aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/graph_optimiser.py
blob: f5006c6fa56da020271e441c564d6f234eabbce7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Early optimisation of the network graph, using the rewrite_graph module to do the traversal of the graph. These are
# split into two parts optimise_graph_a and optimise_graph_b.
import math
import uuid
from typing import Tuple

import numpy as np

from . import fp_math
from . import lut
from . import rewrite_graph
from . import scaling
from .data_type import DataType
from .debug_database import DebugDatabase
from .errors import UnsupportedFeatureError
from .errors import VelaError
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .numeric_util import clamp_sigmoid
from .numeric_util import full_shape
from .numeric_util import round_away_zero
from .operation import create_activation_function
from .operation import NpuBlockType
from .operation import Op
from .operation import Operation
from .operation import Padding
from .operation_util import create_avgpool_nop
from .shape4d import Shape4D
from .softmax import SoftMax
from .tensor import check_quantized_tens_scaling_equal
from .tensor import create_const_tensor
from .tensor import QuantizationParameters
from .tensor import Tensor
from .tflite_mapping import optype_to_builtintype

passthrough_nodes = (Op.Identity,)

memory_only_ops = (Op.Reshape,)


def remove_passthrough_tensor(tens, arch, nng):
    if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
        assert len(tens.ops[0].inputs) == 1
        tens = tens.ops[0].inputs[0]
    return tens


def rewrite_concat_ops(op, arch):
    if not op.run_on_npu or not op.type.is_concat_op():
        return op

    axis_4D = 0
    ofm = op.ofm
    ofm.ops = []
    offset = 0

    unfuse_activation_function(op)

    if op.type == Op.Pack:
        # Pack is also referred to as Stack
        axis = int(op.attrs["axis"])
        desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]

        if axis >= 0:
            axis_4D = axis + (4 - len(desired_shape))
        else:
            axis_4D = axis

        for idx, inp in enumerate(op.inputs):
            op.ifm_shapes[idx] = Shape4D(desired_shape)
            if Shape4D(inp.shape) != op.ifm_shapes[idx]:
                inp.avoid_NHCWB16 = True
        op.type = Op.PackReshaped

    inputs, axis = op.get_concat_inputs_axis()

    for idx, inp in enumerate(inputs):
        if op.type != Op.PackReshaped:
            op.ifm_shapes[idx] = Shape4D(inp.shape)
            if axis >= 0:
                axis_4D = axis + (4 - len(inp.shape))
            else:
                axis_4D = axis
        avgpool_op = create_avgpool_nop(op.name + str(idx) + "_avgpool")
        avgpool_op.inputs = [inp]
        avgpool_op.outputs = [ofm]
        avgpool_op.attrs["concat_axis"] = axis_4D
        avgpool_op.attrs["concat_start"] = offset
        offset += op.ifm_shapes[idx][axis_4D]

        avgpool_op.attrs["concat_end"] = offset
        avgpool_op.run_on_npu = True
        ofm.ops.append(avgpool_op)
        DebugDatabase.add_optimised(op, avgpool_op)
        avgpool_op.ifm_shapes.append(op.ifm_shapes[idx])
        avgpool_op.ofm_shapes.append(op.ofm_shapes[0])
        avgpool_op.memory_function = Op.ConcatSliceWrite
    assert ofm.shape[axis] == offset

    # If axis corresponds to C-dimension, NHCWB16 can only be used in the output if all the concat_start's are a
    # multiple of 16. This as, it is only then the address offset for the ofm, for all operations, will be 16 byte
    # aligned. For other values of axis the address offsets will be 16 byte aligned, as they are all based on c = 0
    # and those addresses are always 16 byte aligned due to the NHCWB16 format.
    if axis == -1 or axis == (len(ofm.shape) - 1):
        for op in ofm.ops:
            if op.attrs["concat_start"] % 16 != 0:
                ofm.avoid_NHCWB16 = True
                break
    return op


def rewrite_split_ops(tens, arch, nng):

    if len(tens.ops) == 1 and tens.ops[0].type.is_split_op() and tens.ops[0].type != Op.Unpack:
        split_op = tens.ops[0]

        # Not supported so leave it and run on CPU
        if not split_op.run_on_npu:
            return tens

        inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()

        tens.ops = []
        new_op = Operation(Op.SplitSliceRead, split_op.name)
        new_op.inputs = [inp]
        ofm_shape_idx = 0

        # For Split the offset cannot be extracted from the tensor so it has to
        # be calculated from the index of the output tensor
        if axis is not None:
            # Get the start and end of the split
            offset_start = [0] * 4
            axis_4D_list = split_op.attrs.get("split_axis_4D", None)  # Present for UnpackReshaped and some StridedSlice
            for idx, out in enumerate(outputs):
                if axis_4D_list is not None:
                    axis_4D = axis_4D_list[idx]
                else:
                    split_op.ofm_shapes[idx] = Shape4D(out.shape)
                    if axis >= 0:
                        axis_4D = axis + (4 - len(out.shape))
                    else:
                        axis_4D = axis

                if out == tens:
                    ofm_shape_idx = idx
                    break

                offset_start[axis_4D] += split_op.ofm_shapes[idx][axis_4D]

                # If start offset is not a multiple of 16 in the C-dimension, NHCWB16 need to be avoided in the input
                if (offset_start[-1] % 16) != 0:
                    inp.avoid_NHCWB16 = True

        new_op.read_offsets[0] = Shape4D.from_list(offset_start, 0)
        new_op.run_on_npu = True
        new_op.set_output_tensor(tens)
        new_op.ifm_shapes.append(Shape4D(inp.shape))
        new_op.ofm_shapes.append(split_op.ofm_shapes[ofm_shape_idx])
        DebugDatabase.add_optimised(split_op, new_op)

    return tens


def remove_SplitSliceRead(op, arch):

    if op.type == Op.SplitSliceRead:
        # Check if it is possible to put the SplitSliceRead on the tensor consumer, or if an avgpool need to be inserted
        if (
            len(op.ofm.consumer_list) == 1
            and op.ofm.consumer_list[0] is not None
            and op.ofm.consumer_list[0].run_on_npu
            and op.ofm.consumer_list[0].type != Op.Reshape
            and op.ofm_shapes[0] == Shape4D.from_list(op.ofm.shape)
        ):
            # SplitSliceRead can be performed by tensor consumer
            cons_op = op.ofm.consumer_list[0]
            if cons_op.ifm == op.ofm:
                cons_op.read_offsets[0] = op.read_offsets[0]
                cons_op.set_input_tensor(op.ifm, cons_op.type.info.indices.ifms[0])
                cons_op.ifm_shapes[0] = op.ifm_shapes[0]
            elif cons_op.type.is_binary_elementwise_op() and cons_op.ifm2 == op.ofm:
                cons_op.read_offsets[1] = op.read_offsets[0]
                cons_op.set_input_tensor(op.ifm, cons_op.type.info.indices.ifms[1])
                cons_op.ifm_shapes[1] = op.ifm_shapes[0]

