aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/supported_operators.py
diff options
context:
space:
mode:
authorJonas Ohlsson <jonas.ohlsson@arm.com>2021-07-26 16:13:12 +0200
committerJonas Ohlsson <jonas.ohlsson@arm.com>2021-07-27 11:06:27 +0200
commit45e653dbd81633b8d78215b16a9b2205e39dd8e2 (patch)
tree18b3073eac45e9e8d69a616ae96d7a3fbdef9663 /ethosu/vela/supported_operators.py
parentc2449827ec55f49b6087e3e385fb3c4f6776dc6a (diff)
downloadethos-u-vela-45e653dbd81633b8d78215b16a9b2205e39dd8e2.tar.gz
MLBEDSW-4853: Refactor supported operators
Refactor supported operators by breaking out model semantics into its own class. Model semantics checked right after model read. Signed-off-by: Jonas Ohlsson <jonas.ohlsson@arm.com> Change-Id: If442b189efcd91dda01af60b2b3adedfacdf2fad
Diffstat (limited to 'ethosu/vela/supported_operators.py')
-rw-r--r--ethosu/vela/supported_operators.py1087
1 files changed, 0 insertions, 1087 deletions
diff --git a/ethosu/vela/supported_operators.py b/ethosu/vela/supported_operators.py
deleted file mode 100644
index 663c78f8..00000000
--- a/ethosu/vela/supported_operators.py
+++ /dev/null
@@ -1,1087 +0,0 @@
-# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
-#
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the License); you may
-# not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an AS IS BASIS, WITHOUT
-# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# Description:
-# The SupportedOperators class which is a collection of all supported operators and parameter checks.
-from collections import defaultdict
-
-import numpy as np
-
-from .data_type import BaseType
-from .data_type import DataType
-from .numeric_util import is_integer
-from .operation import get_slice_offsets
-from .operation import Op
-from .operation import Padding
-from .supported_operators_util import docstring_format_args
-from .supported_operators_util import list_formatter
-from .tensor import check_quantized_tens_scaling_equal
-from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
-from .tflite_mapping import optype_to_builtintype
-
-
-def _optype_formatter(op_list):
- # Convert internal op types to external names
- output = map(optype_to_builtintype, op_list)
- # Remove UNKNOWNs
- output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
- return list_formatter(output)
-
-
-class SupportedOperators:
- # Categorised lists of supported operators
- npu_pre_ops = set((Op.SplitSliceRead,))
- convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
- depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
- transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
- convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
- max_pooling_ops = Op.op_set(Op.is_maxpool_op)
- avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
- pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
- resizing_ops = set((Op.ResizeBilinear,))
- fc_vector_products = set((Op.QuantizedMatMul, Op.MatMul, Op.FullyConnected,))
- mac_main_ops = (
- # RNN/LSTM/GRU
- set((Op.BlockLSTM,))
- # conv/depthwiseconv/transposeconv
- | convolution_like_ops
- # pooling
- | pooling_ops
- # resizing/upscaling
- | resizing_ops
- # FC layers
- | fc_vector_products
- # Mean (converts to depthwise conv)
- | set((Op.Mean,))
- )
- unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
- binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
- binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
- binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
- binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
- elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
- pad_ops = set((Op.Pad,))
- supported_int32_tensor_ops = (
- set((Op.ReduceSum, Op.CLZ,)) | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
- )
-
- relu_ops = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Clip,))
- activation_ops = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.Softmax, Op.HardSwish))
- npu_post_ops = (
- # activation functions
- activation_ops
- # concatenation write direction
- | set((Op.ConcatSliceWrite,))
- # Quantization
- | set((Op.Quantize,))
- )
- split_ops = set((Op.Split, Op.SplitV, Op.StridedSlice, Op.Slice, Op.UnpackReshaped, Op.Unpack,))
- concat_ops = set((Op.Concat, Op.ConcatTFLite, Op.PackReshaped, Op.Pack,))
- memory_only_ops = set((Op.Reshape, Op.QuantizedReshape,)) | concat_ops | split_ops
- shapeless_input_ops = binary_elem_wise_main_ops | set((Op.Split, Op.SplitV, Op.Mean))
- per_axis_quant_ops = convolution_like_ops # per-axis/channel quantization only currently supported for conv ops
