT32:
- return np.int32(
- self.rng.integers(low=-(1 << 31), high=(1 << 31), size=shape)
- )
- elif dtype == DType.INT48:
- return np.int64(
- self.rng.integers(low=-(1 << 47), high=(1 << 47), size=shape)
- )
- elif dtype == DType.FLOAT:
- return np.float32(self.rng.random(size=shape))
- else:
- raise Exception("Unrecognized Dtype: {}".format(dtype))
-
- def buildPlaceholderTensors(self, shape_list, dtype_list):
- placeholders = []
-
- assert len(shape_list) == len(dtype_list)
-
- for idx, shape in enumerate(shape_list):
- arr = self.getRandTensor(shape, dtype_list[idx])
- placeholders.append(self.ser.addPlaceholder(shape, dtype_list[idx], arr))
-
- return placeholders
-
- def buildConstTensors(self, shape_list, dtype_list):
- consts = []
-
- assert len(shape_list) == len(dtype_list)
-
- for idx, shape in enumerate(shape_list):
- arr = self.getRandTensor(shape, dtype_list[idx])
- consts.append(self.ser.addConst(shape, dtype_list[idx], arr))
-
- return consts
-
- def makeShape(self, rank):
- if self.targetted_shape:
- return np.int32(self.targetted_shape)
- return np.int32(
- self.rng.integers(
- low=self.args.tensor_shape_range[0],
- high=self.args.tensor_shape_range[1],
- size=rank,
- )
- )
-
- def setTargetShape(self, shape):
- self.targetted_shape = shape
-
- def randInt(self, low=0, high=256):
- return np.int32(self.rng.integers(low=low, high=high, size=1))[0]
-
- def getRandNumberDType(self, dtype):
- if dtype == DType.FLOAT:
- return self.rng.random()
- elif dtype == DType.BOOL:
- return self.rng.choice([False, True])
- # TOSA specific INT4 weight range from -7 to 7
- elif dtype == DType.INT4:
- low, high = (-7, 8)
- elif dtype == DType.INT8:
- low, high = (-128, 128)
- elif dtype == DType.INT16:
- low, high = (-32768, 32768)
- elif dtype == DType.INT32:
- low, high = (-(1 << 31), (1 << 31))
- elif dtype == DType.INT48:
- low, high = (-(1 << 47), (1 << 47))
- # Special size
- return np.int64(self.rng.integers(low, high, size=1))[0]
- else:
- raise Exception("Unknown dtype: {}".format(dtype))
-
- return np.int32(self.rng.integers(low, high, size=1))[0]
-
- def shapeStr(self, shape):
-
- sStr = []
- # Convert to strings
- for i in shape:
- sStr.append(str(i))
-
- return "x".join(sStr)
-
- def typeStr(self, t):
- if isinstance(t, list):
- assert len(t) >= 2
- return "{}x{}".format(self.typeStr(t[0]), self.typeStr(t[1]))
- else:
- if t == DType.BOOL:
- return "b"
- elif t == DType.INT4:
- return "i4"
- elif t == DType.INT8:
- return "i8"
- elif t == DType.UINT8:
- return "u8"
- elif t == DType.INT16:
- return "i16"
- elif t == DType.INT32:
- return "i32"
- elif t == DType.INT48:
- return "i48"
- elif t == DType.FLOAT:
- return "float"
- else:
- raise Exception("Unknown dtype, cannot convert to string: {}".format(t))
-
- def typeWidth(self, t):
- """ Get the datatype width for integer types"""
- if t == DType.INT4:
- return 4
- elif t == DType.INT8:
- return 8
- elif t == DType.UINT8:
- return 8
- elif t == DType.INT16:
- return 16
- elif t == DType.INT32:
- return 32
- elif t == DType.INT48:
- return 48
- elif t == DType.FLOAT:
- return 32
- elif t == DType.BOOL:
- return 1
- else:
- raise Exception(f"Unknown dtype, cannot determine width: {t}")
-
- # Argument generators
- # Returns a list of tuples (stringDescriptor, [build_fcn_arg_list])
- # Where the string descriptor is used to generate the test name and
- # The build_fcn_arg_list is expanded and passed to the operator test
- # build function
-
- def build_unary(self, op, a, validator_fcns=None, error_name=None, qinfo=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
-
- # build_placeholder returns an int, ABS/other ops does not
- if isinstance(op, int):
- self.ser.addOperator(op, a.name, result_tens.name, None, qinfo)
- return result_tens
- elif op['op'] == Op.IDENTITY:
- self.ser.addOperator(op['op'], a.name, result_tens.name, None, qinfo)
- return result_tens
-
- # Ensure new output type has correct qinfo
- if error_name == ErrorIf.WrongOutputType:
- if result_tens.dtype not in [DType.INT8, DType.UINT8]:
- qinfo = ts.TosaSerializerQuantInfo()
- qinfo.UnaryQuantInfo(
- TosaQuantGen.getQinfo(self, a.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
- )
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_dtype=a.dtype,
- output_dtype=result_tens.dtype,
- qinfo = qinfo,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list, None, qinfo)
- return result_tens
-
- def build_binary_broadcast(self, op, a, b, validator_fcns, error_name=None):
- result_tens = OutputShaper.binaryBroadcastOp(self.ser, self.rng, a, b, error_name)
-
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name, b.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input1 = a,
- input2 = b,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list)
- return result_tens
-
- def build_binary_nonbroadcast(self, op, a, b, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.binaryNonBroadcastOp(self.ser, a, b)
- self.ser.addOperator(op['op'], [a.name, b.name], [result_tens.name])
- return result_tens
-
- def build_arithmetic_right_shift(self, op, a, b, round, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.binaryBroadcastOp(self.ser, self.rng, a, b, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name, b.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input1 = a,
- input2 = b,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.ArithmeticRightShiftAttribute(round)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_mul(self, op, a, b, shift, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.binaryBroadcastOp(self.ser, self.rng, a, b, error_name)
-
- # Special for multiply:
- # Force the result to INT32 for INT types
- if a.dtype != DType.FLOAT:
- result_tens.setDtype(DType.INT32)
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT48]
- outputDType = self.rng.choice(all_dtypes)
- result_tens.setDtype(outputDType)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name, b.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input1 = a,
- input2 = b,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.MulAttribute(shift)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_table(self, op, a, table, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.tableOp(self.ser, self.rng, a, error_name)
-
- attr = ts.TosaSerializerAttribute()
- attr.TableAttribute(table)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
-
- return result_tens
-
- def build_select(self, op, cond, a, b, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.selectOp(self.ser, self.rng, cond, a, b, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [cond.name, a.name, b.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input1 = cond,
- input2 = a,
- input3 = b,
- input_shape = a.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list,)
- return result_tens
-
- def build_comparison(self, op, a, b, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.binaryComparisonOp(self.ser, self.rng, a, b, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name, b.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input1 = a,
- input2 = b,
- input_shape = a.shape,
- input_dtype = a.dtype,
- output_shape = result_tens.shape,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list,)
- return result_tens
-
- def build_argmax(self, op, a, axis, validator_fcns, error_name):
- result_tens = OutputShaper.argmaxOp(self.ser, self.rng, a, axis, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- axis=axis,
- input_shape = a.shape,
- input_dtype = a.dtype,
- output_shape = result_tens.shape,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.AxisAttribute(axis)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_pool2d(self, op, input, stride, pad, kernel, validator_fcns=None, error_name=None, qinfo=None):
- result_tens = OutputShaper.pool2dOp(self.ser, self.rng, input, kernel, stride, pad, error_name)
-
- # Ensure new output type has correct qinfo
- if error_name == ErrorIf.WrongInputType:
- if input.dtype not in [DType.INT8, DType.UINT8]:
- qinfo = ts.TosaSerializerQuantInfo()
- qinfo.UnaryQuantInfo(
- TosaQuantGen.getQinfo(self, input.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
- )
-
- # Invalidate Input/Output list for error if checks.
- input_list = [input.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape=input.shape,
- input_dtype=input.dtype,
- output_shape=result_tens.shape,
- output_dtype=result_tens.dtype,
- kernel=kernel,
- stride=stride,
- pad=pad,
- qinfo = qinfo,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.PoolAttribute(kernel, stride, pad)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr, qinfo)
- return result_tens
-
- def build_conv2d(self, op, ifm, filter, bias, strides, padding, dilations, validator_fcns=None, error_name=None, qinfo=None):
- assert len(padding) == 4
- result_tens = OutputShaper.conv2dOp(
- self.ser, self.rng, ifm, filter, strides, padding, dilations, error_name
- )
-
- # Ensure new output type has correct qinfo
- if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
- qinfo = ts.TosaSerializerQuantInfo()
- qinfo.ConvQuantInfo(
- TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
- )
-
- # Invalidate Input/Output list for error_if checks.
- input_list = [ifm.name, filter.name, bias.name]
- output_list = [result_tens.name]
- num_operands = sum(op["operands"])
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_dtype=ifm.dtype,
- weight_dtype=filter.dtype,
- output_dtype=result_tens.dtype,
- qinfo=qinfo,
- input_list=input_list,
- num_operands=num_operands,
- output_list=output_list,
- pad=padding,
- stride=strides,
- dilation=dilations,
- input_shape=ifm.shape,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.ConvAttribute(padding, strides, dilations)
-
- self.ser.addOperator(
- op['op'], input_list, output_list, attr, qinfo
- )
- return result_tens
-
- def build_conv3d(self, op, ifm, filter, bias, strides, padding, dilations, validator_fcns=None, error_name=None, qinfo=None):
- assert len(padding) == 6
- result_tens = OutputShaper.conv3dOp(
- self.ser, self.rng, ifm, filter, strides, padding, dilations, error_name
- )
-
- # Ensure new output type has correct qinfo
- if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
- qinfo = ts.TosaSerializerQuantInfo()
- qinfo.ConvQuantInfo(
- TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
- )
-
- # Invalidate Input/Output list for error_if checks.
- input_list = [ifm.name, filter.name, bias.name]
- output_list = [result_tens.name]
- num_operands = sum(op["operands"])
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_dtype=ifm.dtype,
- weight_dtype=filter.dtype,
- output_dtype=result_tens.dtype,
- qinfo=qinfo,
- input_list=input_list,
- num_operands=num_operands,
- output_list=output_list,
- pad=padding,
- stride=strides,
- dilation=dilations,
- input_shape=ifm.shape,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.ConvAttribute(padding, strides, dilations)
-
- self.ser.addOperator(
- op['op'], input_list, output_list, attr, qinfo
- )
- return result_tens
-
- def build_transpose_conv2d(
- self, op, ifm, filter, bias, stride, outpad, dilation, output_shape, validator_fcns=None, error_name=None, qinfo=None
- ):
- assert len(outpad) == 2
- result_tens = OutputShaper.transposeConv2DOp(self.ser, self.rng, ifm, output_shape, error_name)
-
- # Ensure new output type has correct qinfo
- if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
- qinfo = ts.TosaSerializerQuantInfo()
- qinfo.ConvQuantInfo(
- TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
- )
-
- # Invalidate Input/Output list for error_if checks.