            op.ofm.consumer_list.remove(cons_op)
            op.ofm.ops = []
            op.ifm.consumer_list.remove(op)
        else:
            avgpool_op = create_avgpool_nop(op.name + "_avgpool")
            avgpool_op.add_input_tensor(op.ifm)
            avgpool_op.outputs = [op.ofm]
            op.ofm.ops.remove(op)
            op.ofm.ops.append(avgpool_op)
            avgpool_op.ifm_shapes.append(op.ifm_shapes[0])
            avgpool_op.ofm_shapes.append(op.ofm_shapes[0])
            avgpool_op.read_offsets[0] = op.read_offsets[0]

            op.ifm.consumer_list.remove(op)
            DebugDatabase.add_optimised(op, avgpool_op)


def insert_copy_op_after_tens(tens):
    tens_cons_list_copy = tens.consumer_list.copy()

    # Create a avg_pool nop op with ifm as input
    copy_tens = tens.clone()
    copy_op = create_avgpool_nop(tens.name + "_avgpool")
    copy_op.add_input_tensor(tens)
    copy_op.set_output_tensor(copy_tens)
    copy_op.set_ifm_ofm_shapes()
    copy_op.run_on_npu = True

    # Set copy_ifm consumers
    for tens_cons in tens_cons_list_copy:
        if tens_cons is not None:
            for ifm_idx, cons_inp in enumerate(tens_cons.inputs):
                if cons_inp == tens:
                    tens_cons.set_input_tensor(copy_tens, ifm_idx)

    DebugDatabase.add_optimised(tens.ops[0], copy_op)


def fix_sg_input_output(op, arch, nng):
    if not op.run_on_npu or op.type != Op.Reshape:
        return op

    # For the Reshape operators we want to remove, tensors are removed.
    # But in order to to do this, they cannot be outputs of the sg,
    # this need to be fixed prior to the removal.
    # Solution is to add a avgpool NOP, to maintain the original tensor.

    # Check if operator ifm/ofm are sg ifm/ofm
    ifm_is_sg_ifm = op.ifm.ops[0].type in (Op.Placeholder, Op.SubgraphInput, Op.Const)
    ifm_is_sg_ofm = any(ifm_cons is None for ifm_cons in op.ifm.consumer_list)
    ofm_is_sg_ofm = any(ofm_cons is None for ofm_cons in op.ofm.consumer_list)

    if op.type == Op.Reshape and (ifm_is_sg_ofm or ifm_is_sg_ifm) and ofm_is_sg_ofm:
        # Both ifm and ofm are sg outputs, only ifm need a copy, in order to remove the Reshape
        insert_copy_op_after_tens(op.ifm)

    return op


def needed_total_padding(input_size, stride, filter_size):
    out_size = (input_size + stride - 1) // stride
    needed_input = (out_size - 1) * stride + filter_size
    total_padding = max(0, needed_input - input_size)
    return total_padding


def calc_explicit_padding(input_size, stride, filter_size, pad_before, pad_after) -> Tuple[int, int]:
    """
    Based on explicit padding provided in a PAD operation, returns the corresponding hardware padding
    that provides equivalent results.
    """
    total_padding = needed_total_padding(input_size, stride, filter_size)
    # The top/left padding can be taken as is from the PAD
    output_pad_before = pad_before
    # The bottom/right padding might need downward adjustment depending on stride/input size
    output_pad_after = pad_after
    while output_pad_after > 0 and output_pad_after % stride != (total_padding - pad_before) % stride:
        output_pad_after -= 1
    return output_pad_before, output_pad_after


def calc_padding_and_skirt(padding_type, kernel, input_shape, explicit_padding):
    k_w, k_h = kernel.dilated_wh()
    s_x, s_y = kernel.stride
    ypad = needed_total_padding(int(input_shape.height), int(s_y), int(k_h))
    xpad = needed_total_padding(int(input_shape.width), int(s_x), int(k_w))
    if padding_type == Padding.SAME:
        left_pad = (xpad + 0) // 2
        right_pad = (xpad + 1) // 2
        top_pad = (ypad + 0) // 2
        bottom_pad = (ypad + 1) // 2
    elif padding_type == Padding.VALID:
        left_pad = 0
        right_pad = 0
        top_pad = 0
        bottom_pad = 0
    elif padding_type == Padding.EXPLICIT:
        # Padding is specified in a PAD operator which has been bypassed.
        top, left, bottom, right = explicit_padding
        top_pad, bottom_pad = calc_explicit_padding(int(input_shape.height), int(s_y), int(k_h), int(top), int(bottom))
        left_pad, right_pad = calc_explicit_padding(int(input_shape.width), int(s_x), int(k_w), int(left), int(right))
    else:
        raise UnsupportedFeatureError(f"Unknown padding")
    padding = (top_pad, left_pad, bottom_pad, right_pad)
    skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
    return padding, skirt


def calc_upscaled_padding_and_skirt(padding_type, kernel_size, stride, input_shape, upscaling_factor):
    kernel_height, kernel_width = kernel_size[0], kernel_size[1]
    if padding_type == Padding.SAME:
        ypad = needed_total_padding(int(input_shape.height) * upscaling_factor, int(stride[1]), int(kernel_height))
        xpad = needed_total_padding(int(input_shape.width) * upscaling_factor, int(stride[2]), int(kernel_width))
        right_pad = max(((xpad + 1) // upscaling_factor) - 1, 0)
        bottom_pad = max(((ypad + 1) // upscaling_factor) - 1, 0)
        left_pad = max(kernel_width - 1 - right_pad, 0)
        top_pad = max(kernel_height - 1 - bottom_pad, 0)
    elif padding_type == Padding.VALID:
        right_pad = max(kernel_width - 2, 0)
        bottom_pad = max(kernel_height - 2, 0)
        left_pad = kernel_width - 1
        top_pad = kernel_height - 1
    else:
        raise UnsupportedFeatureError(f"Unknown padding")
    padding = (top_pad, left_pad, bottom_pad, right_pad)
    skirt = padding
    return padding, skirt


def fixup_conv2d_backprop(op, arch, nng):
    if op.type == Op.Conv2DBackpropInput:
        # flip the inputs
        op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
        op.type = Op.Conv2DBackpropInputSwitchedBias
        op.ifm.resampling_mode = resampling_mode.TRANSPOSE