- supported_fused_activations = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.LUT,))
- supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | pad_ops | npu_post_ops | memory_only_ops
- # Supported data types
- supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
- supported_faf_dtypes = set((DataType.uint8, DataType.int8, DataType.int16))
- supported_bias_dtypes = set((DataType.int32, DataType.int64))
- supported_pad_dtypes = set((DataType.int32, DataType.int64))
- # Defined ranges for allowed values:
- tens_dim_range = (1, 65535)
- stride_range = (1, 3)
- dilation_range = (1, 2)
- dilated_height_range = (1, 64)
- dilated_product_range = (1, 64 * 64)
- weights_limit = 127 * 65536
- filter_range = (1, 8)
- filter_height_range = (1, 256)
- filter_product_range = (1, 256 * 256)
- mean_kernel_product = 64 * 64
- mean_kernel_product_int8 = 16 * 16
- mean_kernel_product_avgpool = 256 * 256
- # Supported consumers
- supported_pad_consumers = convolution_ops | depthwise_convolution_ops | pooling_ops
-
- def __init__(self):
- # Setup the generic constraints. Note: the order matters
- self.generic_constraints = []
- self.generic_constraints.append(SupportedOperators.constraint_tens_no_dynamic)
- self.generic_constraints.append(SupportedOperators.constraint_tens_defined_shape)
- self.generic_constraints.append(SupportedOperators.constraint_tens_output_scalar)
- self.generic_constraints.append(SupportedOperators.constraint_tens_input_scalar)
- self.generic_constraints.append(SupportedOperators.constraint_tens_shape_size)
- self.generic_constraints.append(SupportedOperators.constraint_tens_dtype)
- self.generic_constraints.append(SupportedOperators.constraint_tens_int32_ops)
- self.generic_constraints.append(SupportedOperators.constraint_tens_dimension)
- self.generic_constraints.append(SupportedOperators.constraint_tens_quant_none_check)
- self.generic_constraints.append(SupportedOperators.constraint_tens_quant_scale)
- self.generic_constraints.append(SupportedOperators.constraint_tens_quant_per_axis)
- self.generic_constraints.append(SupportedOperators.constraint_faf)
- self.generic_constraints.append(SupportedOperators.constraint_faf_type)
- self.generic_constraints.append(SupportedOperators.constraint_quant_scale_inf)
-
- # Setup specific constraints. Note: the order matters
- self.specific_constraints = defaultdict(list)
-
- # Conv-like checks:
- for op_type in SupportedOperators.convolution_like_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_stride_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_stride_range)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_dilation_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_dilation_range)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_dilated_height_range)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_dilated_product_range)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_weights_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_weights_const)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_weights_limit)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_bias_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_bias_40bit)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_batch_size)
- # Depthwise Conv specific checks:
- for op_type in SupportedOperators.depthwise_convolution_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_depth_multiplier)
- # Transpose Conv specific checks:
- for op_type in SupportedOperators.transpose_convolution_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_tconv_stride)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_tconv_same)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_tconv_valid)
-
- # Pooling checks:
- for op_type in SupportedOperators.pooling_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_batch_size)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_stride_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_stride_range)
- # AVG pooling specific checks:
- for op_type in SupportedOperators.avg_pooling_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_in_out_types)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_range)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_height_range_valid_pad)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_product_range_valid_pad)
- # MAX pooling specific checks:
- for op_type in SupportedOperators.max_pooling_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_in_out_types)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_height_range)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_filter_product_range)