- input_list = [ifm.name, filter.name, bias.name]
- output_list = [result_tens.name]
- num_operands = sum(op["operands"])
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_dtype=ifm.dtype,
- weight_dtype=filter.dtype,
- output_dtype=result_tens.dtype,
- qinfo=qinfo,
- input_list=input_list,
- num_operands=num_operands,
- output_list=output_list,
- pad=outpad,
- stride=stride,
- dilation=dilation,
- input_shape=ifm.shape,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.TransposeConvAttribute(outpad, stride, dilation, output_shape)
-
- self.ser.addOperator(
- op['op'], input_list, output_list, attr, qinfo
- )
- return result_tens
-
- def build_depthwise_conv2d(
- self, op, ifm, filter, bias, strides, padding, dilations, validator_fcns=None, error_name=None, qinfo=None
- ):
- result_tens = OutputShaper.depthwiseConv2dOp(
- self.ser, self.rng, ifm, filter, strides, padding, dilations, error_name
- )
-
- # Ensure new output type has correct qinfo
- if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
- qinfo = ts.TosaSerializerQuantInfo()
- qinfo.ConvQuantInfo(
- TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
- )
-
- # Invalidate Input/Output list for error_if checks.
- input_list = [ifm.name, filter.name, bias.name]
- output_list = [result_tens.name]
- num_operands = sum(op["operands"])
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_dtype=ifm.dtype,
- weight_dtype=filter.dtype,
- output_dtype=result_tens.dtype,
- qinfo=qinfo,
- input_list=input_list,
- num_operands=num_operands,
- output_list=output_list,
- pad=padding,
- stride=strides,
- dilation=dilations,
- input_shape=ifm.shape,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.ConvAttribute(padding, strides, dilations)
-
- self.ser.addOperator(
- op['op'], input_list, output_list, attr, qinfo
- )
- return result_tens
-
- def build_fully_connected(self, op, ifm, filter, bias, validator_fcns=None, error_name=None, qinfo=None):
- result_tens = OutputShaper.fullyConnectedOp(self.ser, self.rng, ifm, filter, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [ifm.name, filter.name, bias.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape=ifm.shape,
- input_dtype=ifm.dtype,
- weight_dtype=filter.dtype,
- output_shape=result_tens.shape,
- output_dtype=result_tens.dtype,
- qinfo = qinfo,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(
- op['op'], input_list, output_list, None, qinfo
- )
- return result_tens
-
- def build_matmul(self, op, a, b, validator_fcns=None, error_name=None, qinfo=None):
- result_tens = OutputShaper.matmulOp(self.ser, self.rng, a, b, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name, b.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape=a.shape,
- input_dtype=a.dtype,
- input2_shape=b.shape,
- input2_dtype=b.dtype,
- output_shape=result_tens.shape,
- output_dtype=result_tens.dtype,
- qinfo = qinfo,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list, None, qinfo)
- return result_tens
-
- def build_reduce(self, op, a, axis, validator_fcns, error_name=None):
- result_tens = OutputShaper.reduceOp(self.ser, self.rng, a, axis, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- axis = axis,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.AxisAttribute(axis)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_clamp(self, op, a, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
-
- v = [self.getRandNumberDType(a.dtype), self.getRandNumberDType(a.dtype)]
-
- if error_name == ErrorIf.MaxSmallerMin:
- # Make sure the numbers are different to invoke this error
- while v[0] == v[1]:
- v = [self.getRandNumberDType(a.dtype), self.getRandNumberDType(a.dtype)]
- max_val = min(v)
- min_val = max(v)
- else:
- max_val = max(v)
- min_val = min(v)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- max_val=max_val,
- min_val=min_val,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- if a.dtype == DType.FLOAT:
- attr.ClampAttribute(0, 0, min_val, max_val)
- else:
- attr.ClampAttribute(min_val, max_val, 0, 0)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_leaky_relu(self, op, a, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
- attr = ts.TosaSerializerAttribute()
-
- attr.LeakyReluAttribute(self.getRandNumberDType(DType.FLOAT))
-
- self.ser.addOperator(op['op'], [a.name], [result_tens.name], attr)
- return result_tens
-
- # Needs an additional type/input
- def build_prelu(self, op, a, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
-
- self.ser.addOperator(op['op'], [a.name], [result_tens.name])
- return result_tens
-
- def build_sigmoid(self, op, a, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list)
- return result_tens
-
- def build_tanh(self, op, a, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list)
- return result_tens
-
- def build_concat(self, op, *a, validator_fcns=None, error_name=None):
- if error_name != ErrorIf.WrongInputType:
- assert type(a[-1]) == int
-
- # To store variable length list of input tensors we need to store axis along with it
- axis = a[-1]
- a = a[:-1]
-
- result_tens = OutputShaper.concatOp(self.ser, self.rng, axis, *a, error_name=error_name)
-
- input_tensor_names = []
- for tensor in a:
- input_tensor_names.append(tensor.name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = input_tensor_names
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- axis=axis,
- input_shape = a[0].shape,
- output_shape = result_tens.shape,
- input_dtype = a[0].dtype,
- output_dtype = result_tens.dtype,
- inputs=a,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.AxisAttribute(axis)
-
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_pad(self, op, a, padding, pad_const_int, pad_const_float, validator_fcns=None, error_name=None, qinfo=None):
- result_tens = OutputShaper.padOp(self.ser, self.rng, a, padding, error_name)
-
- attr = ts.TosaSerializerAttribute()
- attr.PadAttribute(padding.flatten(), pad_const_int, pad_const_float)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- pad=padding,
- qinfo=qinfo,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(
- op['op'], input_list, output_list, attr, qinfo
- )
- return result_tens
-
- def build_reshape(self, op, a, newShape, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.reshapeOp(self.ser, self.rng, a, newShape, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.ReshapeAttribute(newShape)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_reverse(self, op, a, axis, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- axis=axis,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.AxisAttribute(axis)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_transpose(self, op, a, perms, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.transposeOp(self.ser, self.rng, a, perms, error_name)
-
- attr = ts.TosaSerializerAttribute()
- attr.TransposeAttribute(perms)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- perms=perms,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_slice(self, op, a, start, size, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.sliceOp(self.ser, self.rng, a, start, size, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- start=start,
- size=size,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.SliceAttribute(start, size)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_tile(self, op, a, multiples, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.tileOp(self.ser, self.rng, a, multiples, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [a.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = a.shape,
- output_shape = result_tens.shape,
- input_dtype = a.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.TileAttribute(multiples)
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_gather(self, op, values, validator_fcns=None, error_name=None):
-
- # Create a new indicies tensor
- # here with data that doesn't exceed the dimensions of the values tensor
-
- K = values.shape[1] # K
- W = self.randInt(
- self.args.tensor_shape_range[0], self.args.tensor_shape_range[1]
- ) # W
- indicies_arr = np.int32(
- self.rng.integers(low=0, high=K, size=[values.shape[0], W])
- ) # (N, W)
- indicies = self.ser.addConst(indicies_arr.shape, DType.INT32, indicies_arr)
-
- result_tens = OutputShaper.gatherOp(self.ser, self.rng, values, indicies, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [values.name, indicies.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = values.shape,
- output_shape = result_tens.shape,
- input_dtype = values.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list)
-
- return result_tens
-
- def build_scatter(self, op, values_in, input, validator_fcns=None, error_name=None):
-
- # Create a new indicies tensor
- # here with data that doesn't exceed the dimensions of the values_in tensor
-
- K = values_in.shape[1] # K
- W = input.shape[1] # W
- indicies_arr = np.int32(
- self.rng.integers(low=0, high=K, size=[values_in.shape[0], W])
- ) # (N, W)
- indicies = self.ser.addConst(indicies_arr.shape, DType.INT32, indicies_arr)
-
- result_tens = OutputShaper.scatterOp(self.ser, self.rng, values_in, indicies, input, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [values_in.name, indicies.name, input.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = values_in.shape,
- output_shape = result_tens.shape,
- input_dtype = values_in.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list)
-
- return result_tens
-
-
- def build_resize(
- self,
- op,
- input,
- mode,
- stride,
- offset,
- shift,
- stride_fp,
- offset_fp,
- output_dims,
- input_dtype,
- output_dtype,
- validator_fcns,
- error_name = None,
- ):
- result_tens = OutputShaper.resizeOp(
- self.ser,
- self.rng,
- input,
- mode,
- stride,
- offset,
- shift,
- stride_fp,
- offset_fp,
- output_dims,
- input_dtype,
- output_dtype,
- error_name
- )
-
- # Invalidate Input/Output list for error if checks.
- input_list = [input.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- mode=mode,
- shift=shift,
- input_dtype=input_dtype,
- output_dtype=output_dtype,
- input_shape=input.shape,
- output_shape=output_dims,
- offset=offset,
- offset_fp=offset_fp,
- stride=stride,
- stride_fp=stride_fp,
- input_list=input_list,
- output_list=output_list,
- result_tensor=result_tens,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
-
- attr.ResizeAttribute(
- output_dims, stride, offset, shift, stride_fp, offset_fp, mode
- )
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_identityn(self, op, val, val2, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.unaryOp(self.ser, self.rng, val, error_name)
- result_tens2 = OutputShaper.unaryOp(self.ser, self.rng, val2, error_name)
- self.ser.addOperator(
- op, [val.name, val2.name], [result_tens.name, result_tens2.name]
- )
- return result_tens
-
- def build_const(self, op, val, validator_fcns=None, error_name=None):
- self.ser.addOutputTensor(val)
- return val
-
- # Type Conversion
- def build_cast(self, op, val, out_dtype, validator_fcns=None, error_name=None):
- result_tens = OutputShaper.typeConversionOp(self.ser, self.rng, val, out_dtype, error_name)
-
- # Invalidate Input/Output list for error if checks.
- input_list = [val.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_shape = val.shape,
- output_shape = result_tens.shape,
- input_dtype = val.dtype,
- output_dtype = result_tens.dtype,
- result_tensor = result_tens,
- input_list=input_list,
- output_list=output_list,
- num_operands=num_operands,
- ):
- return None
-
- self.ser.addOperator(op['op'], input_list, output_list)
- return result_tens
-
- def build_rescale(self, op, val, out_dtype, scale32, double_round, per_channel, validator_fcns, error_name):
- result_tens = OutputShaper.typeConversionOp(self.ser, self.rng, val, out_dtype, error_name)
-
- if per_channel:
- nc = val.shape[-1]
- else:
- nc = 1
-
- in_type_width = self.typeWidth(val.dtype)
- out_type_width = self.typeWidth(out_dtype)
-
- if val.dtype == DType.INT8:
- input_zp = self.randInt(-128, 128)
- in_type_width = in_type_width + 1
- elif val.dtype == DType.UINT8:
- input_zp = self.randInt(0, 256)
- in_type_width = in_type_width + 1
- elif error_name == ErrorIf.InputZeroPointNotZero:
- input_zp = self.randInt(-128, 128)
- if input_zp == 0:
- input_zp = input_zp + self.rng.integers(1, 10)
- in_type_width = in_type_width + 1
- else:
- input_zp = 0
-
- if out_dtype == DType.INT8:
- output_zp = self.randInt(-128, 128)
- out_type_width = out_type_width + 1
- elif out_dtype == DType.UINT8:
- output_zp = self.randInt(0, 256)
- out_type_width = out_type_width + 1
- elif error_name == ErrorIf.OutputZeroPointNotZero:
- output_zp = self.randInt(-128, 128)
- if output_zp == 0:
- output_zp = output_zp + self.rng.integers(1, 10)
- out_type_width = out_type_width + 1
- else:
- output_zp = 0
-
- # Calculate scale based on:
- # scale = a *(2^output_width)/(2^input_width))
-
- a = np.float32(self.rng.random(size=[nc]))
- scale_arr = a * np.float32((1 << out_type_width) / (1 << in_type_width))
-
- if scale32:
- pass
- # Cap the scaling at 2^31 - 1 for scale32
- scale_arr = np.clip(scale_arr, 1.0 / (1 << 31), (1 << 31) - 1)
- else:
- # Cap the scaling at 2^15 - 1 for scale16
- scale_arr = np.clip(scale_arr, 1.0 / (1 << 31), 32767.0)
-
- # print('{} {} -> {}'.format(out_type_width, in_type_width, scale_arr))
-
- multiplier_arr = np.int32(np.zeros(shape=[nc]))
- shift_arr = np.int32(np.zeros(shape=[nc]))
-
- for i in range(nc):
- multiplier_arr[i], shift_arr[i] = TosaQuantGen.computeMultiplierAndShift(
- scale_arr[i], scale32
- )
-
- # print('multiplier {} shift {} inzp {} outzp {}'.format(multiplier_arr, shift_arr, input_zp, output_zp))
-
- # Invalidate Input/Output list for error if checks.