        # Update strides
        op.attrs.update({"stride_w": 1, "stride_h": 1, "strides": (1, 1, 1, 1)})

    return op


# Convert the op to an elementwise add
def convert_resizebilinear_1x1_to_add(op):
    op.type = Op.Add
    op.name = op.name + "_add"
    op.attrs["resizebilinear"] = True
    # Create an input tensor filled with zeros
    shape = op.ofm_shapes[0].as_list()
    tens = Tensor(shape, op.inputs[0].dtype, op.inputs[1].name + "_add")
    tens.values = np.zeros(shape)
    tens.quant_values = np.zeros(shape, np.uint8)
    tens.quantization = QuantizationParameters(0.0, 255.0)
    tens.quantization.scale_f32 = 1.0
    tens.quantization.zero_point = 0
    tens.consumer_list = [op]
    tens_op = op.inputs[1].ops[0]
    tens_op.set_output_tensor(tens)
    # Set the add inputs
    op.inputs[1] = op.inputs[0]
    op.inputs[0] = tens
    op.set_ifm_ofm_shapes()

    return op


# Convert ResizeBilinear to a number of 2x2 pool ops
def convert_resizebilinear_to_2x2_pool(op):
    count = 0
    pre_op = op
    outputs = op.outputs

    op.attrs.update({"strides": (1, 1, 1, 1), "ksize": (1, 2, 2, 1)})
    if op.attrs["align_corners"]:
        shape_modifier = 1
        op.attrs["padding"] = Padding.VALID
    else:
        shape_modifier = 0
        op.attrs["padding"] = Padding.SAME
    op.inputs[0].resampling_mode = resampling_mode.NEAREST

    upscaled_shape = np.array(op.ifm_shapes[0].get_hw_as_list())
    out_shape = np.array(op.ofm_shapes[0].get_hw_as_list())
    if (upscaled_shape == upscaled_shape * 2 - shape_modifier).all():
        return op

    while (upscaled_shape < out_shape).all():
        if count == 0:
            scaled_op = pre_op
        else:
            scaled_op = op.clone("_{}".format(count))
            scaled_op.inputs[0] = pre_op.outputs[0]

        upscaled_shape = upscaled_shape * 2 - shape_modifier

        if (upscaled_shape == out_shape).all():
            scaled_op.outputs = outputs
            scaled_op.outputs[0].ops = [scaled_op]
        else:
            shape = op.ofm_shapes[0].as_list()
            shape[1:3] = upscaled_shape
            out_tens = Tensor(shape, DataType.int16, "{}_{}".format(op.outputs[0].name, count))
            out_tens.quantization = op.outputs[0].quantization.clone()
            out_tens.quantization.quant_min = np.iinfo(np.int16).min
            out_tens.quantization.quant_max = np.iinfo(np.int16).max
            scaled_op.set_output_tensor(out_tens)
            pre_op = scaled_op
            count += 1

        # Setup the scale value
        if scaled_op.inputs[0].dtype.bits == 8 and scaled_op.outputs[0].dtype.bits == 16:
            scaled_op.rescale = 128
        elif scaled_op.inputs[0].dtype.bits == 16 and scaled_op.outputs[0].dtype.bits == 8:
            scaled_op.rescale = 1 / 128
        else:
            scaled_op.rescale = None
        scaled_op.set_ifm_ofm_shapes()

    return op


def fixup_resizebilinear(op, arch, nng):
    if op.type == Op.ResizeBilinear and op.run_on_npu:
        if op.ifm_shapes[0] == op.ofm_shapes[0]:
            # Bypass nop resizebilinear
            op.inputs = op.inputs[:1]
            op.type = Op.Identity
        elif op.ifm_shapes[0].height == 1 and op.ifm_shapes[0].width == 1:
            convert_resizebilinear_1x1_to_add(op)
        else:
            convert_resizebilinear_to_2x2_pool(op)

    return op


def convert_nop_split_to_identity(op, arch, nng):
    if op.type == Op.Split and op.attrs.get("num_splits") == 1:
        # the list comprehension should return a list with a single tensor
        # if it shouldn't, remove_passthrough_tensor will fail appropriately
        op.inputs = [i for i in op.inputs if i.shape == op.outputs[0].shape]
        op.type = Op.Identity
    return op


def rewrite_fully_connected_input(op, arch, nng):
    if op.type == Op.FullyConnected:
        n_in_elems = op.weights.shape[-2]
        elms = op.ifm.elements()
        batch_size = elms // n_in_elems
        assert batch_size * n_in_elems == elms

        op.ifm_shapes[0] = Shape4D([batch_size, 1, 1, n_in_elems])
        if Shape4D(op.ifm.shape) != op.ifm_shapes[0]:
            op.ifm.avoid_NHCWB16 = True
    return op


def convert_batched_fc_shape(op, arch, nng):
    if op.type == Op.FullyConnected:
        # Check if the first dimension indicates batching
        if op.ifm_shapes[0].batch > 1:
            batching_split = {4: (2, 2), 8: (2, 4), 16: (4, 4)}
            n = op.ifm_shapes[0].batch
            h, w = batching_split.get(n, (1, n))
            op.ifm_shapes[0] = Shape4D([1, h, w, op.ifm_shapes[0].depth])

            op.ifm.avoid_NHCWB16 = True

            # Reshape Weights to be 4D. IO becomes HWIO
            weight_tensor = op.inputs[1]
            weight_tensor.quant_values = np.expand_dims(np.expand_dims(weight_tensor.quant_values, axis=0), axis=0)
            weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))

            n = op.ofm_shapes[0].batch
            h, w = batching_split.get(n, (1, n))
            op.ofm_shapes[0] = Shape4D([1, h, w, op.ofm_shapes[0].depth])
            op.ofm.avoid_NHCWB16 = True
    return op


def unfuse_activation_function(op):
    if op.type == Op.ConcatTFLite and op.run_on_npu and op.activation is not None:
        act_op = Operation(op.activation.op_type, op.name + op.activation.op_type.name)
        op.activation = None
        out_tens = op.outputs[0]
        intermediate_tens = out_tens.clone("_act_intermediate")
        act_op.set_output_tensor(out_tens)
        act_op.add_input_tensor(intermediate_tens)
        op.set_output_tensor(intermediate_tens)
        act_op.set_ifm_ofm_shapes()


def rewrite_stridedslice_output(op, arch, nng):
    if not op.run_on_npu or op.type != Op.StridedSlice:
        return op

    new_axis_mask = op.attrs["new_axis_mask"]
    shrink_axis_mask = op.attrs["shrink_axis_mask"]

    if shrink_axis_mask == 0 and new_axis_mask == 0:
        return op

    axis_4D = [0] * len(op.outputs)
    for idx, out_tens in enumerate(op.outputs):
        output_shape = list(out_tens.shape)