-
- # Resizing specific checks:
- for op_type in SupportedOperators.resizing_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_resize)
-
- # Vector Product specific checks:
- for op_type in SupportedOperators.fc_vector_products:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_weights_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_weights_const)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_bias_type)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_bias_40bit)
-
- # Concat specific checks:
- for op_type in (Op.Concat, Op.ConcatTFLite):
- self.specific_constraints[op_type].append(SupportedOperators.constraint_axis_exists)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_axis_valid)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_dimensionality)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_valid_dimensions)
-
- # Element-wise checks:
- for op_type in SupportedOperators.elem_wise_main_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_elemwise_batch_size)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_either_shapes)
- # Unary specific checks:
- for op_type in SupportedOperators.unary_elem_wise_main_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_in_out_types)
- # Binary Min/Max specific checks:
- for op_type in SupportedOperators.binary_elem_wise_min_max_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_in_out_types)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_quantization_parameters)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_broadcast_shapes)
- # Binary Add/Mul/Sub specific checks:
- for op_type in SupportedOperators.binary_elem_wise_add_mul_sub:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_inputs_types)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_matching_signed)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_unsigned_valid)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_broadcast_shapes)
- # Binary Shift specific checks:
- for op_type in SupportedOperators.binary_elem_wise_shift_ops:
- self.specific_constraints[op_type].append(SupportedOperators.constraint_inputs_int32)
- self.specific_constraints[op_type].append(SupportedOperators.constraint_broadcast_shapes)
-
- # SHL specific checks:
- self.specific_constraints[Op.SHL].append(SupportedOperators.constraint_output_int32)
-
- # CLZ specific checks:
- self.specific_constraints[Op.CLZ].append(SupportedOperators.constraint_output_int32)
-
- # Softmax specific checks:
- self.specific_constraints[Op.Softmax].append(SupportedOperators.constraint_matching_shapes)
- self.specific_constraints[Op.Softmax].append(SupportedOperators.constraint_matching_in_out_types)
- self.specific_constraints[Op.Softmax].append(SupportedOperators.constraint_beta_value_range)
-
- # SplitV specific checks:
- self.specific_constraints[Op.SplitV].append(SupportedOperators.constraint_splitv_inferred)
-
- # StridedSlice specific checks:
- self.specific_constraints[Op.StridedSlice].append(SupportedOperators.constraint_stridedslice_input_count)
- self.specific_constraints[Op.StridedSlice].append(SupportedOperators.constraint_stridedslice_inputs_const)
- self.specific_constraints[Op.StridedSlice].append(SupportedOperators.constraint_stridedslice_stride_values)
- self.specific_constraints[Op.StridedSlice].append(SupportedOperators.constraint_ellipsis_mask)
- self.specific_constraints[Op.StridedSlice].append(SupportedOperators.constraint_axis_masks)
- self.specific_constraints[Op.StridedSlice].append(SupportedOperators.constraint_slice_ranges)
-
- # LeakyRelu specific checks:
- self.specific_constraints[Op.LeakyRelu].append(SupportedOperators.constraint_alpha_valid)
-
- # FullyConnected specific checks:
- self.specific_constraints[Op.FullyConnected].append(SupportedOperators.constraint_fc_output_2d)
- self.specific_constraints[Op.FullyConnected].append(SupportedOperators.constraint_keep_dim_ifm_ofm)
-
- # Pad specific checks:
- self.specific_constraints[Op.Pad].append(SupportedOperators.constraint_pad_input_count)
- self.specific_constraints[Op.Pad].append(SupportedOperators.constraint_pad_shape)
- self.specific_constraints[Op.Pad].append(SupportedOperators.constraint_padding_dimensions)
- self.specific_constraints[Op.Pad].append(SupportedOperators.constraint_pad_type)
- self.specific_constraints[Op.Pad].append(SupportedOperators.constraint_pad_constant)
-
- # HardSwish specific checks:
- self.specific_constraints[Op.HardSwish].append(SupportedOperators.constraint_input_8bit)
- self.specific_constraints[Op.HardSwish].append(SupportedOperators.constraint_matching_in_out_types)