- input_list = [val.name]
- output_list = [result_tens.name]
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
- input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
-
- qinfo = (input_zp, output_zp)
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- input_dtype=val.dtype,
- output_dtype=out_dtype,
- input_shape=val.shape,
- qinfo=qinfo,
- scale32 = scale32,
- double_round = double_round,
- input_list=input_list,
- output_list=output_list,
- result_tensor=result_tens,
- num_operands=num_operands,
- ):
- return None
-
- attr = ts.TosaSerializerAttribute()
- attr.RescaleAttribute(
- input_zp,
- output_zp,
- multiplier_arr,
- shift_arr,
- scale32,
- double_round,
- per_channel,
- )
-
- self.ser.addOperator(op['op'], input_list, output_list, attr)
- return result_tens
-
- def build_cond_if_const(self, op, then_tens, else_tens, cond, validator_fcns=None, error_name=None):
- # For cond_if with constants, we're supplied with then/else tensors that we ignore
- # (except for the generated shap) and the condition. Build Then/Else blocks
- # and fill them with const nodes for the body.
-
- # Condition tensor
- cond_tens = self.ser.addConst([], DType.BOOL, [cond])
-
- # Make then/else tensors
- out_shape = then_tens.shape
-
- # Create an incorrect output shape for error_if tests
- if error_name in [ErrorIf.CondIfOutputListThenGraphMismatch, ErrorIf.CondIfOutputListElseGraphMismatch]:
- incorrect_shape = deepcopy(then_tens.shape)
- for i in range(len(incorrect_shape)):
- incorrect_shape[i] += self.rng.choice([-3, -2, 2, 3]) if incorrect_shape[i] > 3 else self.rng.choice([1, 2, 4])
- incorrect_arr = np.int32(self.rng.integers(0, 256, size=incorrect_shape))
-
- then_arr = np.int32(self.rng.integers(0, 256, size=out_shape))
- else_arr = np.int32(self.rng.integers(0, 256, size=out_shape))
-
- # And the result tensor based on any of the outputs
- result_tens = self.ser.addOutput(out_shape, DType.INT32)
-
- # Create the attribute with the names of the then/else blocks
- then_block = "THEN_BLOCK"
- else_block = "ELSE_BLOCK"
- attr = ts.TosaSerializerAttribute()
- attr.CondIfAttribute(then_block, else_block)
-
- # Finally, build the op and the two blocks
- self.ser.addOperator(op['op'], [cond_tens.name], [result_tens.name], attr)
-
- self.ser.startBasicBlock(then_block)
- # Build the actual then/else tensors inside their blocks
- if error_name == ErrorIf.CondIfOutputListThenGraphMismatch:
- then_tens = self.ser.addConst(incorrect_shape, DType.INT32, incorrect_arr)
- else:
- then_tens = self.ser.addConst(out_shape, DType.INT32, then_arr)
- self.ser.addOutputTensor(then_tens)
-
- self.ser.startBasicBlock(else_block)
- if error_name == ErrorIf.CondIfOutputListElseGraphMismatch:
- else_tens = self.ser.addConst(incorrect_shape, DType.INT32, incorrect_arr)
- else:
- else_tens = self.ser.addConst(out_shape, DType.INT32, else_arr)
- self.ser.addOutputTensor(else_tens)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- basicBlocks=self.ser.basicBlocks
- ):
- return None
-
- return result_tens
-
- def build_cond_if_binary(self, op, a, b, cond, validator_fcns=None, error_name=None):
- # For cond_if with a binary op in the then/else blocks, take a and b and
- # alternately add or subtract them based on the condition
-
- # Condition tensor
- cond_tens = self.ser.addConst([], DType.BOOL, [cond])
-
- result_tens = self.ser.addOutput(a.shape, a.dtype)
-
- # Create the attribute with the names of the then/else blocks
- then_block = "THEN_BLOCK"
- else_block = "ELSE_BLOCK"
- attr = ts.TosaSerializerAttribute()
- attr.CondIfAttribute(then_block, else_block)
-
- if error_name in [ErrorIf.CondIfInputListThenGraphMismatch, ErrorIf.CondIfInputListElseGraphMismatch,
- ErrorIf.CondIfOutputListElseGraphMismatch, ErrorIf.CondIfOutputListThenGraphMismatch]:
- incorrect_shape = a.shape.copy()
- for i in range(len(incorrect_shape)):
- incorrect_shape[i] += self.rng.choice([-3, -2, 2, 3])
- incorrect_block_input = deepcopy(a)
- incorrect_block_input.shape = incorrect_shape
-
-
- # Finally, build the op and the two blocks
- self.ser.addOperator(
- op['op'], [cond_tens.name, a.name, b.name], [result_tens.name], attr
- )
-
- if a.dtype in (DType.FLOAT, DType.INT32):
- then_op, else_op = Op.ADD, Op.SUB
- elif a.dtype in (DType.INT8, DType.INT16):
- then_op, else_op = Op.LOGICAL_RIGHT_SHIFT, Op.LOGICAL_LEFT_SHIFT
- else:
- assert False, f"No tests for DType: {a.dtype}"
-
- for block, op in ((then_block, then_op), (else_block, else_op)):
- self.ser.startBasicBlock(block)
- if ((error_name == ErrorIf.CondIfInputListThenGraphMismatch and block == then_block) or
- (error_name == ErrorIf.CondIfInputListElseGraphMismatch and block == else_block)):
- self.ser.addInputTensor(incorrect_block_input)
- self.ser.addInputTensor(b)
- tens = self.ser.addOutput(a.shape, a.dtype)
- elif ((error_name == ErrorIf.CondIfOutputListThenGraphMismatch and block == then_block) or
- (error_name == ErrorIf.CondIfOutputListElseGraphMismatch and block == else_block)):
- self.ser.addInputTensor(a)
- self.ser.addInputTensor(b)
- tens = self.ser.addOutput(incorrect_block_input.shape, a.dtype)
- else:
- self.ser.addInputTensor(a)
- self.ser.addInputTensor(b)
- tens = self.ser.addOutput(a.shape, a.dtype)
- self.ser.addOperator(op, [a.name, b.name], [tens.name])
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- a=a,
- b=b,
- basicBlocks=self.ser.basicBlocks
- ):
- return None
-
- return result_tens
-
- def build_while_loop(self, op, a, iter_val, validator_fcns=None, error_name=None):
- iter = self.ser.addPlaceholder([], DType.INT32, [np.int32(iter_val)])
-
- cond_block = "COND_BLOCK"
- body_block = "BODY_BLOCK"
-
- attr = ts.TosaSerializerAttribute()
- attr.WhileLoopAttribute(cond_block, body_block)
-
- # Accumulator tensor
- # acc = self.ser.addOutput(a.shape, a.dtype)
- acc_init_val = np.int32(np.zeros(a.shape))
- acc = self.ser.addPlaceholder(a.shape, a.dtype, acc_init_val)
-
- # Intermediate/output tensors for everything going through the loop
- iter_out = self.ser.addIntermediate(iter.shape, iter.dtype)
- a_out = self.ser.addIntermediate(a.shape, a.dtype)
- if error_name == ErrorIf.InputListOutputListMismatch:
- incorrect_acc = deepcopy(acc)
- for i in range(len(incorrect_acc.shape)):
- incorrect_acc.shape[i] += self.rng.choice([-3, -2, 2, 3])
- acc_out = self.ser.addIntermediate(incorrect_acc.shape, acc.dtype)
- else:
- acc_out = self.ser.addIntermediate(acc.shape, acc.dtype)
-
- # While_loop operator
- self.ser.addOperator(
- op['op'],
- [iter.name, a.name, acc.name],
- [iter_out.name, a_out.name, acc_out.name],
- attr,
- )
- self.ser.addOutputTensor(acc_out)
-
- if error_name in [ErrorIf.InputListCondGraphMismatch, ErrorIf.InputListBodyGraphInputMismatch, ErrorIf.InputListBodyGraphOutputMismatch]:
- incorrect_iter = deepcopy(iter)
- for i in range(len(incorrect_iter.shape)):
- incorrect_iter.shape[i] += self.rng.choice([-3, -2, 2, 3])
- if len(incorrect_iter.shape) == 0:
- incorrect_iter.shape.append(self.rng.choice([-3, -2, 2, 3]))
-
- incorrect_acc = deepcopy(acc)
- for i in range(len(incorrect_acc.shape)):
- incorrect_acc.shape[i] += self.rng.choice([-3, -2, 2, 3])
-
- # COND block (input: iter, output: cond_tens )
- self.ser.startBasicBlock(cond_block)
- if error_name == ErrorIf.InputListCondGraphMismatch:
- self.ser.addInputTensor(incorrect_iter)
- self.ser.addInputTensor(a)
- self.ser.addInputTensor(incorrect_acc)
- else:
- self.ser.addInputTensor(iter)
- self.ser.addInputTensor(a)
- self.ser.addInputTensor(acc)
- zero_tens = self.ser.addConst([], DType.INT32, [np.int32(0)])
-
- if error_name == ErrorIf.CondGraphOutputNotMatchingBool:
- cond_tens = self.ser.addOutput([], self.rng.choice([DType.INT8, DType.INT32, DType.FLOAT]))
- else:
- cond_tens = self.ser.addOutput([], DType.BOOL)
-
- self.ser.addOperator(Op.GREATER, [iter.name, zero_tens.name], [cond_tens.name])
-
- # BODY block (input: a, acc, iter, output: a, acc, iter)
- # Note that local intermediate tensors need to be declared here for the outputs
- self.ser.startBasicBlock(body_block)
- if error_name == ErrorIf.InputListBodyGraphInputMismatch:
- self.ser.addInputTensor(incorrect_iter)
- self.ser.addInputTensor(a)
- self.ser.addInputTensor(incorrect_acc)
- else:
- self.ser.addInputTensor(iter)
- self.ser.addInputTensor(a)
- self.ser.addInputTensor(acc)
-
- one_tens = self.ser.addConst([], DType.INT32, [np.int32(1)])
-
- if error_name == ErrorIf.InputListBodyGraphOutputMismatch:
- iter_body_out = self.ser.addIntermediate(incorrect_iter.shape, incorrect_iter.dtype)
- acc_body_out = self.ser.addIntermediate(incorrect_acc.shape, incorrect_acc.dtype)
- else:
- iter_body_out = self.ser.addIntermediate(iter.shape, iter.dtype)
- acc_body_out = self.ser.addIntermediate(acc.shape, acc.dtype)
-
- self.ser.addOperator(Op.ADD, [a.name, acc.name], [acc_body_out.name])
- self.ser.addOperator(Op.SUB, [iter.name, one_tens.name], [iter_body_out.name])
- self.ser.addOutputTensor(iter_body_out)
- self.ser.addOutputTensor(a)
- self.ser.addOutputTensor(acc_body_out)
-
- if not TosaErrorValidator.evValidateErrorIfs(
- self.ser,
- validator_fcns,
- error_name,
- op=op,
- basicBlocks=self.ser.basicBlocks
- ):
- return None
-
- return acc_out
-
- def create_filter_lists(self, op, shapeFilter, rankFilter, dtypeFilter, testType, validator=None):
- # Create a default testing rank range, 1-4 inclusive to keep test sizes reasonably small.