        if shrink_axis_mask != 0:
            n = 0
            axis = 0
            while shrink_axis_mask:
                prev_mask = shrink_axis_mask
                n += 1
                shrink_axis_mask &= shrink_axis_mask - 1
                axis = int(math.log2(prev_mask - shrink_axis_mask))
                output_shape = output_shape[:axis] + [1] + output_shape[axis:]

            assert len(out_tens.shape) == (len(op.inputs[0].shape) - n)
            op.attrs["shrink_axis_mask"] = 0
            if axis >= 0:
                axis_4D[idx] = axis + (4 - len(output_shape))
            else:
                axis_4D[idx] = axis
            op.ofm_shapes[idx] = Shape4D(output_shape)

        elif new_axis_mask != 0:
            n = 0
            axis = 0
            while new_axis_mask:
                prev_mask = new_axis_mask
                n += 1
                new_axis_mask &= new_axis_mask - 1
                axis = int(math.log2(prev_mask - new_axis_mask))
                output_shape = output_shape[:axis] + output_shape[(axis + 1) :]
                new_axis_mask >>= 1

            assert len(out_tens.shape) == (len(op.inputs[0].shape) + n)
            op.attrs["new_axis_mask"] = 0
            if axis >= 0:
                axis_4D[idx] = axis + (4 - len(output_shape))
            else:
                axis_4D[idx] = axis
            op.ofm_shapes[idx] = Shape4D(output_shape)

        if op.ofm_shapes[idx] != Shape4D(out_tens.shape):
            out_tens.avoid_NHCWB16 = True

    op.attrs["split_axis_4D"] = axis_4D
    return op


def rewrite_unpack_output(op, arch, nng):
    tens = op.outputs[0]
    if op.run_on_npu and op.type == Op.Unpack:
        # Unpack is also referred to as Unstack
        axis = int(op.attrs["axis"])
        op.type = Op.UnpackReshaped
        desired_output_shape = tens.shape[:axis] + [1] + tens.shape[axis:]

        if axis >= 0:
            axis_4D = axis + (4 - len(desired_output_shape))
        else:
            axis_4D = axis

        axis_4D_list = [0] * len(op.outputs)
        for idx, out_tens in enumerate(op.outputs):
            op.ofm_shapes[idx] = Shape4D(desired_output_shape)
            axis_4D_list[idx] = axis_4D
            if op.ofm_shapes[idx] != Shape4D(out_tens.shape):
                out_tens.avoid_NHCWB16 = True

        op.attrs["split_axis_4D"] = axis_4D_list
    return op


def add_padding_fields(op, arch, nng):
    if op.run_on_npu:
        if "padding" in op.attrs:
            input_shape = op.ifm_shapes[0]
            output_shape = op.ofm_shapes[0]
            if op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op():
                kernel_size = op.inputs[1].shape[:2]
            elif op.type.is_pool_op() or op.type.npu_block_type == NpuBlockType.ReduceSum:
                kernel_size = op.attrs["ksize"][1:3]
            else:
                raise UnsupportedFeatureError(f"Unknown operation that uses padding: {optype_to_builtintype(op.type)}")

            if op.type == Op.Conv2DBackpropInputSwitchedBias:
                upscaling_factor = output_shape.height // input_shape.height
                padding, skirt = calc_upscaled_padding_and_skirt(
                    op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape, upscaling_factor
                )
            else:
                padding, skirt = calc_padding_and_skirt(
                    op.attrs["padding"], op.kernel, input_shape, op.attrs.get("explicit_padding"),
                )

            op.attrs["explicit_padding"] = padding
            op.attrs["skirt"] = skirt

    return op


def convert_depthwise_to_conv(op, arch, nng):
    # Depthwise is equivalent to a single conv2d if the ifm depth is 1 and
    # the ofm depth equals the depth multipler.
    # If those conditions are true, then we can perform a simple
    # switch of the operator type (and weight order)

    if op.type == Op.DepthwiseConv2DBias and (op.attrs["depth_multiplier"] != 1):
        ifm_shape = op.ifm_shapes[0]
        weight_tensor = op.inputs[1]
        ofm_shape = op.ofm_shapes[0]
        if (ifm_shape.depth == 1) and (ofm_shape.depth == op.attrs["depth_multiplier"]):
            # Change op type to Conv2d
            op.type = Op.Conv2DBias
            del op.attrs["channel_multiplier"]
            del op.attrs["depth_multiplier"]

            weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
            weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))
        else:
            raise UnsupportedFeatureError(
                f"Unsupported 'DEPTHWISE_CONV_2D' with depth_multiplier = {op.attrs['depth_multiplier']},",
                f" ifm channels = {ifm_shape.depth}, ofm channels = {ofm_shape.depth}",
            )
        DebugDatabase.add_optimised(op, op)
    return op


def reorder_depthwise_weights(op, arch, nng):
    if op.type.is_depthwise_conv2d_op():
        weight_tensor = op.inputs[1]
        weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
        weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))
        weight_tensor.weight_transpose_depthwise = True

    return op


def optimise_strided_conv(op, arch, nng):
    stride_x, stride_y = op.get_kernel_stride()
    ifm_tensor, _, weight_tensor, _ = op.get_ifm_ifm2_weights_ofm()

    if (
        op.type == Op.Conv2DBias
        and op.op_index == 0
        and stride_x == 2
        and op.ifm_shapes[0].depth <= 4
        and op.ifm_shapes[0].width % 2 == 0
        and weight_tensor is not None
        and weight_tensor.shape[1] >= 2
    ):
        ifm_shape = op.ifm_shapes[0]
        # IFM
        op.ifm_shapes[0] = Shape4D([ifm_shape.batch, ifm_shape.height, ifm_shape.width // 2, ifm_shape.depth * 2])
        op.ifm.avoid_NHCWB16 = True

        # Weights
        weight_shape = weight_tensor.shape
        if weight_shape[1] % 2 != 0:
            weight_shape[1] = weight_shape[1] + 1
            padded_array = np.zeros(weight_shape)
            for i in range(weight_shape[0]):
                padded_array[i] = np.vstack(
                    [
                        weight_tensor.quant_values[i],
                        np.full((1, weight_shape[2], weight_shape[3]), weight_tensor.quantization.zero_point),
                    ]
                )
            weight_tensor.quant_values = padded_array
        weight_shape[1] //= 2
        weight_shape[2] *= 2
        weight_tensor.quant_values = np.reshape(weight_tensor.quant_values, weight_shape)
        weight_tensor.set_all_shapes(weight_shape)
        # If multiple copies of the weights are used, we could avoid
        # them having the same address by changing the value_id
        weight_tensor.value_id = uuid.uuid4()