- # Mean specific checks:
- self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_input_8bit)
- self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_input_dims)
- self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_axis)
- self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_height_width_product_avgpool)
- self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_height_width_product)
- self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_height_width_product_int8)
-
- def is_operator_supported(self, op):
- ext_type = optype_to_builtintype(op.type)
- if op.type not in SupportedOperators.supported_operators:
- if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
- print(f"Info: {ext_type} '{op.name}' is a CPU only op")
- return False
-
- for constraint in self.generic_constraints + self.specific_constraints[op.type]:
- valid, extra = constraint(op)
- if not valid:
- print(f"Warning: {ext_type} '{op.name}' is not supported on the NPU. Placing on CPU instead")
- print(f" - {constraint.__doc__}")
- if extra:
- print(f" {extra}")
- return False
-
- return True
-
- @staticmethod
- def constraint_tens_no_dynamic(op):
- "Input(s) and Output tensors must not be dynamic"
- valid = True
- extra = []
- tensors = [tens for tens in op.inputs + op.outputs if tens]
- for tens in tensors:
- if (tens.shape == []) and (tens.values is None):
- valid = False
- extra.append(tens.name)
- extra = ", ".join(extra)
- return valid, f"Op has dynamic tensor(s): {extra}"
-
- @staticmethod
- def constraint_tens_defined_shape(op):
- "Input(s) and Output tensors must have a defined shape"
- valid = True
- extra = []
- tensors = [tens for tens in op.inputs + op.outputs if tens]
- for tens in tensors:
- if not tens.has_fully_defined_shape():
- valid = False
- extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
- return valid, ", ".join(extra)
-
- @staticmethod
- def constraint_tens_output_scalar(op):
- "Output tensors cannot be scalar"
- ofm = op.ofm
- valid = ofm.shape != []
- return valid, f"Output Tensor '{ofm.name}' is scalar"
-
- @classmethod
- @docstring_format_args([_optype_formatter(shapeless_input_ops)])
- def constraint_tens_input_scalar(cls, op):
- "Scalar Input tensors are only valid for op type: {}"
- valid = True
- extra = []
- tensors = [tens for tens in op.inputs if tens]
- for tens in tensors:
- if (tens.shape == []) and (op.type not in cls.shapeless_input_ops):
- valid = False
- extra.append(tens.name)
- extra = ", ".join(extra)
- return valid, f"Op has scalar input tensor(s): {extra}"
-
- @staticmethod
- def constraint_tens_shape_size(op):
- "Input(s) and Output tensors must not be greater than 4D"
- valid = True
- extra = []
- tensors = [tens for tens in op.inputs + op.outputs if tens]
- for tens in tensors:
- if len(tens.shape) > 4:
- valid = False
- extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
- return valid, ", ".join(extra)
-
- @classmethod
- @docstring_format_args([list_formatter(supported_op_dtypes)])
- def constraint_tens_dtype(cls, op):
- "Tensors must be of type: {}"
- valid = True
- extra = []
- tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
- if not tensors:
- tensors = [tens for tens in op.inputs if tens]
- for tens in tensors:
- if tens.dtype not in cls.supported_op_dtypes:
- valid = False
- extra.append(f"Tensor '{tens.name}' has data type: {tens.dtype}")
- return valid, ", ".join(extra)
-
- @classmethod
- @docstring_format_args([_optype_formatter(supported_int32_tensor_ops)])
- def constraint_tens_int32_ops(cls, op):
- "Tensors which are int32 are only valid when op type is: {}"
- valid = True
- extra = []
- tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
- if not tensors:
- tensors = [tens for tens in op.inputs if tens]
- for tens in tensors:
- if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
- valid = False
- extra.append(tens.name)
- extra = ", ".join(extra)
- return valid, f"Op has int32 tensor(s): {extra}"
-
- @classmethod
- @docstring_format_args(tens_dim_range)
- def constraint_tens_dimension(cls, op):
- "Tensor dimensions must be in the range [{}, {}]"
- tens_min, tens_max = cls.tens_dim_range
- valid = True
- extra = []
- tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
- if not tensors:
- tensors = [tens for tens in op.inputs if tens]
- for tens in tensors:
- if not all(tens_min <= dim <= tens_max for dim in tens.shape):
- valid = False
- extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
- return valid, ", ".join(extra)
-
- @staticmethod
- def constraint_tens_quant_none_check(op):
- "Input(s), Output and Weight tensors must have quantization parameters"