- default_test_rank_range = range(1, 5)
- if not shapeFilter:
- shapeFilter = [None]
-
- # Calculate the filters based on what is requested and what the operator allows
- rmin, rmax = op["rank"]
- if rankFilter is not None:
- cleanRankFilter = []
- # Ensure rankFilter values are allowed by operator
- for rank in rankFilter:
- if rank >= rmin and rank <= rmax:
- cleanRankFilter.append(rank)
- elif rankFilter is None and shapeFilter[0] is None:
- # Ensure default behaviour is bounded by default range or by operator,
- # whichever is the smaller range of ranks.
- opRankRange = range(rmin, rmax + 1)
- cleanRankFilter = opRankRange if len(opRankRange) <= len(default_test_rank_range) else default_test_rank_range
- else:
- cleanRankFilter = range(rmin, rmax + 1)
-
- dtypes = op["types"]
-
- if dtypeFilter is not None:
- cleanDtypeFilter = []
- # Create list of operator dtypes filtered by requested dtypes
- for dtype in dtypes:
- if dtype in dtypeFilter or (isinstance(dtype, list) and dtype[0] in dtypeFilter):
- cleanDtypeFilter.append(dtype)
- else:
- cleanDtypeFilter = dtypes
-
- if testType == 'positive':
- filterDict = {
- 'shapeFilter': shapeFilter,
- 'rankFilter': cleanRankFilter,
- 'dtypeFilter': cleanDtypeFilter
- }
- return filterDict
- elif testType == 'negative':
- if validator is not None:
- validator_info = validator(check=False, op=op)
- else:
- return None
-
- error_arguments = validator_info['param_reqs']
-
- #Set parameters as required
- if error_arguments['rank'] != None:
- rankFilter = error_arguments['rank']
- else:
- rankFilter = cleanRankFilter
-
- if error_arguments['dtype'] != None:
- dtypeFilter = error_arguments['dtype']
- else:
- dtypeFilter = cleanDtypeFilter
-
- if error_arguments['shape'] != None:
- shapeFilter = error_arguments['shape']
- else:
- shapeFilter = shapeFilter[:2] # Reduce number of shapes to keep test numbers small
-
- filterDict = {
- 'shapeFilter': shapeFilter,
- 'rankFilter': rankFilter,
- 'dtypeFilter': dtypeFilter
- }
- return filterDict
-
-
- def genOpTestList(
- self, opName, shapeFilter=[None], rankFilter=None, dtypeFilter=None, testType='positive'
- ):
-
- try:
- op = self.TOSA_OP_LIST[opName]
- except KeyError as e:
- raise Exception("Cannot find op with name {}".format(opName))
-
- # Initialize a new random number generator
- self.rng = np.random.default_rng(self.random_seed)
-
- build_fcn, tgen_fcn, agen_fcn = op["build_fcn"]
-
- # Test list consists of a tuple of:
- # (opName, testNameStr, dtype, shapeList, argumentsList)
- testList = []
- if testType == 'negative' and "error_if_validators" in op:
- error_if_validators = op["error_if_validators"]
- else:
- error_if_validators = [None]
-
- for validator in error_if_validators:
- if validator is not None:
- error_name = validator(check=False, op=op)['error_name']
- else:
- error_name = None
-
- filterDict = self.create_filter_lists(op, shapeFilter, rankFilter, dtypeFilter, testType, validator)
- if filterDict == None:
- return []
- cleanRankFilter = filterDict['rankFilter']
- cleanDtypeFilter = filterDict['dtypeFilter']
- cleanShapeFilter = filterDict['shapeFilter']
- #print(f"Error: {error_name}, Filters: S {cleanShapeFilter}, R {cleanRankFilter}, T {cleanDtypeFilter}")
-
- for r in cleanRankFilter:
- for t in cleanDtypeFilter:
- for shape in cleanShapeFilter:
- # Filter out by rank
- if shape is not None and len(shape) != r:
- continue
- self.setTargetShape(shape)
- shapeList = tgen_fcn(self, op, r, error_name)
-
- shapeStr = self.shapeStr(shapeList[0])
- typeStr = self.typeStr(t)
-
- # Argument lists consists of tuples of the (str, []) string representation and the build function argument list
- argList = []
- if agen_fcn:
- argList = agen_fcn(self, opName, shapeList, t, error_name)
- else:
- argList = [("", [])]
-
- for argStr, args in argList:
- if testType == 'positive':
- if argStr:
- testStr = "{}_{}_{}_{}".format(
- opName, shapeStr, typeStr, argStr
- )
- else:
- testStr = "{}_{}_{}".format(opName, shapeStr, typeStr)
- elif testType == 'negative':
- if argStr:
- testStr = "{}_ERRORIF_{}_{}_{}_{}".format(
- opName, error_name, shapeStr, typeStr, argStr
- )
- else:
- testStr = "{}_ERRORIF_{}_{}_{}".format(opName, error_name, shapeStr, typeStr)
-
- testList.append((opName, testStr, t, error_name, shapeList, args))
-
- if testType == 'positive':
- # Remove tests which are expected to fail but don't correlate to a ERROR_IF statement
- if "invalid_test_validators" in op:
- invalid_test_validators = op["invalid_test_validators"]
- clean_testList = []
- for test in testList:
- for validator_fcn in invalid_test_validators:
- remove_test = False
- if validator_fcn(opName=test[0], input_dtype=test[2], shapeList=test[4], args=test[5]):
- remove_test = True
- if not remove_test:
- clean_testList.append(test)
- testList = clean_testList
-
- return testList
-
-
- def serializeTest(self, opName, testStr, dtype_or_dtypeList, error_name, shapeList, testArgs):
- try:
- op = self.TOSA_OP_LIST[opName]
- except KeyError as e:
- raise Exception("Cannot find op with name {}".format(opName))
-
- # Create a serializer
- self.createSerializer(opName, testStr)
-
- build_fcn, tgen_fcn, agen_fcn = op["build_fcn"]
- if "error_if_validators" in op:
- error_if_validators = op["error_if_validators"]
- else:
- error_if_validators = None
-
- pCount, cCount = op["operands"]
- num_operands = pCount + cCount
-
- if isinstance(dtype_or_dtypeList, list):
- dtypeList = dtype_or_dtypeList
- elif op["op"] == Op.CONCAT:
- dtypeList = [dtype_or_dtypeList] * len(shapeList)
- else:
- dtypeList = [dtype_or_dtypeList] * (num_operands)
-
- if op["op"] != Op.CONCAT:
- assert (
- len(shapeList) == num_operands
- ), "shapeList length {} must match number of operands {}".format(
- len(shapeList), num_operands
- )
- assert (
- len(dtypeList) == num_operands
- ), "dtypeList length {} must match number of operands {}".format(
- len(dtypeList), num_operands
- )
-
- try:
- qgen = op["qgen"]
- except KeyError:
- qgen = None
-
- # Build the random tensor operands and the test
- tens = []
-
- tens = self.generate_tensors(op, dtypeList, shapeList, testArgs, error_name)
-
- if qgen is not None:
- qinfo = qgen(self, op, dtype_or_dtypeList, error_name)
- else:
- qinfo = None
-
- try:
- if error_if_validators is None:
- if qinfo is not None:
- resultName = build_fcn(self, op, *tens, *testArgs, qinfo)
- else:
- resultName = build_fcn(self, op, *tens, *testArgs)
- else:
- if qinfo is not None:
- resultName = build_fcn(self, op, *tens, *testArgs, validator_fcns=error_if_validators, error_name=error_name, qinfo=qinfo)
- else:
- resultName = build_fcn(self, op, *tens, *testArgs, validator_fcns=error_if_validators, error_name=error_name)
- except TypeError as e:
- print(f"build_fcn: {build_fcn}\nTensors: {tens}\nArgs: {testArgs}\n")
- raise e
-
- if resultName:
- # The test is valid, serialize it
- self.serialize("test")
- else:
- # The test is not valid
- print(f"Invalid ERROR_IF test created: {opName} {testStr}")
-
-
- def generate_tensors(self, op, dtypeList, shapeList, testArgs, error_name=None):
- pCount, cCount = op["operands"]
-
- tens = []
- if (op["op"] == Op.ADD or op["op"] == Op.SUB) and dtypeList[0] == DType.INT32 and error_name == None:
- # Make sure the operation does not cause value saturation - where
- # the number wraps due to limited number of bits to store the answer
- assert (
- pCount == 2 and cCount == 0
- ), "Op.ADD / Op.SUB must have 2 placeholders, 0 consts"
- placeholders = []
- add = (op["op"] == Op.ADD)
- a_arr = self.getRandTensor(shapeList[0], dtypeList[0])
- b_arr = self.getRandTensor(shapeList[1], dtypeList[1])
- if add:
- res_arr = np.add(a_arr, b_arr, dtype=np.int64)
- else:
- res_arr = np.subtract(a_arr, b_arr, dtype=np.int64)
-
- # Work out the saturation limits
- max_i32 = (1 << 31)-1
- min_i32 = -(1 << 31)
- max_arr = np.full(shapeList[1], max_i32)
- min_arr = np.full(shapeList[1], min_i32)
-
- # Find how much values exceed the maximum/minimums