        # Strides
        stride_x = 1
        op.attrs.update({"stride_w": stride_x, "stride_h": stride_y, "strides": (1, stride_y, stride_x, 1)})

    return op


def convert_conv_to_fc(op, arch, nng):
    # Conv 1x1 can be equivalent to Fully Connected.
    # By representing certain convs as fully connected layers, Vela can better determine wether or not to use
    # caching/double buffering for the weights.
    # (Weights dont need to be reloaded for convs when IFM H and W are 1)
    if op.type == Op.Conv2DBias:
        h = op.ifm_shapes[0].height
        w = op.ifm_shapes[0].width
        kh, kw, _, _ = op.inputs[1].shape
        if h == 1 and w == 1 and kh == 1 and kw == 1:
            # Overwrite this op as a Fully Connected Op
            op.name += "_fc"
            op.type = Op.FullyConnected
            op.attrs = {
                "weights_format": 0,
            }
            # Reshape Weights to be 2D. HWIO becomes just IO (as H and W are 1, they can just be dropped)
            weight_tensor = op.inputs[1]
            weight_tensor.quant_values = weight_tensor.quant_values.squeeze(axis=(0, 1))
            weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))

            DebugDatabase.add_optimised(op, op)
    return op


def fixup_relus_with_differing_ifm_ofm_scaling(op, arch, nng):
    if op.run_on_npu and op.type.is_relu_op():
        ifm = op.inputs[0]
        ofm = op.outputs[0]
        # Relu with differing IFM and OFM scaling cannot be fused with another primary op
        # and requires its own to be inserted
        if not check_quantized_tens_scaling_equal(ifm, ofm):
            # Override this op with its own primary op (avgpool)
            relu_fused_op = create_avgpool_nop(op.name + "_avgpool")
            # And fuse the original activation function to it
            relu_fused_op.activation = create_activation_function(op.type)
            # Tidy up and assign the ifm and ofm to the new op
            ifm.consumer_list.remove(op)

            relu_fused_op.add_input_tensor(ifm)
            relu_fused_op.set_output_tensor(ofm)
            relu_fused_op.set_ifm_ofm_shapes()
            op = relu_fused_op
    return op


def fixup_elementwise_with_scalars(op, arch, nng):
    if op.type.is_binary_elementwise_op():
        ifm_tensor, ifm2_tensor, _, _ = op.get_ifm_ifm2_weights_ofm()
        if ifm2_tensor.shape != [] and ifm_tensor.shape != []:
            diff = len(ifm_tensor.shape) - len(ifm2_tensor.shape)
            if diff > 0:
                ifm2_tensor.shape = full_shape(len(ifm_tensor.shape), ifm2_tensor.shape, 1)
            elif diff < 0:
                ifm_tensor.shape = full_shape(len(ifm2_tensor.shape), ifm_tensor.shape, 1)
        elif ifm_tensor.shape == [] and ifm_tensor.quant_values is None:
            # IFM is marked as a scalar, but is a result of an operation; change it to a shape of size 1
            ifm_tensor.shape = len(ifm2_tensor.shape) * [1]
            ifm_tensor.storage_shape = ifm_tensor.shape
        elif ifm2_tensor.shape == [] and ifm2_tensor.quant_values is None:
            # IFM2 is marked as a scalar, but is a result of an operation; change it to a shape of size 1
            ifm2_tensor.shape = len(ifm_tensor.shape) * [1]
            ifm2_tensor.storage_shape = ifm2_tensor.shape
    return op


# Set input/output tensor equivalence to the same id for memory operations
def set_tensor_equivalence(op, arch, nng):
    if op.type in memory_only_ops:
        eid = op.outputs[0].equivalence_id
        for inp in op.inputs:
            inp.equivalence_id = eid
    return op


def set_ifm_ofm_op_shapes(op, arch, nng):
    if op.run_on_npu and op.type.needs_shapes():
        if op.ifm_shapes or op.ofm_shapes:
            # Shapes already set
            return op
        op.set_ifm_ofm_shapes()
    return op


def convert_softmax(op, arch, nng):
    if op.type == Op.Softmax and op.run_on_npu:
        softmax = SoftMax(op)
        op = softmax.get_graph()
    return op


def convert_mul_max_to_abs_or_lrelu(op, arch, nng):
    r"""Whenever there is a subgraph with this topology:

       Input    X   For X = -1 or X > 0
       |   \   /    This subgraph can be replaced with either
       |    Mul     an Abs (if X = -1) or a LeakyReLU (if X > 0)
       |   /
       Max
    """

    if op.type == Op.Maximum:
        # finds the Mul input(s) to the Max
        muls = [i for i in op.inputs if i.ops[0].type == Op.Mul]
        if len(muls) == 1:
            mul = muls[0].ops[0]
        elif len(muls) == 2:
            # In the case both inputs are Muls, find the one with the same input as the Max
            mul = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1][0].ops[0]
        else:
            # No Mul inputs
            return op

        # make sure the Mul doesn't have any other consumers
        mul_ofm = mul.outputs[0]
        if len(mul_ofm.consumers()) != 1:
            return op
        # make sure the Mul doesn't have a fused activation function
        if mul.activation:
            return op
        ifm, ofm = op.get_ifm_ofm()
        if ifm is None or ofm is None:
            return op

        if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
            return op
        if not check_quantized_tens_scaling_equal(ifm, ofm) or not check_quantized_tens_scaling_equal(ifm, mul_ofm):
            # rewrite to LeakyRelu currently only makes sense if the quantization is identical
            return op

        # finds the branched input that goes to both the Max and the Mul
        shared = set(op.inputs) & set(mul.inputs)
        if len(shared) == 1:
            shared_in = shared.pop()
            # find the constant scalar input to the Mul
            const_tens = (set(mul.inputs) - {shared_in}).pop()
            # check that it is a scalar
            if const_tens.shape != []:
                return op
            const = const_tens.ops[0]
            # check that it is a constant
            if const.type != Op.Const:
                return op
            # Remove the Mul from the shared input's consumers
            shared_in.consumer_list.remove(mul)
        else:
            return op

        val = const.outputs[0].values
        if val >= 0:
            new_op = Op.LeakyRelu
            op.attrs["alpha"] = val
            # to produce bit exact results, the alpha is not enough;
            # save additional scaling info in attr "alpha_scale", to be used as input
            # to the LUT construction
            alpha_scalar = const_tens.quant_values - const_tens.quantization.zero_point
            mul_ifm_scale = np.double(ifm.quantization.scale_f32)
            mul_ifm2_scale = np.double(const_tens.quantization.scale_f32)
            mul_ofm_scale = np.double(mul_ofm.quantization.scale_f32)
            alpha_scale, alpha_shift = scaling.elementwise_mul_scale(mul_ifm_scale, mul_ifm2_scale, mul_ofm_scale)
            op.attrs["alpha_scaling"] = (alpha_scalar, alpha_scale, alpha_shift)
        elif val == -1:
            new_op = Op.Abs
        else:
            return op

        op.type = new_op
        op.name = op.name.replace("Maximum", new_op.name)
        op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op.name)
        op.inputs = [shared_in]
        op.set_ifm_ofm_shapes()