- valid = True
- extra = []
- tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
- for tens in tensors:
- if tens.quantization is None:
- valid = False
- extra.append(tens.name)
- extra = ", ".join(extra)
- return valid, f"Op has tensors with missing quantization parameters: {extra}"
-
- @staticmethod
- def constraint_tens_quant_scale(op):
- "Input(s), Output and Weight tensors with quantization scales must be finite"
- valid = True
- extra = []
- tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
- for tens in tensors:
- if (tens.quantization.scale_f32 is not None) and np.isinf(tens.quantization.scale_f32).any():
- valid = False
- extra.append(f"Tensor '{tens.name}' has quantization scale: {tens.quantization.scale_f32}")
- return valid, ", ".join(extra)
-
- @classmethod
- @docstring_format_args([_optype_formatter(per_axis_quant_ops)])
- def constraint_tens_quant_per_axis(cls, op):
- "Per-axis quantization is only supported for the following op types: {}"
- valid = True
- extra = []
- if op.type not in cls.per_axis_quant_ops:
- tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
- for tens in tensors:
- if tens.quantization.is_per_axis():
- valid = False
- extra.append(tens.name)
- return valid, "The following tensor(s) have per-axis quantization parameters: " + ", ".join(extra)
-
- @staticmethod
- def constraint_fc_output_2d(op):
- "The output tensor(s) must have 2D shape"
- valid = True
- extra = []
- for tens in op.outputs:
- if len(tens.shape) != 2:
- valid = False
- extra.append(f"Tensor '{tens.name}' is {len(tens.shape)}D")
- return valid, ", ".join(extra)
-
- @classmethod
- @docstring_format_args([_optype_formatter(supported_fused_activations)])
- def constraint_faf(cls, op):
- "The fused activation function (if present) must be one of type: {}"
- if op.activation is None:
- res = True, "Op has no fused activation function"
- else:
- faf = op.activation.op_type
- valid = faf in cls.supported_fused_activations
- res = valid, f"Op has its fused activation function as: {faf}"
- return res
-
- @classmethod
- @docstring_format_args([list_formatter(supported_faf_dtypes)])
- def constraint_faf_type(cls, op):
- "If a fused activation function is present, the Output tensor must be one of type: {}"
- if op.activation is None:
- res = True, "Op has no fused activation function"
- else:
- valid = op.ofm.dtype in cls.supported_faf_dtypes
- ext_type = optype_to_builtintype(op.activation.op_type)
- res = valid, f"Op has fused activation function {ext_type}, and Output tensor data type: {op.ofm.dtype}"
- return res
-
- @staticmethod
- def constraint_stride_type(op):
- "Stride values for both width and height must be integer types"
- w, h = op.get_kernel_stride()
- valid = is_integer(w) and is_integer(h)
- return valid, f"Op has stride WxH as: {repr(w)}x{repr(h)}"
-
- @classmethod
- @docstring_format_args(stride_range)
- def constraint_stride_range(cls, op):
- "Stride values for both width and height must be in the range [{}, {}]"
- w, h = op.get_kernel_stride()
- stride_min, stride_max = cls.stride_range
- valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
- return valid, f"Op has stride WxH as: {w}x{h}"
-
- @staticmethod
- def constraint_dilation_type(op):
- "Dilation factor values for both width and height must be integer types"
- w, h = op.get_kernel_dilation()
- valid = is_integer(w) and is_integer(h)
- return valid, f"Op has dilation factor WxH as: {repr(w)}x{repr(h)}"
-
- @classmethod
- @docstring_format_args(dilation_range)
- def constraint_dilation_range(cls, op):
- "Dilation factor values for both width and height must be in the range [{}, {}]"
- w, h = op.get_kernel_dilation()
- dilation_min, dilation_max = cls.dilation_range
- valid = (dilation_min <= w <= dilation_max) and (dilation_min <= h <= dilation_max)
- return valid, f"Op has dilation factor WxH as: {w}x{h}"
-
- @classmethod
- @docstring_format_args(dilated_height_range)
- def constraint_dilated_height_range(cls, op):
- "Dilated kernel height must be in the range [{}, {}]"
- h = op.kernel.area_height()
- dilated_height_min, dilated_height_max = cls.dilated_height_range
- valid = dilated_height_min <= h <= dilated_height_max
- return valid, f"Op has dilated kernel height as: {h}"
-
- @classmethod
- @docstring_format_args(dilated_product_range)
- def constraint_dilated_product_range(cls, op):
- "Product of dilated kernel width and height must be in the range [{}, {}]"
- product = op.kernel.area_width() * op.kernel.area_height()
- dilated_product_min, dilated_product_max = cls.dilated_product_range