- sat_max_arr = np.maximum(res_arr - max_arr, 0)
- sat_min_arr = np.minimum(res_arr - min_arr, 0)
-
- if not add:
- # Swap saturation values and negate values as we need to perform opposite operations
- sat_max_arr, sat_min_arr = -sat_min_arr, -sat_max_arr
-
- # Create new array of unsaturated values by clipping values as needed
- b_unsat_arr = b_arr
- if (sat_max_arr != 0).any():
- # Clip values that cause saturation
- b_unsat_arr = np.subtract(b_unsat_arr, sat_max_arr, dtype=np.int32)
- # Reduce axes in unsaturated tensor to match original tensor
- for axis, dim in enumerate(b_arr.shape):
- if dim != b_unsat_arr.shape[axis]:
- assert ( dim == 1 ), "Op.ADD / SUB dimension must be 1 or matching to be broadcastable"
- b_unsat_arr = np.amin(b_unsat_arr, axis=axis, keepdims=True)
-
- if (sat_min_arr != 0).any():
- # Clip values that cause saturation
- b_unsat_arr = np.subtract(b_unsat_arr, sat_min_arr, dtype=np.int32)
- # Reduce axes in unsaturated tensor to match original tensor
- for axis, dim in enumerate(b_arr.shape):
- if dim != b_unsat_arr.shape[axis]:
- assert ( dim == 1 ), "Op.ADD / SUB dimension must be 1 or matching to be broadcastable"
- b_unsat_arr = np.amax(b_unsat_arr, axis=axis, keepdims=True)
-
- placeholders.append(
- self.ser.addPlaceholder(shapeList[0], dtypeList[0], a_arr)
- )
- placeholders.append(
- self.ser.addPlaceholder(shapeList[1], dtypeList[1], b_unsat_arr)
- )
-
- tens.extend(placeholders)
- elif (op["op"] == Op.COND_IF or op["op"] == Op.WHILE_LOOP) and dtypeList[0] == DType.INT32:
- # Limit input tensors with cond_if_binary or while_loop to stop
- # saturation of add/sub ops
- pRemain = pCount
- placeholders = []
- for idx, shape in enumerate(shapeList[:]):
- arr = self.getRandTensor(shapeList[idx], DType.INT16)
- if pRemain > 0:
- placeholders.append(self.ser.addPlaceholder(shape, dtypeList[idx], arr))
- pRemain -= 1
- else:
- placeholders.append(self.ser.addConst(shape, dtypeList[idx], arr))
-
- tens.extend(placeholders)
- elif op["op"] == Op.ARITHMETIC_RIGHT_SHIFT:
- # Force value of operand[1] to be within [0, num_bits]
- assert (
- pCount == 2 and cCount == 0
- ), "Op.ArithmeticRightShift must have 2 placeholders, 0 consts"
-
- placeholders = []
- for idx, shape in enumerate(shapeList[:]):
- if idx == 1:
- if dtypeList[idx] == DType.INT8:
- arr = np.int32(self.rng.integers(low=0, high=8, size=shape))
- elif dtypeList[idx] == DType.INT16:
- arr = np.int32(self.rng.integers(low=0, high=16, size=shape))
- elif dtypeList[idx] == DType.INT32:
- arr = np.int32(self.rng.integers(low=0, high=32, size=shape))
- elif error_name == ErrorIf.WrongInputType:
- arr = np.int32(self.rng.integers(low=0, high=8, size=shape))
- else:
- raise Exception("OpArithmeticRightShift: invalid input dtype")
- else:
- arr = self.getRandTensor(shape, dtypeList[idx])
- placeholders.append(self.ser.addPlaceholder(shape, dtypeList[idx], arr))
-
- tens.extend(placeholders)
- elif op["op"] == Op.SELECT:
- # Set datatype of condition tensor to boolean
- dtypeList[0] = DType.BOOL
- tens.extend(
- self.buildPlaceholderTensors(shapeList[0:pCount], dtypeList[0:pCount])
- )
- tens.extend(self.buildConstTensors(shapeList[pCount:], dtypeList[pCount:]))
- elif op["op"] == Op.INTDIV and error_name == None:
- assert (
- pCount == 2 and cCount == 0
- ), "Op.INTDIV must have 2 placeholders, 0 consts"
-
- placeholders = []
-
- # Two invalid cases for Op.INTDIV:
- # 1. divisor == 0
- # 2. dividend == -(1<<31) and divisor == -1
- while True:
- dividend_arr = self.getRandTensor(shapeList[0], dtypeList[0])
- divisor_arr = self.getRandTensor(shapeList[1], dtypeList[1])
-
- if (divisor_arr == 0).any():
- continue
-
- if (dividend_arr == -(2 ** 31)).any() and (divisor_arr == -1).any():
- continue
-
- break
-
- placeholders.append(
- self.ser.addPlaceholder(shapeList[0], dtypeList[0], dividend_arr)
- )
- placeholders.append(
- self.ser.addPlaceholder(shapeList[1], dtypeList[1], divisor_arr)
- )
-
- tens.extend(placeholders)
- elif op["op"] == Op.MUL and error_name == None:
- assert (
- pCount == 2 and cCount == 0
- ), "Op.MUL must have 2 placeholders, 0 consts"
-
- if dtypeList[0] == DType.FLOAT:
- tens.extend(self.buildPlaceholderTensors(shapeList[:], dtypeList[:]))
- else:
- placeholders = []
-
- # Make sure multiply result in int32 range
- shift = testArgs[0]
- if dtypeList[0] == DType.INT8:
- num_bits = 8
- elif dtypeList[0] == DType.INT16:
- num_bits = 16
- elif dtypeList[0] == DType.INT32:
- num_bits = 32
- elif error_name == ErrorIf.WrongInputType:
- num_bits = 8
- else:
- raise Exception("OpMul: invalid input dtype")
-
- for idx, shape in enumerate(shapeList[:]):
- low = -(2 ** (num_bits - 1))
- high = (2 ** (num_bits - 1)) - 1
-
- a_arr = np.int32(
- self.rng.integers(low=low, high=high, size=shapeList[0])
- )
- b_arr = np.int32(
- self.rng.integers(low=low, high=high, size=shapeList[1])
- )
-
- i = 0
- while True:
-
- a_arr_64 = a_arr.astype(np.int64)
- b_arr_64 = b_arr.astype(np.int64)
-
- if shift > 0:
- rounding = 1 << (shift - 1)
- result_arr = ((a_arr_64 * b_arr_64) + rounding) >> shift
- else:
- result_arr = a_arr_64 * b_arr_64
-
- if (result_arr > -(2 ** 31)).all() and (
- result_arr <= ((2 ** 31) - 1)
- ).all():
- break
-
- i = i + 1
- a_arr = a_arr // 2
- b_arr = b_arr // 2
-
- placeholders.append(
- self.ser.addPlaceholder(shapeList[0], dtypeList[0], a_arr)
- )
- placeholders.append(
- self.ser.addPlaceholder(shapeList[1], dtypeList[1], b_arr)
- )
-
- tens.extend(placeholders)
- elif op["op"] == Op.CONCAT:
- count = len(shapeList) - self.args.num_const_inputs_concat
- if count < 1:
- count = 1
- if self.args.num_const_inputs_concat == 0:
- count = len(shapeList)
-
- # Ensure axis is an int
- testArgs[0] = int(testArgs[0])
-
- shapeList = TosaTensorGen.tgConcatConstInput(self, shapeList, testArgs[0], error_name)
-
- tens.extend(
- self.buildPlaceholderTensors(shapeList[0:count], dtypeList[0:count])
- )
- tens.extend(self.buildConstTensors(shapeList[count:], dtypeList[count:]))
- else:
- tens.extend(
- self.buildPlaceholderTensors(shapeList[0:pCount], dtypeList[0:pCount])
- )
- tens.extend(self.buildConstTensors(shapeList[pCount:], dtypeList[pCount:]))
-
- return tens
-
- def createDynamicOpLists(self):
-
- # Dynamically create op lists for convolutions with a list of kernel sizes
- KERNELS_2D = [[1, 1], [2, 2], [3, 3], [5, 5], [3, 1], [1, 3]]
-
- for k in KERNELS_2D:
- testName = "conv2d_{}x{}".format(k[0], k[1])
- self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST["conv2d_TEMPLATE"].copy()
- self.TOSA_OP_LIST[testName]["filter"] = k
- self.TOSA_OP_LIST[testName]["template"] = False
-
- testName = "depthwise_conv2d_{}x{}".format(k[0], k[1])
- self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST[
- "depthwise_conv2d_TEMPLATE"
- ].copy()
- self.TOSA_OP_LIST[testName]["filter"] = k
- self.TOSA_OP_LIST[testName]["template"] = False
-
- testName = "transpose_conv2d_{}x{}".format(k[0], k[1])
- self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST[
- "transpose_conv2d_TEMPLATE"
- ].copy()
- self.TOSA_OP_LIST[testName]["filter"] = k
- self.TOSA_OP_LIST[testName]["template"] = False
-
- KERNELS_3D = [[1, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]]
- for k in KERNELS_3D:
- testName = "conv3d_{}x{}x{}".format(k[0], k[1], k[2])
- self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST["conv3d_TEMPLATE"].copy()
- self.TOSA_OP_LIST[testName]["filter"] = k
- self.TOSA_OP_LIST[testName]["template"] = False
-
- # Delete any templates after having created any dynamic ops
- # This is a two-pass operation because it's bad practice to delete
- # keys from dictionaries while iterating
- keyList = []
- for k in self.TOSA_OP_LIST:
- try:
- if self.TOSA_OP_LIST[k]["template"] == True:
- keyList.append(k)
- continue
- except KeyError:
- pass
-
- for k in keyList:
- del self.TOSA_OP_LIST[k]
-
- def initOpListDefaults(self):
- """Fill in default fields for ops if they aren't already specified.
- Look for missing required fields (datastructure linting)."""