        # Record optimisation in debug database
        DebugDatabase.add_optimised(op, op)

    return op


def convert_hardswish_to_lut(op, arch, nng):
    if op.type == Op.HardSwish:
        ifm, ofm = op.get_ifm_ofm()
        # Generate the LUT
        ifm_scale = np.double(ifm.quantization.scale_f32)
        ofm_scale = np.double(ofm.quantization.scale_f32)
        zp_in = ifm.quantization.zero_point
        zp_out = ofm.quantization.zero_point
        ifm_scale_hires = (1 / 128) * ifm_scale
        relu_multiplier = np.double(3 / 32768)
        out_scale, out_shift = scaling.quantise_scale(ifm_scale_hires / ofm_scale)
        relu_scale, relu_shift = scaling.quantise_scale(ifm_scale_hires / relu_multiplier)
        # Use 16bit scale
        out_scale_16 = fp_math.downscale_multiplier_int32_to_int16(out_scale)
        relu_scale_16 = fp_math.downscale_multiplier_int32_to_int16(relu_scale)

        values = []
        ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
        quantized_min = min(ix)
        quantized_max = max(ix)
        for x in ix:
            input_value = x - zp_in
            input_value_hires = input_value * 128
            # Compute the input value on essentially the output scale, not shifted yet
            input_value_preshift = fp_math.saturating_rounding_mul16(input_value_hires, out_scale_16)
            # Compute the "relu-ish multiplier". This matches the code in TensorFlow Lite Micro kernel
            relu_value = np.int16(input_value_hires)
            if relu_shift < 31:
                relu_value = fp_math.shift_left16(relu_value, 30 - relu_shift)

            relu_value = fp_math.saturating_rounding_mul16(relu_value, relu_scale_16)

            if relu_shift < 31:
                relu_value = fp_math.shift_left16(relu_value, 1)

            if relu_shift > 31:
                relu_value = fp_math.rounding_divide_by_pot(relu_value, relu_shift - 31)

            # Rescaled the value into a 16bit fixedpoint relu_value in [-1, 1]
            # Now convert that to a 16bit fixedpoint value in [0, 1]
            relu_value = (relu_value + (1 << 15)) >> 1
            lut_result = fp_math.saturating_mul16(relu_value, input_value_preshift)
            shift = 31 - out_shift
            shift = -shift if shift < 0 else 0
            # Finally apply the output shift
            lut_result = fp_math.rounding_divide_by_pot(lut_result, shift) + zp_out
            lut_result = min(quantized_max, max(quantized_min, lut_result))
            values.append(lut_result)
        return convert_to_lut(op, values, "hardswish")
    return op


def convert_lrelu_to_mul_max(op, arch):
    # Converts LeakyRelu to Max(alpha * IFM, identity * IFM)
    # (the opposite of convert_mul_max_to_abs_or_lrelu)
    ifm, ofm = op.get_ifm_ofm()
    if ifm is None or ofm is None:
        return op

    # Add multiplication with alpha
    mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
    mul_alpha.add_input_tensor(ifm)
    # Create const tensor containing alpha as scalar
    alpha = op.attrs["alpha"]
    quantization = ifm.quantization.clone()
    quantization.min = 0
    quantization.max = alpha * (quantization.quant_max - quantization.quant_min)
    quantization.zero_point = 0
    if np.isinf(1 / np.float32(alpha)):
        # Handling of alpha near zero
        quantization.scale_f32 = 1
        scalar = 0
    else:
        quantization.scale_f32 = alpha
        scalar = 1
    alpha_tens = create_const_tensor(
        op.name + "_alpha_scalar", [], ifm.dtype, [scalar], np.int8, quantization=quantization
    )
    mul_alpha.add_input_tensor(alpha_tens)
    fm_alpha = ofm.clone(op.name + "_alpha")
    mul_alpha.set_output_tensor(fm_alpha)
    mul_alpha.set_ifm_ofm_shapes()
    DebugDatabase.add_optimised(op, mul_alpha)

    if check_quantized_tens_scaling_equal(ifm, ofm):
        # No identity multiplication is needed
        fm_id = ifm
    else:
        # Add multiplication with identity
        mul_identity = Operation(Op.Mul, op.name + "_mul_identity")
        mul_identity.add_input_tensor(ifm)
        # Create const tensor containing identity as scalar
        quantization = ifm.quantization.clone()
        quantization.min = 0
        quantization.max = quantization.quant_max - quantization.quant_min
        quantization.scale_f32 = 1
        quantization.zero_point = 0
        identity_tens = create_const_tensor(
            op.name + "_id_scalar", [], ifm.dtype, [1], np.uint8, quantization=quantization
        )
        mul_identity.add_input_tensor(identity_tens)
        # Make sure that fm_id is allocated to a different address than fm_alpha
        fm_id = ofm.clone(op.name + "_id", set_unique=True)
        mul_identity.set_output_tensor(fm_id)
        mul_identity.set_ifm_ofm_shapes()
        DebugDatabase.add_optimised(op, mul_identity)

    # Convert LeakyRelu to Max, add the results of the multiplication(s) as inputs
    op.type = Op.Maximum
    op.name = op.name.replace("LeakyRelu", "Maximum")
    op.inputs = []
    ifm.consumer_list.remove(op)
    op.add_input_tensor(fm_alpha)
    op.add_input_tensor(fm_id)
    op.set_ifm_ofm_shapes()

    DebugDatabase.add_optimised(op, op)
    return op


def convert_to_lut(op, lut_values, lut_name):
    # Rewrite the operation by Add with scalar 0 + LUT activation
    ifm = op.inputs[0]
    if ifm is None:
        return op
    assert ifm.dtype.size_in_bytes() == 1
    op.type = Op.Add
    op.name = op.name + "_lut_" + lut_name
    # Mark as no-op to enable potential fusing optimizations
    op.attrs["is_nop"] = True
    # Create an input tensor containing scalar zero
    quantization = QuantizationParameters(0.0, 255.0)
    quantization.scale_f32 = ifm.quantization.scale_f32
    quantization.zero_point = 0
    tens = create_const_tensor(op.inputs[0].name + "_scalar0", [], ifm.dtype, [0], np.uint8, quantization=quantization)
    op.add_input_tensor(tens)
    op.ifm_shapes.append(Shape4D(tens.shape))