- valid = dilated_product_min <= product <= dilated_product_max
- return valid, f"Op has product of dilated kernel width and height as: {product}"
-
- @staticmethod
- def constraint_weights_type(op):
- "Weight tensor must be 8-bit"
- weights = op.weights
- valid = weights.element_size() == 1
- return valid, f"Tensor '{weights.name}' is {int(weights.element_size() * 8)}-bit"
-
- @staticmethod
- def constraint_weights_const(op):
- "Weight tensor must be constant"
- weights = op.weights
- valid = weights.values is not None
- return valid, f"Tensor '{weights.name}' has non-constant values"
-
- @classmethod
- @docstring_format_args([weights_limit])
- def constraint_weights_limit(cls, op):
- "The sum of the weights cannot exceed {}"
- weights = op.weights
- values = weights.values.astype(np.int64) - weights.quantization.zero_point
- limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
- valid = limit <= cls.weights_limit
- return valid, f"Tensor '{weights.name}' has the sum of weights: {limit}"
-
- @classmethod
- @docstring_format_args([list_formatter(supported_bias_dtypes)])
- def constraint_bias_type(cls, op):
- "Optional Bias tensor must be of type: {}"
- bias = op.bias
- if bias:
- valid = bias.dtype in cls.supported_bias_dtypes
- return valid, f"Tensor '{bias.name}' has data type: {bias.dtype}"
- return True, "Op has no bias tensor"
-
- @staticmethod
- def constraint_bias_40bit(op):
- "Optional Bias tensor values must fit within 40-bits"
- bias = op.bias
- if bias and bias.dtype == DataType.int64 and bias.values is not None:
- valid = all(len(bin(quant_value)[2:]) <= 40 for quant_value in bias.values)
- return valid, f"Tensor '{bias.name}' has values larger than 40-bits"
- return True, "Op has no bias tensor, or it fits in 40-bit"
-
- @staticmethod
- def constraint_batch_size(op):
- "IFM Tensor batch size must be 1"
- ifm = op.ifm
- valid = ifm.shape[0] == 1
- return valid, f"Tensor '{ifm.name}' has batch size: {ifm.shape[0]}"
-
- @staticmethod
- def constraint_quant_scale_inf(op):
- "Input and Output tensors must have quantization scales that fit within float32 precision"
- if op.ofm is not None and op.ofm.is_quantized():
- ofm_scale = op.ofm.quantization.scale_f32
- if ofm_scale < np.finfo(np.float32).tiny:
- return (
- False,
- f"The quantization scale of the output tensor is {ofm_scale}, "
- + f"minimum supported is: {np.finfo(np.float32).tiny}",
- )
- if op.ifm is not None and op.ifm.is_quantized():
- ifm_scale = op.ifm.quantization.scale_f32
- if np.isinf(ifm_scale / ofm_scale):
- return (
- False,
- f"IFM scale divided by OFM scale is infinite, ifm_scale={ifm_scale} ofm_scale={ofm_scale}",
- )
- return True, "Op's quantization is ok"
-
- @staticmethod
- def constraint_depth_multiplier(op):
- "For depth multipliers > 1, IFM channels must be 1 and OFM channels must be equal to the depth multiplier"
- depth_multiplier = op.attrs.get("depth_multiplier", 1)
- if depth_multiplier > 1:
- ifm_channels = op.ifm.shape[3]
- ofm_channels = op.ofm.shape[3]
- valid = (ifm_channels == 1) and (ofm_channels == depth_multiplier)
- extra = (
- f"Op has ifm_channels={ifm_channels}, ofm_channels={ofm_channels}"
- f" and depth_multiplier={depth_multiplier}"
- )
- return valid, extra
- return True, "Op has depth_multiplier=1"
-
- @staticmethod
- def constraint_tconv_stride(op):
- "Stride values for both width and height must be 2"
- w = op.kernel.stride.x
- h = op.kernel.stride.y
- valid = (w == 2) and (h == 2)
- return valid, f"Op has stride WxH as: {w}x{h}"
-
- @staticmethod
- def constraint_tconv_same(op):
- "SAME padding: OFM dimensions must equal IFM dimensions multiplied by stride"
- if op.attrs["padding"] == Padding.SAME:
- w = op.kernel.stride.x
- h = op.kernel.stride.y
- ifm_shape = op.ifm.shape
- ofm_shape = op.ofm.shape
- valid = (ofm_shape[1] == (ifm_shape[1] * h)) and (ofm_shape[2] == (ifm_shape[2] * w))
- return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and stride WxH as {w}x{h}"
- return True, "Op has padding=VALID"
-
- @staticmethod
- def constraint_tconv_valid(op):
- """VALID padding: OFM dimensions must equal IFM dimensions multiplied by stride,
- minus difference between kernel size and stride"""
- if op.attrs["padding"] == Padding.VALID:
- s_w = op.kernel.stride.x
- s_h = op.kernel.stride.y
- k_w = op.kernel.width
- k_h = op.kernel.height
- ifm_shape = op.ifm.shape
- ofm_shape = op.ofm.shape
- height_check = ofm_shape[1] == (ifm_shape[1] * s_h + max(k_h - s_h, 0))
- width_check = ofm_shape[2] == (ifm_shape[2] * s_w + max(k_w - s_w, 0))
- valid = height_check and width_check
- extra = (