- for op in self.TOSA_OP_LIST:
-
- # Required fields
- try:
- pl, c = self.TOSA_OP_LIST[op]["operands"]
- except (KeyError, ValueError, TypeError):
- raise Exception(
- "Op {} is missing a valid operand tuple in TOSA_OP_LIST".format(op)
- )
-
- try:
- fcn, tgen, arggen = self.TOSA_OP_LIST[op]["build_fcn"]
- except (KeyError, ValueError, TypeError):
- raise Exception(
- "Op {} is missing a valid build_fcn tuple in TOSA_OP_LIST".format(
- op
- )
- )
-
- try:
- types = self.TOSA_OP_LIST[op]["types"]
- except KeyError as e:
- raise Exception(
- "Op {} is missing a valid type list in TOSA_OP_LIST".format(op)
- )
-
- try:
- opcode = self.TOSA_OP_LIST[op]["op"]
- except KeyError as e:
- raise Exception(
- "Op {} is missing the Op field in TOSA_OP_LIST".format(op)
- )
-
- # Put in default rank range, if missing
- try:
- rank = self.TOSA_OP_LIST[op]["rank"]
- except KeyError:
- self.TOSA_OP_LIST[op]["rank"] = self.DEFAULT_RANK_RANGE
-
- # Tensor operator list
- # 'op': op name
- # 'operands': tuple of (placeholder, const) operands
- # 'rank': optional, restricts rank to tuple inclusive of (min, max),
- # if not specified, defaults to (1, 4)
- # 'build_fcn': tuple of the function to (build_operator(), TensorGen function, ArgGen enum)
- # 'types': array of datatypes to be tested
- TYPE_FP = [DType.FLOAT]
-
- TYPE_INT = [DType.INT8, DType.INT16, DType.INT32] # Excludes INT4
- TYPE_INT_FP = [DType.INT8, DType.INT16, DType.INT32, DType.FLOAT] # Excludes INT4
-
- TYPE_BOOL = [DType.BOOL]
- TYPE_FI32 = [DType.FLOAT, DType.INT32]
- TYPE_FIB = [DType.FLOAT, DType.INT8, DType.INT16, DType.INT32, DType.BOOL]
- TYPE_FI16 = [DType.FLOAT, DType.INT16]
-
- TYPE_NARROW_INT_FP = [DType.INT8, DType.INT16, DType.FLOAT]
-
- TYPE_CONV = [
- [DType.INT8, DType.INT4, DType.INT32],
- [DType.INT8, DType.INT8, DType.INT32],
- [DType.INT16, DType.INT8, DType.INT48],
- DType.FLOAT,
- ]
-
- DEFAULT_RANK_RANGE = (1, TOSA_TENSOR_MAX_RANK)
-
- TOSA_OP_LIST = {
- # Tensor operators
- "argmax": {
- "op": Op.ARGMAX,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_argmax, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_NARROW_INT_FP,
- "error_if_validators": (TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evArgmaxOutputRankMismatch,
- TosaErrorValidator.evArgmaxOutputShapeMismatch, TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "avg_pool2d": {
- "op": Op.AVG_POOL2D,
- "operands": (1, 0),
- "rank": (4, 4),
- "build_fcn": (build_pool2d, TosaTensorGen.tgNHWC, TosaArgGen.agPooling),
- "qgen": TosaQuantGen.qgUnary,
- "types": TYPE_NARROW_INT_FP,
- "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
- "error_if_validators": (TosaErrorValidator.evKernelSmallerOne, TosaErrorValidator.evStrideSmallerOne, TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evOutputZeroPointNotZero,
- TosaErrorValidator.evPadLargerEqualKernel, TosaErrorValidator.evPoolingOutputShapeMismatch)
- },
- # Templated operator. Filled in by createDynamicOpLists
- "conv2d_TEMPLATE": {
- "op": Op.CONV2D,
- "operands": (1, 2),
- "rank": (4, 4),
- "build_fcn": (build_conv2d, TosaTensorGen.tgConv2D, TosaArgGen.agConv),
- "qgen": TosaQuantGen.qgConv,
- "types": TYPE_CONV,
- "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
- "error_if_validators": (
- TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList,
- TosaErrorValidator.evInputZeroPointNotZero,
- TosaErrorValidator.evWeightZeroPointNotZero,
- TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evStrideSmallerOne,
- TosaErrorValidator.evDilationSmallerOne,
- TosaErrorValidator.evWrongRank,
- ),
- "template": True,
- },
- # Templated operator. Filled in by createDynamicOpLists
- "conv3d_TEMPLATE": {
- "op": Op.CONV3D,
- "operands": (1, 2),
- "rank": (5, 5),
- "build_fcn": (build_conv3d, TosaTensorGen.tgConv3D, TosaArgGen.agConv),
- "qgen": TosaQuantGen.qgConv,
- "types": TYPE_CONV,
- "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
- "error_if_validators": (
- TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList,
- TosaErrorValidator.evInputZeroPointNotZero,
- TosaErrorValidator.evWeightZeroPointNotZero,
- TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evStrideSmallerOne,
- TosaErrorValidator.evDilationSmallerOne,
- TosaErrorValidator.evWrongRank,
- ),
- "template": True,
- },
- # Templated operator. Filled in by createDynamicOpLists
- "depthwise_conv2d_TEMPLATE": {
- "op": Op.DEPTHWISE_CONV2D,
- "operands": (1, 2),
- "filter": [1, 1],
- "rank": (4, 4),
- "build_fcn": (
- build_depthwise_conv2d,
- TosaTensorGen.tgDepthwiseConv2D,
- TosaArgGen.agConv,
- ),
- "qgen": TosaQuantGen.qgConv,
- "types": TYPE_CONV,
- "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
- "error_if_validators": (
- TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList,
- TosaErrorValidator.evInputZeroPointNotZero,
- TosaErrorValidator.evWeightZeroPointNotZero,
- TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evStrideSmallerOne,
- TosaErrorValidator.evDilationSmallerOne,
- TosaErrorValidator.evWrongRank,
- ),
- "template": True,
- },
- "fully_connected": {
- "op": Op.FULLY_CONNECTED,
- "operands": (1, 2),
- "rank": (2, 2),
- "build_fcn": (build_fully_connected, TosaTensorGen.tgFullyConnected, None),
- "qgen": TosaQuantGen.qgConv,
- "types": TYPE_CONV,
- "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evWeightZeroPointNotZero, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "matmul": {
- "op": Op.MATMUL,
- "operands": (2, 0),
- "rank": (3, 3),
- "build_fcn": (build_matmul, TosaTensorGen.tgMatmul, None),
- "qgen": TosaQuantGen.qgMatmul,
- "types": TYPE_NARROW_INT_FP,
- "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "max_pool2d": {
- "op": Op.MAX_POOL2D,
- "operands": (1, 0),
- "rank": (4, 4),
- "build_fcn": (build_pool2d, TosaTensorGen.tgNHWC, TosaArgGen.agPooling),
- "types": TYPE_NARROW_INT_FP,
- "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
- "error_if_validators": (TosaErrorValidator.evKernelSmallerOne, TosaErrorValidator.evStrideSmallerOne, TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evPadLargerEqualKernel, TosaErrorValidator.evPoolingOutputShapeMismatch)
- },
- # Templated operator. Filled in by createDynamicOpLists
- "transpose_conv2d_TEMPLATE": {
- "op": Op.TRANSPOSE_CONV2D,
- "operands": (1, 2),
- "rank": (4, 4),
- "build_fcn": (
- build_transpose_conv2d,
- TosaTensorGen.tgTransposeConv2D,
- TosaArgGen.agTransposeConv2D,
- ),
- "qgen": TosaQuantGen.qgConv,
- "types": TYPE_CONV,
- "invalid_test_validators": (
- TosaInvalidValidator.ivHeightWidthInvalid,
- TosaInvalidValidator.ivNonPositiveOutputShape,
- ),
- "error_if_validators": (
- TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList,
- TosaErrorValidator.evInputZeroPointNotZero,
- TosaErrorValidator.evWeightZeroPointNotZero,
- TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evStrideSmallerOne,
- TosaErrorValidator.evDilationSmallerOne,
- TosaErrorValidator.evWrongRank,
- ),
- "template": True,
- },
- # Activation functions
- "clamp": {
- "op": Op.CLAMP,
- "operands": (1, 0),
- "build_fcn": (build_clamp, TosaTensorGen.tgBasic, None),
- "types": TYPE_NARROW_INT_FP,
- "error_if_validators": (TosaErrorValidator.evMaxSmallerMin, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "sigmoid": {
- "op": Op.SIGMOID,
- "operands": (1, 0),
- "build_fcn": (build_sigmoid, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList)
- },
- "tanh": {
- "op": Op.TANH,
- "operands": (1, 0),
- "build_fcn": (build_tanh, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList)
- },
- # Elementwise Binary Operators
- "add": {
- "op": Op.ADD,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "arithmetic_right_shift": {
- "op": Op.ARITHMETIC_RIGHT_SHIFT,
- "operands": (2, 0),
- "build_fcn": (
- build_arithmetic_right_shift,
- TosaTensorGen.tgBroadcastFuzz,
- TosaArgGen.agArithmeticRightShift,
- ),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "bitwise_and": {
- "op": Op.BITWISE_AND,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "bitwise_or": {
- "op": Op.BITWISE_OR,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "bitwise_xor": {
- "op": Op.BITWISE_XOR,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "intdiv": {
- "op": Op.INTDIV,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": [DType.INT32],
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "logical_and": {
- "op": Op.LOGICAL_AND,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_BOOL,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "logical_left_shift": {
- "op": Op.LOGICAL_LEFT_SHIFT,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "logical_right_shift": {
- "op": Op.LOGICAL_RIGHT_SHIFT,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "logical_or": {
- "op": Op.LOGICAL_OR,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_BOOL,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "logical_xor": {
- "op": Op.LOGICAL_XOR,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_BOOL,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "maximum": {
- "op": Op.MAXIMUM,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "minimum": {
- "op": Op.MINIMUM,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "mul": {
- "op": Op.MUL,
- "operands": (2, 0),
- "build_fcn": (build_mul, TosaTensorGen.tgBroadcastFuzz, TosaArgGen.agMul),
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evRankMismatch, TosaErrorValidator.evDimensionMismatch)
- },
- "pow": {
- "op": Op.POW,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "sub": {
- "op": Op.SUB,
- "operands": (2, 0),
- "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "table": {
- "op": Op.TABLE,
- # Use the automatic generation functions to create the input array
- # but create the table tensor in the build function, as it may be
- # a different type from the input
- "operands": (1, 0),
- "build_fcn": (build_table, TosaTensorGen.tgBasic, TosaArgGen.agTable),
- "types": [DType.INT8, DType.INT16],
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList)
- },
- # Elementwise Unary operators
- "abs": {
- "op": Op.ABS,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "bitwise_not": {
- "op": Op.BITWISE_NOT,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_INT,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "ceil": {
- "op": Op.CEIL,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "clz": {
- "op": Op.CLZ,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": [DType.INT32],
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "exp": {
- "op": Op.EXP,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "floor": {
- "op": Op.FLOOR,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "log": {
- "op": Op.LOG,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "logical_not": {
- "op": Op.LOGICAL_NOT,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_BOOL,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "negate": {
- "op": Op.NEGATE,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "qgen": TosaQuantGen.qgUnary,
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evOutputZeroPointNotZero,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
- TosaErrorValidator.evWrongOutputList)
- },
- "reciprocal": {
- "op": Op.RECIPROCAL,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "rsqrt": {
- "op": Op.RSQRT,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- # Elementwise Ternary operators
- "select": {
- "op": Op.SELECT,
- "operands": (3, 0),
- "build_fcn": (build_select, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- # Comparison operators
- "equal": {
- "op": Op.EQUAL,
- "operands": (2, 0),
- "build_fcn": (build_comparison, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "greater_equal": {
- "op": Op.GREATER_EQUAL,
- "operands": (2, 0),
- "build_fcn": (build_comparison, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- "greater": {
- "op": Op.GREATER,
- "operands": (2, 0),
- "build_fcn": (build_comparison, TosaTensorGen.tgBroadcastFuzz, None),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
- },
- # Reduction operators
- "reduce_all": {
- "op": Op.REDUCE_ALL,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_BOOL,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reduce_any": {
- "op": Op.REDUCE_ANY,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_BOOL,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reduce_max": {
- "op": Op.REDUCE_MAX,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reduce_min": {
- "op": Op.REDUCE_MAX,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reduce_product": {
- "op": Op.REDUCE_PRODUCT,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_FP,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reduce_sum": {
- "op": Op.REDUCE_SUM,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_FI32,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- # Data layout operators
- "concat": {
- "op": Op.CONCAT,
- "operands": (2, 0),
- "build_fcn": (build_concat, TosaTensorGen.tgConcat, TosaArgGen.agAxis),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evConcatInputRankMismatch,
- TosaErrorValidator.evConcatShapeSumMismatch, TosaErrorValidator.evConcatInputDimMismatch, TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongOutputList)
- },
- "pad": {
- "op": Op.PAD,
- "operands": (1, 0),
- "rank": (1, 5),
- "build_fcn": (build_pad, TosaTensorGen.tgBasic, TosaArgGen.agPad),
- "qgen": TosaQuantGen.qgPad,
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evPadSmallerZero,
- TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reshape": {
- "op": Op.RESHAPE,
- "operands": (1, 0),
- "build_fcn": (build_reshape, TosaTensorGen.tgBasic, TosaArgGen.agReshape),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evTensorSizeInputOutputMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "reverse": {
- "op": Op.REVERSE,
- "operands": (1, 0),
- "build_fcn": (build_reverse, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "slice": {
- "op": Op.SLICE,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (build_slice, TosaTensorGen.tgBasic, TosaArgGen.agSlice),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evStartSmallerZero, TosaErrorValidator.evSizeSmallerEqualZero, TosaErrorValidator.evStartSizeOutsideBounds,
- TosaErrorValidator.evSizeOutputShapeMismatch, TosaErrorValidator.evInputSizeStartLengthMismatch, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "tile": {
- "op": Op.TILE,
- "operands": (1, 0),
- "build_fcn": (build_tile, TosaTensorGen.tgBasic, TosaArgGen.agTile),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "transpose": {
- "op": Op.TRANSPOSE,
- "operands": (1, 0),
- "rank": (1, 4),
- "build_fcn": (
- build_transpose,
- TosaTensorGen.tgBasic,
- TosaArgGen.agTranspose,
- ),
- "types": TYPE_FIB,
- "error_if_validators": (TosaErrorValidator.evIndexOutsideBounds, TosaErrorValidator.evIndexUsedTwice,
- TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- # Data nodes
- "const": {
- "op": Op.CONST,
- "operands": (0, 1),
- "build_fcn": (build_const, TosaTensorGen.tgBasic, None),
- "types": TYPE_FIB,
- },
- "identity": {
- "op": Op.IDENTITY,
- "operands": (1, 0),
- "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
- "types": TYPE_FIB,
- },
- # Scatter/Gather
- "gather": {
- "op": Op.GATHER,
- # Only specify 'values' tensor here. 'indices' is generated in op building stage
- "operands": (1, 0),
- "rank": (3, 3),
- "build_fcn": (build_gather, TosaTensorGen.tgBasic, None),
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evWrongRank)
- },
- "scatter": {
- "op": Op.SCATTER,
- # Only specify 'values_in' tensor here.