    # The LUT must be applied without any preceding rescaling (the LUT itself performs the rescale),
    # so even if the OFM has a different scale than the IFM, the generated OFM scale instructions
    # should be the same as the IFM
    op.forced_output_quantization = ifm.quantization
    lut_tensor = lut.create_lut_tensor(op.name + "_values", lut_values, DataType.int8)
    op.set_activation_lut(lut_tensor)
    op.set_ifm_ofm_shapes()
    return op


def convert_to_lut8(op, fn, fn_name):
    # Converts op to a no-op + int8/uint8 LUT which is generated with the given function.
    # fn is a function(real) -> real
    ifm, ofm = op.get_ifm_ofm()
    if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
        return op
    # Generate the LUT
    ifm_scale = np.double(ifm.quantization.scale_f32)
    ofm_scale = np.double(ofm.quantization.scale_f32)
    zp_in = ifm.quantization.zero_point
    zp_out = ofm.quantization.zero_point
    values = []
    ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
    quantized_min = min(ix)
    quantized_max = max(ix)
    for x in ix:
        x_real = ifm_scale * (x - zp_in)
        y_real = fn(x_real)
        lut_result = round_away_zero(zp_out + y_real / ofm_scale)
        lut_result = min(quantized_max, max(quantized_min, lut_result))
        values.append(lut_result)
    return convert_to_lut(op, values, fn_name)


def convert_lrelu_to_lut(op, arch):
    ifm, ofm = op.get_ifm_ofm()
    # Generate the LUT
    alpha = op.attrs["alpha"]
    ifm_scale = np.double(ifm.quantization.scale_f32)
    ofm_scale = np.double(ofm.quantization.scale_f32)
    zp_in = ifm.quantization.zero_point
    zp_out = ofm.quantization.zero_point
    identity_scale, identity_shift = scaling.elementwise_mul_scale(ifm_scale, 1, ofm_scale)
    alpha_scalar = 1
    alpha_scale, alpha_shift = scaling.elementwise_mul_scale(ifm_scale, alpha, ofm_scale)
    if "alpha_scaling" in op.attrs:
        # The LeakyRelu was the result from convert_mul_max_to_abs_or_lrelu
        alpha_scalar, alpha_scale, alpha_shift = op.attrs["alpha_scaling"]
    values = []
    ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
    quantized_min = min(ix)
    quantized_max = max(ix)
    for x in ix:
        if x < zp_in:
            lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(
                alpha_scalar * (x - zp_in), alpha_scale, alpha_shift
            )
        else:
            lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(x - zp_in, identity_scale, identity_shift)
        lut_result = min(quantized_max, max(quantized_min, lut_result))
        values.append(lut_result)
    return convert_to_lut(op, values, "lrelu")


def convert_lrelu(op, arch, nng):
    # Converts LeakyRelu to a LUT based solution if possible, otherwise a mul + max
    if op.type != Op.LeakyRelu:
        return op
    ifm, ofm = op.get_ifm_ofm()
    if ifm is None or ofm is None:
        return op
    if ifm.dtype in (DataType.uint8, DataType.int8) and ifm.dtype == ofm.dtype:
        # use LUT for int8/uint8
        return convert_lrelu_to_lut(op, arch)
    if check_quantized_tens_scaling_equal(ifm, ofm) and ifm.dtype == ofm.dtype == DataType.int16:
        # use LeakyRelu unmodified for int16 with equal input/output scaling
        return op
    return convert_lrelu_to_mul_max(op, arch)


def convert_tanh_sigmoid_to_lut(op, arch, nng):
    # Converts int8/uint8 Sigmoid and Tanh to a LUT based solution
    if op.type == Op.Sigmoid:
        return convert_to_lut8(op, clamp_sigmoid, "sigmoid")
    elif op.type == Op.Tanh:
        return convert_to_lut8(op, math.tanh, "tanh")
    return op


def remove_reshapes(op, arch):
    if op.run_on_npu and op.type == Op.Reshape:
        ofm = op.ofm
        ifm = op.ifm

        # Check if quantization is the same in the input and output for the reshape ops
        if not check_quantized_tens_scaling_equal(ifm, ofm):
            # TODO Both tensors are needed, since quantisation properties currently are linked to Tensors.
            # In order to remove this reshape either quantization properties need to be moved to Operator,
            # or the reshape need to be replace with a NOP.
            return

        # Check if Reshape ifm/ofm are network ifm/ofm
        ifm_is_sg_ifm = ifm.ops[0].type in (Op.Placeholder, Op.SubgraphInput, Op.Const)
        ifm_is_sg_ofm = any(ifm_cons is None for ifm_cons in ifm.consumer_list)
        ofm_is_sg_ofm = any(ofm_cons is None for ofm_cons in ofm.consumer_list)
        # This case should be handled prior to this function
        assert not ((ifm_is_sg_ifm or ifm_is_sg_ofm) and ofm_is_sg_ofm)

        if ofm_is_sg_ofm:
            # Bypassed by replacing ifm with ofm
            ofm.ops = []
            for prev_op in ifm.ops:
                prev_op.outputs = [ofm]
                ofm.ops.append(prev_op)

            # All ifm consumers need to use ofm as input
            for ifm_cons in ifm.consumer_list:
                for ifm_idx, cons_ifm in enumerate(ifm_cons.inputs):
                    if cons_ifm == ifm:
                        ifm_cons.set_input_tensor(ofm, ifm_idx)
            if op.ifm_shapes[0] != op.ofm_shapes[0]:
                ofm.avoid_NHCWB16 = True
        else:
            # Bypassed Reshape by replacing ofm with ifm
            for cons in ofm.consumer_list:
                for ifm_idx, cons_ifm in enumerate(cons.inputs):
                    if cons_ifm == ofm:
                        cons.set_input_tensor(ifm, ifm_idx)
            if op.ifm_shapes[0] != op.ofm_shapes[0]:
                ifm.avoid_NHCWB16 = True


def check_reshapes(op, arch):
    if op.run_on_npu and op.type == Op.Reshape:
        ofm = op.ofm

        if check_quantized_tens_scaling_equal(op.ifm, ofm):
            # Reshape should have been removed
            raise VelaError(f"Reshape op {op} expected to have been removed, still remains")