- f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape},"
- f" stride WxH as {s_w}x{s_h} and kernel WxH as {k_w}x{k_h}"
- )
- return valid, extra
- return True, "Op has padding=SAME"
-
- @staticmethod
- def constraint_matching_in_out_types(op):
- "IFM and OFM data types must match"
- ifm_dtype = op.ifm.dtype
- ofm_dtype = op.ofm.dtype
- valid = ifm_dtype == ofm_dtype
- return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"
-
- @staticmethod
- def constraint_beta_value_range(op):
- "Beta value needs to be positive"
- beta = op.attrs.get("beta", 1.0)
- valid = beta >= 0
- return valid, f"Op has beta={beta}"
-
- @staticmethod
- def constraint_filter_type(op):
- "Kernel filter values for both width and height must be integer types"
- w = op.kernel.width
- h = op.kernel.height
- valid = is_integer(w) and is_integer(h)
- return valid, f"Op has kernel filter WxH as: {repr(w)}x{repr(h)}"
-
- @classmethod
- @docstring_format_args(filter_range)
- def constraint_filter_range(cls, op):
- "Kernel filter values for both width and height must be in the range [{}, {}]"
- if op.attrs["padding"] == Padding.SAME:
- w = op.kernel.width
- h = op.kernel.height
- filter_min, filter_max = cls.filter_range
- valid = (filter_min <= w <= filter_max) and (filter_min <= h <= filter_max)
- return valid, f"Op has kernel filter WxH as: {w}x{h}"
- return True, "Op has padding=VALID"
-
- @classmethod
- @docstring_format_args(filter_height_range)
- def constraint_filter_height_range(cls, op):
- "Kernel filter height must be in the range [{}, {}]"
- h = op.kernel.height
- filter_height_min, filter_height_max = cls.filter_height_range
- valid = filter_height_min <= h <= filter_height_max
- return valid, f"Op has kernel filter height as: {h}"
-
- @classmethod
- @docstring_format_args(filter_product_range)
- def constraint_filter_product_range(cls, op):
- "Product of kernel filter width and height must be in the range [{}, {}]"
- product = op.kernel.elements_wh()
- filter_product_min, filter_product_max = cls.filter_product_range
- valid = filter_product_min <= product <= filter_product_max
- return valid, f"Op has product of kernel filter width and height as: {product}"
-
- @staticmethod
- @docstring_format_args(filter_height_range)
- def constraint_filter_height_range_valid_pad(op):
- "VALID padding: Kernel filter height must be in the range [{}, {}]"
- if op.attrs["padding"] == Padding.VALID:
- return SupportedOperators.constraint_filter_height_range(op)
- return True, "Op has padding=SAME"
-
- @staticmethod
- @docstring_format_args(filter_product_range)
- def constraint_filter_product_range_valid_pad(op):
- "VALID padding: Product of kernel filter width and height must be in the range [{}, {}]"
- if op.attrs["padding"] == Padding.VALID:
- return SupportedOperators.constraint_filter_product_range(op)
- return True, "Op has padding=SAME"
-
- @staticmethod
- def constraint_resize(op):
- """The width and height of the IFM and OFM must match one of the following criteria:
- IFM W and H must both be 1
- IFM must match OFM
- OFM W and H must be 2x IFM -1, if align_corners is True
- OFM W and H must be 2x IFM, if align_corners is False"""
- # Easier to start with False condition as very few cases result in a supported resize
- valid = False
- ifm_shape = op.ifm.shape
- ofm_shape = op.ofm.shape
- align_corners = op.attrs.get("align_corners", False)
- if len(ifm_shape) == 4:
- # Valid if IFM W and H are both 1, or IFM and OFM shape are the same
- if ((ifm_shape[1] == 1) and (ifm_shape[2] == 1)) or (ifm_shape == ofm_shape):
- valid = True
- else:
- upscaled_shape = np.array(ifm_shape[1:3])
- out_shape = np.array(ofm_shape[1:3])
- while (upscaled_shape < out_shape).all():
- upscaled_shape *= 2
- if align_corners:
- upscaled_shape -= 1
- # Valid if OFM is 2x IFM (-1 for align corners)
- if np.array_equal(out_shape, upscaled_shape):
- valid = True
- break
- return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and align_corners={align_corners}"
-
- @staticmethod
- def constraint_matching_shapes(op):
- "IFM and OFM shapes must match"
- ifm_shape = op.ifm.shape
- ofm_shape = op.ofm.shape
- valid = ifm_shape == ofm_shape
- return valid, f"Op has ifm_shape={ifm_shape} and ofm_shape={ofm_shape}"
-
- @staticmethod
- def constraint_splitv_inferred(op):
- "Only one size is allowed to be inferred"
- sizes = op.inputs[1].values
- valid = np.count_nonzero(sizes == -1) <= 1
- return valid, f"Op has multiple inferred sizes (-1): {sizes}"
-
- @staticmethod
- def constraint_axis_exists(op):
- "Axis attribute must exist"
- axis = op.attrs.get("axis")
- valid = axis is not None