- #'indices' and 'input' are generated in op building stage
- "operands": (2, 0),
- "rank": (3, 3),
- "build_fcn": (build_scatter, TosaTensorGen.tgScatter, None),
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evWrongRank)
- },
- # Image operations
- "resize": {
- "op": Op.RESIZE,
- "operands": (1, 0),
- "rank": (4, 4),
- "build_fcn": (build_resize, TosaTensorGen.tgNHWC, TosaArgGen.agResize),
- "types": [DType.INT8, DType.INT16, DType.FLOAT],
- "invalid_test_validators": (TosaInvalidValidator.ivWrongDataTypeOrModeResize, TosaInvalidValidator.ivBadStride),
- "error_if_validators": (TosaErrorValidator.evMaxDimExceeded, TosaErrorValidator.evStrideSmallerEqualZero, TosaErrorValidator.evStrideLargerDimension,
- TosaErrorValidator.evStrideLargerEqualMax, TosaErrorValidator.evOffsetSmallerEqualMin, TosaErrorValidator.evOffsetLargerEqualMax,
- TosaErrorValidator.evShiftNotZero, TosaErrorValidator.evShiftSmallerOne, TosaErrorValidator.evShiftLargerEleven, TosaErrorValidator.evWrongInputType,
- TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList,
- TosaErrorValidator.evBatchMismatch, TosaErrorValidator.evChannelMismatch)
- },
- # Type conversion
- "cast": {
- "op": Op.CAST,
- "operands": (1, 0),
- "build_fcn": (build_cast, TosaTensorGen.tgBasic, TosaArgGen.agCast),
- "types": [DType.FLOAT, DType.INT8, DType.INT16, DType.INT32, DType.BOOL],
- "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- "rescale": {
- "op": Op.RESCALE,
- "operands": (1, 0),
- "rank": (1,4),
- "build_fcn": (build_rescale, TosaTensorGen.tgBasic, TosaArgGen.agRescale),
- "types": [DType.UINT8, DType.INT8, DType.INT16, DType.INT32, DType.INT48],
- "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evOutputZeroPointNotZero, TosaErrorValidator.evScaleTrue,
- TosaErrorValidator.evScaleNotTrue, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
- TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
- },
- # Custom
- # Not implemented.
- # Control flow operators
- # Two varients of cond_if, one that generates one of two constant tensors (no
- # inputs to the basic blocks, one output) and another that either adds or subtracts two tensors
- # (two inputs to the basic blocks, one output)
- "cond_if_const": {
- "op": Op.COND_IF,
- "operands": (0, 2),
- "build_fcn": (
- build_cond_if_const,
- TosaTensorGen.tgBasic,
- TosaArgGen.agCondIf,
- ),
- "types": [DType.BOOL],
- "error_if_validators": (TosaErrorValidator.evOutputListThenGraphMismatch, TosaErrorValidator.evOutputListElseGraphMismatch)
- },
- "cond_if_binary": {
- "op": Op.COND_IF,
- "operands": (2, 0),
- "build_fcn": (
- build_cond_if_binary,
- TosaTensorGen.tgBasic,
- TosaArgGen.agCondIf,
- ),
- "types": TYPE_INT_FP,
- "error_if_validators": (TosaErrorValidator.evInputListThenGraphMismatch, TosaErrorValidator.evInputListElseGraphMismatch,
- TosaErrorValidator.evOutputListThenGraphMismatch, TosaErrorValidator.evOutputListElseGraphMismatch)
- },
- # while_loop
- "while_loop": {
- "op": Op.WHILE_LOOP,
- "operands": (0, 1),
- "build_fcn": (
- build_while_loop,
- TosaTensorGen.tgBasic,
- TosaArgGen.agWhileLoop,
- ),
- "types": [DType.INT32],
- "error_if_validators": (TosaErrorValidator.evInputListOutputListMismatch, TosaErrorValidator.evInputListCondGraphMismatch,
- TosaErrorValidator.evInputListBodyGraphInputMismatch, TosaErrorValidator.evInputListBodyGraphOutputMismatch,
- TosaErrorValidator.evCondGraphOutputNotMatchingBool)
- },
- }
-
-
-class OutputShaper:
- # Methods in this class compute the expected output shape and datatype
- # for common classes of operations
- def __init__(self):
- pass
-
- # These methods return arguments that can be used for
- # creating a new output tensor
- @staticmethod
- def binaryBroadcastOp(ser, rng, a, b, error_name=None):
- if error_name != ErrorIf.RankMismatch:
- assert len(a.shape) == len(b.shape)
- assert a.dtype == b.dtype
-
- shape = []
- for i in range(len(a.shape)):
- if a.shape[i] == 1 and error_name == None:
- shape.append(b.shape[i])
- else:
- shape.append(a.shape[i])
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(shape, outputDType)
-
- @staticmethod
- def binaryNonBroadcastOp(ser, a, b):
- assert len(a.shape) == len(b.shape)
- assert a.dtype == b.dtype
-
- shape = []
- for i in range(len(a.shape)):
- assert a.shape[i] == b.shape[i]
- shape.append(a.shape[i])
-
- return ser.addOutput(shape, a.dtype)
-
- @staticmethod
- def unaryOp(ser, rng, a, error_name=None):
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(a.shape, outputDType)
-
- @staticmethod
- def selectOp(ser, rng, cond, a, b, error_name=None):
- if error_name != ErrorIf.RankMismatch:
- assert len(a.shape) == len(b.shape) and len(a.shape) == len(cond.shape)
- assert a.dtype == b.dtype
-
- shape = []
- for i in range(len(cond.shape)):
- if cond.shape[i] == 1 and error_name == None:
- shape.append(max(cond.shape[i], a.shape[i], b.shape[i]))
- else:
- shape.append(cond.shape[i])
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(shape, outputDType)
-
- @staticmethod
- def binaryComparisonOp(ser, rng, a, b , error_name=None):
- if error_name != ErrorIf.RankMismatch:
- assert len(a.shape) == len(b.shape)
- assert a.dtype == b.dtype
-
- # Do broadcast
- shape = []
- for i in range(len(a.shape)):
- if a.shape[i] == 1 and len(b.shape) > i:
- shape.append(b.shape[i])
- else:
- shape.append(a.shape[i])
-
- if error_name == ErrorIf.WrongOutputType:
- wrong_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = DType.BOOL
-
- return ser.addOutput(shape, outputDType)
-
- @staticmethod
- def reduceOp(ser, rng, a, axis, error_name=None):
- shape = a.shape.copy()
- if error_name not in [ErrorIf.AxisSmallerZero, ErrorIf.AxisLargerRank, ErrorIf.ShapeOfAxisNotOne]:
- shape[axis] = 1
- if error_name == ErrorIf.ShapeOfAxisNotOne and shape[axis] == 1:
- shape[axis] = rng.integers(2, 10)
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(shape, outputDType)
-
- @staticmethod
- def argmaxOp(ser, rng, a, axis, error_name=None):
- shape = a.shape.copy()
-
- if error_name not in [ErrorIf.AxisSmallerZero, ErrorIf.AxisLargerRank]:
- del shape[axis]
-
- if error_name == ErrorIf.ArgmaxOutputRankMismatch:
- remove = rng.choice([True, False])
- if remove and len(shape) > 1:
- del shape[0]
- else:
- shape.append(1)
- elif error_name == ErrorIf.ArgmaxOutputShapeMismatch:
- for i in range(len(shape)):
- shape[i] = shape[i] + rng.integers(1, 10)
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([DType.INT32]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = DType.INT32
-
- return ser.addOutput(shape, outputDType)
-
- @staticmethod
- def conv2dOp(ser, rng, ifm, filter, strides, padding, dilations, error_name=None):
-
- # IFM: NHWC
- # Filter: OHWI
- # OFM: NHWC
-
- if len(padding) == 2:
- # Expand padding to 4 parameters in the case of transpose_conv2d
- # From H,W to T,B,L,R
- padding = [padding[0], padding[0], padding[1], padding[1]]
-
- h = (
- ifm.shape[1]
- - filter.shape[1]
- - (filter.shape[1] - 1) * (dilations[0] - 1)
- + padding[0]
- + padding[1]
- ) // strides[0] + 1
-
- w = (
- ifm.shape[2]
- - filter.shape[2]
- - (filter.shape[2] - 1) * (dilations[1] - 1)
- + padding[2]
- + padding[3]
- ) // strides[1] + 1
-
- # Avoid illegal dimensions, which can be generated in error_if tests
- h = max(h, 1)
- w = max(w, 1)
-
- ofm_shape = [ifm.shape[0], h, w, filter.shape[0]]
-
- if ifm.dtype == DType.INT8:
- out_dtype = DType.INT32
- elif ifm.dtype == DType.INT16:
- out_dtype = DType.INT48
- elif ifm.dtype == DType.FLOAT:
- out_dtype = DType.FLOAT
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output dtype if input type is incorrect
- out_dtype = DType.INT32
- else:
- raise Exception(f"Unsupported input dtype: {ifm.dtype}")
-
- if error_name == ErrorIf.WrongOutputType:
- wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
- out_dtype = rng.choice(wrong_dtypes)
-
- return ser.addOutput(ofm_shape, out_dtype)
-
- @staticmethod
- def conv3dOp(ser, rng, ifm, filter, strides, padding, dilations, error_name=None):
-
- # IFM: NDHWC
- # Filter: ODHWI
- # OFM: NDHWC
-
- d = (
- ifm.shape[1]
- - filter.shape[1]
- - (filter.shape[1] - 1) * (dilations[0] - 1)
- + padding[0]
- + padding[1]
- ) // strides[0] + 1
-
- h = (
- ifm.shape[2]
- - filter.shape[2]
- - (filter.shape[2] - 1) * (dilations[1] - 1)
- + padding[2]
- + padding[3]
- ) // strides[1] + 1
-
- w = (
- ifm.shape[3]
- - filter.shape[3]
- - (filter.shape[3] - 1) * (dilations[2] - 1)
- + padding[4]
- + padding[5]
- ) // strides[2] + 1
-
- # Avoid illegal dimensions, which can be generated in error_if tests
- d = max(d, 1)
- h = max(h, 1)
- w = max(w, 1)
-
- ofm_shape = [ifm.shape[0], d, h, w, filter.shape[0]]
-
- if ifm.dtype == DType.INT8:
- out_dtype = DType.INT32
- elif ifm.dtype == DType.INT16:
- out_dtype = DType.INT48
- elif ifm.dtype == DType.FLOAT:
- out_dtype = DType.FLOAT
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output dtype if input type is incorrect
- out_dtype = DType.INT32
- else:
- raise Exception(f"Unsupported input dtype: {ifm.dtype}")
-
- if error_name == ErrorIf.WrongOutputType:
- wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
- out_dtype = rng.choice(wrong_dtypes)
-
- return ser.addOutput(ofm_shape, out_dtype)
-
- @staticmethod
- def depthwiseConv2dOp(ser, rng, ifm, filter, strides, padding, dilations, error_name=None):
- # IFM: NHWC
- # Filter: HWCM
- # OFM: NHW C*M
- h = (
- ifm.shape[1]
- - filter.shape[0]
- - (filter.shape[0] - 1) * (dilations[0] - 1)
- + padding[0]
- + padding[1]
- ) // strides[0] + 1
-
- w = (
- ifm.shape[2]
- - filter.shape[1]
- - (filter.shape[1] - 1) * (dilations[1] - 1)
- + padding[2]
- + padding[3]
- ) // strides[1] + 1
-
- # Avoid illegal dimensions, which can be generated in error_if tests
- h = max(h, 1)
- w = max(w, 1)
-
- ofm_shape = [ifm.shape[0], h, w, filter.shape[2] * filter.shape[3]]
-
- if ifm.dtype == DType.INT8:
- out_dtype = DType.INT32
- elif ifm.dtype == DType.INT16:
- out_dtype = DType.INT48
- elif ifm.dtype == DType.FLOAT:
- out_dtype = DType.FLOAT
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output dtype if input type is incorrect
- out_dtype = DType.INT32
- else:
- raise Exception(f"Unsupported input dtype: {ifm.dtype}")
-
- if error_name == ErrorIf.WrongOutputType:
- wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
- out_dtype = rng.choice(wrong_dtypes)
-
- return ser.addOutput(ofm_shape, out_dtype)
-
- @staticmethod
- def pool2dOp(ser, rng, ifm, kernel, stride, pad, error_name=None):
- # input: NHWC
- if stride[0] <= 0 or stride[1] <= 0 or min(pad) < 0:
- # If an incorrect stride is used set dimensions to 1, test is invalid anyway.