def fuse_activation_function_with_prev(op, arch, nng):
    # if op is a no-op: attempts to move the activation function to the preceding op
    if not op.attrs.get("is_nop", False) or op.activation is None:
        return op
    ifm, ofm = op.get_ifm_ofm()
    if ifm is None or ofm is None:
        return op
    # finds the input(s) to the operation
    prev_op = ifm.ops[0]
    # Note: the below checks on prev_op require that a first optimize pass on the full graph has been performed
    fuse = (
        prev_op.run_on_npu
        and prev_op.type.npu_block_type != NpuBlockType.Default
        and len(ifm.ops) == 1
        and len(prev_op.outputs[0].consumers()) == 1
        and prev_op.activation is None
    )
    if op.activation_lut is not None and arch.shram_reserved_unused_banks == 0:
        # TODO: if SHRAM LUT space is shared with SHRAM ACC (32, 64 MAC),
        # LUT currently only works correctly for elementwise ops
        fuse = False
    if not fuse:
        return op
    # Move the fused activation function + corresponding info to prev_op
    prev_op.activation = op.activation
    prev_op.forced_output_quantization = op.forced_output_quantization
    if op.activation_lut is not None:
        prev_op.set_activation_lut(op.activation_lut)
    # Bypass op
    prev_op.set_output_tensor(ofm)
    DebugDatabase.add_optimised(op, prev_op)
    return op


def optimise_pad(op, arch, nng):
    """
    Converts tens1 -> PAD -> tens2 -> CONV to tens1 -> CONV
    if both operations can be run on the NPU.
    """
    if (
        (op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op())
        and op.run_on_npu
        and op.attrs["padding"] == Padding.VALID
    ):
        pad_op = op.ifm.ops[0]
        if pad_op.type != Op.Pad or not pad_op.run_on_npu:
            return op
        # Bypass the PAD operator
        op.set_input_tensor(pad_op.ifm, 0)
        # Adjust the padding attributes of the convolution operator
        op.attrs["padding"] = Padding.EXPLICIT
        padding = pad_op.inputs[1].values  # 4x2 tensor, first dimension is N, H, W, C
        top, left, bottom, right = (padding[1][0], padding[2][0], padding[1][1], padding[2][1])
        op.attrs["explicit_padding"] = (top, left, bottom, right)
        op.set_ifm_ofm_shapes()
    return op


def add_attrs_to_resizebilinear(op, arch, nng):
    if op.type == Op.ResizeBilinear and op.run_on_npu:
        input_tensor = op.inputs[0]
        input_shape = op.ifm_shapes[0]
        upscaled_height = input_shape.height * 2
        upscaled_width = input_shape.width * 2
        out_shape = op.ofm_shapes[0]
        if not op.attrs["align_corners"] and out_shape.height == upscaled_height and out_shape.width == upscaled_width:
            # this means the output is supposed to be a x2 upscale,
            # so we need to do SAME padding
            op.attrs["padding"] = Padding.SAME
        elif (
            op.attrs["align_corners"]
            and out_shape.height == (upscaled_height - 1)
            and out_shape.width == (upscaled_width - 1)
        ):
            # here we can just run the avg pool without padding and
            # produce a (M * 2 - 1, N * 2 - 1) sized output
            op.attrs["padding"] = Padding.VALID
        else:
            return op
        input_tensor.resampling_mode = resampling_mode.NEAREST
        op.attrs.update({"strides": (1, 1, 1, 1), "ksize": (1, 2, 2, 1)})
    return op


def fixup_bias_tensors(op, arch, nng):
    if op.type.needs_bias() and op.bias is None:
        # Op has no bias, add bias tensor filled with zeros
        nr_biases = op.inputs[1].shape[-1]
        bias_values = [0] * nr_biases
        bias_tensor = create_const_tensor(op.name + "_bias", [nr_biases], DataType.int32, bias_values)
        bias_tensor.quant_values = bias_tensor.values
        op.set_input_tensor(bias_tensor, -1)

    return op


def supported_operator_check(op, arch, nng):
    op.run_on_npu = arch.supported_operators.is_operator_supported(op)
    return op


def _record_optimised(op, arch):
    if op.type != Op.Const:
        DebugDatabase.add_optimised(op, op)


def optimise_graph_a(nng, arch, verbose_graph=False):
    if verbose_graph:
        nng.print_graph()

    pre_process_list = [
        supported_operator_check,
        set_ifm_ofm_op_shapes,
        # TODO: memory-only Op removal
    ]

    for idx, sg in enumerate(nng.subgraphs):
        # rewrite graph pass
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            nng, sg, arch, [], pre_process_list, rewrite_unsupported=False,
        )

    # Handle Concat Ops
    for idx, sg in enumerate(nng.subgraphs):
        # rewrite graph pass
        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [rewrite_concat_ops])
        sg.refresh_after_modification()

    # Handle Split Ops
    for idx, sg in enumerate(nng.subgraphs):
        # rewrite graph pass
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            nng,
            sg,
            arch,
            [],
            [rewrite_unpack_output, rewrite_stridedslice_output, convert_nop_split_to_identity],
            rewrite_unsupported=False,
        )

    for idx, sg in enumerate(nng.subgraphs):
        # rewrite graph pass
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            nng, sg, arch, [rewrite_split_ops], [], rewrite_unsupported=False,
        )

    # Handle sg input output
    for idx, sg in enumerate(nng.subgraphs):
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            nng, sg, arch, [], [fix_sg_input_output], rewrite_unsupported=False,
        )

    # Removal of reshapes
    for sg in nng.subgraphs:
        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_reshapes])
        sg.refresh_after_modification()

    op_rewrite_list = [
        set_tensor_equivalence,
        convert_depthwise_to_conv,
        convert_conv_to_fc,
        convert_softmax,
        optimise_strided_conv,
        convert_hardswish_to_lut,
        rewrite_fully_connected_input,
        convert_batched_fc_shape,
        fixup_conv2d_backprop,
        fixup_relus_with_differing_ifm_ofm_scaling,
        fixup_elementwise_with_scalars,  # TODO Move to early stage?
        reorder_depthwise_weights,
        fixup_resizebilinear,
        fixup_bias_tensors,
        convert_mul_max_to_abs_or_lrelu,
        convert_lrelu,
        convert_tanh_sigmoid_to_lut,
    ]

    for idx, sg in enumerate(nng.subgraphs):
        # rewrite graph pass
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            nng, sg, arch, [], op_rewrite_list, rewrite_unsupported=False,
        )

    for idx, sg in enumerate(nng.subgraphs):
        # remove passthrough tensors and attempt further optimizations
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            nng,
            sg,
            arch,
            [remove_passthrough_tensor],
            [fuse_activation_function_with_prev, optimise_pad, add_padding_fields],
        )

    # Removal of SplitSliceRead, need to be done after optimisation has been performed,
    # since ifm/ofm_shapes are of importance to this function
    for sg in nng.subgraphs:
        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_SplitSliceRead])
        sg.refresh_after_modification()

    # Post-optimisation operator debug tracing, and checking that no undesired reshapes are left in the graph
    for sg in nng.subgraphs:
        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [check_reshapes, _record_optimised])

    if verbose_graph:
        nng.print_graph()
    return nng