- h = 1
- w = 1
- else:
- h = (ifm.shape[1] + pad[0] + pad[1] + stride[0] - kernel[0]) // stride[0]
- w = (ifm.shape[2] + pad[2] + pad[3] + stride[1] - kernel[1]) // stride[1]
-
- if error_name == ErrorIf.PoolingOutputShapeMismatch:
- choices = [1, 2, 3, 4, 5]
- h = h + rng.choice(choices)
- w = w + rng.choice(choices)
-
- ofm_shape = [ifm.shape[0], h, w, ifm.shape[3]]
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([ifm.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = ifm.dtype
-
- return ser.addOutput(ofm_shape, outputDType)
-
- @staticmethod
- def fullyConnectedOp(ser, rng, input, filter, error_name=None):
- # input: N, IC
- # filter: OC, IC
- # output: N, OC
-
- output_shape = [input.shape[0], filter.shape[0]]
-
- if error_name == ErrorIf.WrongOutputType:
- if input.dtype == DType.INT8:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT48, DType.FLOAT)
- elif input.dtype == DType.INT16:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.FLOAT)
- elif input.dtype == DType.FLOAT:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.INT48)
- out_dtype = rng.choice(a=incorrect_types)
- elif input.dtype == DType.INT8:
- out_dtype = DType.INT32
- elif input.dtype == DType.INT16:
- out_dtype = DType.INT48
- elif input.dtype == DType.FLOAT:
- out_dtype = DType.FLOAT
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output dtype if input type is incorrect
- out_dtype = DType.INT32
- else:
- raise Exception("Unsupported input dtype: {}".format(input.dtype))
-
- return ser.addOutput(output_shape, out_dtype)
-
- @staticmethod
- def matmulOp(ser, rng, a, b, error_name=None):
- # a: N, H, C
- # b: N, C, W
- # out: N, H, W
-
- output_shape = [a.shape[0], a.shape[1], b.shape[2]]
-
- if error_name == ErrorIf.WrongOutputType:
- if a.dtype == DType.INT8:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT48, DType.FLOAT)
- elif a.dtype == DType.INT16:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.FLOAT)
- elif a.dtype == DType.FLOAT:
- incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.INT48)
- out_dtype = rng.choice(a=incorrect_types)
- elif a.dtype == DType.INT8:
- out_dtype = DType.INT32
- elif a.dtype == DType.INT16:
- out_dtype = DType.INT48
- elif a.dtype == DType.FLOAT:
- out_dtype = DType.FLOAT
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output dtype if input type is incorrect
- out_dtype = DType.INT32
- else:
- raise Exception("Unsupported input dtype for matmul: {}".format(a.dtype))
-
- return ser.addOutput(output_shape, out_dtype)
-
- @staticmethod
- def concatOp(ser, rng, axis, *a, error_name=None):
- input1 = a[0]
- remaining_inputs = a[1:]
-
- # calculate the output shape, if possible, otherwise just use the first input shape
- output_shape = input1.shape.copy()
- if not (
- # unable to concat tensors of different ranks
- error_name == ErrorIf.ConcatInputRankMismatch
- # unable to concat tensors along an invalid axis
- or error_name in [ErrorIf.AxisLargerRank, ErrorIf.AxisSmallerZero]
- ):
- for tensor in remaining_inputs:
- output_shape[axis] += tensor.shape[axis]
-
- if error_name == ErrorIf.ConcatShapeSumMismatch:
- output_shape[axis] += rng.integers(5, 10)
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = {DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT}
- wrong_dtypes = list(all_dtypes - set([input1.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = input1.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def padOp(ser, rng, a, padding, error_name=None):
-
- output_shape = a.shape.copy()
-
- for i in range(len(output_shape)):
- output_shape[i] = padding[i][0] + padding[i][1] + output_shape[i]
-
- # Fix negative output shape if error_if test causes it
- if error_name == ErrorIf.PadSmallerZero and min(output_shape) < 1:
- output_shape = [i if i >= 1 else 1 for i in output_shape]
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def reshapeOp(ser, rng, a, shape, error_name=None):
- output_shape = shape.copy()
-
- totalElements = 1
- for i in a.shape:
- totalElements *= i
-
- # If there are any -1 elements, figure out what that dimension must be
- totalOutputElements = 1
- for i in output_shape:
- if i != -1:
- totalOutputElements *= i
-
- # And fill it in
- for i in range(len(output_shape)):
- if output_shape[i] == -1:
- output_shape[i] = totalElements // totalOutputElements
-
- if error_name == ErrorIf.TensorSizeInputOutputMismatch:
- for i in range(len(output_shape)):
- output_shape[i] = output_shape[i] + rng.integers(1, 10)
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def sliceOp(ser, rng, a, start, size, error_name=None):
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- if error_name == ErrorIf.SizeOutputShapeMismatch:
- output_shape = size.copy()
- for index in range(len(output_shape)):
- if output_shape[index] <= 2:
- output_shape[index] = output_shape[index] + rng.choice([1, 2])
- else:
- output_shape[index] = output_shape[index] + rng.choice([-2, -1, 1, 2])
- else:
- output_shape = size.copy()
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def tileOp(ser, rng, a, multiples, error_name=None):
-
- output_shape = a.shape.copy()
- assert len(multiples) == len(output_shape)
-
- for i in range(len(output_shape)):
- output_shape[i] = a.shape[i] * multiples[i]
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def transposeOp(ser, rng, a, perms, error_name=None):
- output_shape = a.shape.copy()
-
- assert len(perms) == len(output_shape)
-
- if error_name == ErrorIf.IndexOutsideBounds:
- for i in range(len(output_shape)):
- output_shape[i] = a.shape[0]
- else:
- for i in range(len(output_shape)):
- output_shape[i] = a.shape[perms[i]]
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = a.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def gatherOp(ser, rng, values, indices, error_name=None):
- if error_name != ErrorIf.WrongRank:
- assert len(values.shape) == 3
- assert len(indices.shape) == 2
- assert values.shape[0] == indices.shape[0]
-
- output_shape = [values.shape[0], indices.shape[1], values.shape[2]]
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([values.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = values.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def scatterOp(ser, rng, values_in, indices, input, error_name=None):
- if error_name != ErrorIf.WrongRank:
- assert len(values_in.shape) == 3
- assert len(indices.shape) == 2
- assert len(input.shape) == 3
- assert values_in.shape[0] == indices.shape[0] # N
- assert input.shape[1] == indices.shape[1] # W
- assert values_in.shape[2] == input.shape[2] # C
-
- output_shape = values_in.shape
-
- if error_name == ErrorIf.WrongOutputType:
- all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes = list(set(all_dtypes) - set([values_in.dtype]))
- outputDType = rng.choice(wrong_dtypes)
- else:
- outputDType = values_in.dtype
-
- return ser.addOutput(output_shape, outputDType)
-
- @staticmethod
- def tableOp(ser, rng, input, error_name=None):
- # Same shape as the input, dtype dependent on input dtype
- if error_name != ErrorIf.WrongInputType:
- assert input.dtype == DType.INT16 or input.dtype == DType.INT8
- output_dtype = DType.INT32 if input.dtype == DType.INT16 else DType.INT8
- if error_name == ErrorIf.WrongOutputType:
- wrong_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
- wrong_dtypes.remove(output_dtype)
- output_dtype = rng.choice(wrong_dtypes)
- return ser.addOutput(input.shape, output_dtype)
-
- @staticmethod
- def resizeOp(
- serializer,
- rng,
- input,
- mode,
- stride,
- offset,
- shift,
- stride_fp,
- offset_fp,
- output_dims,
- input_dtype,
- output_dtype,
- error_name = None
- ):
- if error_name == ErrorIf.WrongRank:
- output_dims = [input.shape[0], output_dims[0], output_dims[0], input.shape[0]]
- else:
- if error_name == ErrorIf.BatchMismatch:
- output_dims = [input.shape[0] + rng.integers(1, 10), output_dims[0], output_dims[1], input.shape[3]]
- elif error_name == ErrorIf.ChannelMismatch:
- output_dims = [input.shape[0], output_dims[0], output_dims[1], input.shape[3] + rng.integers(1, 10)]
- else:
- output_dims = [input.shape[0], output_dims[0], output_dims[1], input.shape[3]]
-
- return serializer.addOutput(output_dims, output_dtype)
-
- @staticmethod
- def typeConversionOp(ser, rng, val, out_dtype, error_name=None):
- return ser.addOutput(val.shape, out_dtype)
-
- @staticmethod
- def transposeConv2DOp(ser, rng, ifm, output_shape, error_name=None):
- if ifm.dtype == DType.INT8:
- out_dtype = DType.INT32
- elif ifm.dtype == DType.INT16:
- out_dtype = DType.INT48
- elif ifm.dtype == DType.FLOAT:
- out_dtype = DType.FLOAT
- elif error_name == ErrorIf.WrongInputType:
- # Pick some potentially correct output dtype if input type is incorrect
- out_dtype = DType.INT32
- else:
- raise Exception(f"Unsupported input dtype: {ifm.dtype}")
-
- if error_name == ErrorIf.WrongOutputType:
- wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
- out_dtype = rng.choice(wrong_dtypes)
-
- return ser.addOutput(output_shape, out_dtype)