- return valid, f"Op has axis={axis}"
-
- @staticmethod
- def constraint_axis_valid(op):
- "Axis attribute must be in the range [0, <ofm_dimensions>)"
- dims = len(op.ofm.shape)
- axis = op.attrs["axis"]
- axis += dims if axis < 0 else 0
- valid = 0 <= axis < dims
- return valid, f"Op has ofm_dimensions={dims} and axis attribute is: {axis}"
-
- @staticmethod
- def constraint_matching_dimensionality(op):
- "All Input dimensionalities must match OFM dimensionality"
- valid = True
- extra = []
- ofm_dim = len(op.ofm.shape)
- tensors = [tens for tens in op.inputs if tens]
- for tens in tensors:
- dim = len(tens.shape)
- if dim != ofm_dim:
- valid = False
- extra.append(f"Tensor '{tens.name}' has dimension: {dim}")
- extra = ", ".join(extra)
- return valid, f"Op has ofm_dimension={ofm_dim} and the list of mismatching inputs are: {extra}"
-
- @staticmethod
- def constraint_valid_dimensions(op):
- "All Input dimensions must match OFM dimension in all axes except the one defined by the axis attribute"
- valid = True
- extra = []
- ofm_shape = op.ofm.shape
- ofm_dim = len(ofm_shape)
- axis = op.attrs["axis"]
- axis += ofm_dim if axis < 0 else 0
- tensors = [tens for tens in op.inputs if tens]
- for tens in tensors:
- if any(tens.shape[dim] != ofm_shape[dim] for dim in range(ofm_dim) if dim != axis):
- valid = False
- extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
- extra = ", ".join(extra)
- return valid, f"Op has axis={axis}, ofm_shape={ofm_shape} and the list of mismatching inputs are: {extra}"
-
- @staticmethod
- def constraint_stridedslice_input_count(op):
- "Exactly 4 Input tensors are required"
- inputs = len(op.inputs)
- valid = inputs == 4
- return valid, f"Op has {inputs} inputs"
-
- @staticmethod
- def constraint_pad_input_count(op):
- "Number of input tensors must be exactly 2"
- inputs = len(op.inputs)
- valid = inputs == 2
- return valid, f"Op has {inputs} inputs"
-
- @staticmethod
- def constraint_pad_shape(op):
- "The padding tensor must have the shape [3,2] or [4,2]"
- valid = op.inputs[1].shape in ([3, 2], [4, 2])
- return valid, f"The pad tensor has the shape: {op.inputs[1].shape}"
-
- @classmethod
- @docstring_format_args([list_formatter(supported_pad_dtypes)])
- def constraint_pad_type(cls, op):
- "Pad tensor must be of type: {}"
- pad_tensor = op.inputs[1]
- valid = pad_tensor.dtype in cls.supported_pad_dtypes
- return valid, f"Tensor '{pad_tensor.name}' has data type: {pad_tensor.dtype}"
-
- @staticmethod
- def constraint_padding_dimensions(op):
- "The pad tensor can only pad width and height"
- pad_tensor = op.inputs[1].values
-
- valid = sum(pad_tensor[-1, :]) == 0
- if valid and len(pad_tensor) > 3:
- valid = sum(pad_tensor[0, :]) == 0
- return valid, f"First dimension padding: {pad_tensor[0,:]}, last dimension padding: {pad_tensor[-1,:]}"
-
- @staticmethod
- def constraint_pad_constant(op):
- "The padding tensor must be constant"
- pad_tensor = op.inputs[1].values
- valid = pad_tensor is not None
- return valid, f"Op has non-constant padding tensor: {op.inputs[1].values}"
-
- @staticmethod
- def constraint_stridedslice_inputs_const(op):
- "Begin, End and Stride Input tensors must be constant"
- valid = True
- extra = []
- _, begin, end, strides = op.inputs
- if begin.values is None:
- valid = False
- extra.append(f"Begin tensor '{begin.name}'")
- if end.values is None:
- valid = False
- extra.append(f"End tensor '{end.name}'")
- if strides.values is None:
- valid = False
- extra.append(f"Stride tensor '{strides.name}'")
- extra = ", ".join(extra)
- return valid, f"Op has non-constant tensors: {extra}"
-
- @staticmethod
- def constraint_stridedslice_stride_values(op):
- "All Strides values must be 1"
- strides = op.inputs[3]
- valid = all(stride == 1 for stride in strides.values)
- return valid, f"Op has strides values {strides.values}"
-
- @staticmethod
- def constraint_ellipsis_mask(op):
- "ellipsis_mask must be 0"
- ellipsis = op.attrs["ellipsis_mask"]
- valid = ellipsis == 0
- return valid, f"Op has ellipsis mask as: {ellipsis}"
-
- @staticmethod
- def constraint_axis_masks(op):
- "new_axis_mask and shrink_axis_mask cannot both be set"
- new_axis = op.attrs["new_axis_mask"]
- shrink_axis = op.attrs["shrink_axis_mask"]
- valid = (new_axis == 0) or (shrink_axis == 0)
- return valid, f"Op has new_axis_mask={new_axis} and shrink_axis_mask={shrink_axis}"
-
- @staticmethod
- def constraint_slice_ranges(op):
- "Slice 'end' values must be greater than 'begin' values"
- ifm, begin, end, _ = op.inputs
- # Calculate offset begin/end
- offset_begin = get_slice_offsets(ifm.shape, begin, op.attrs["begin_mask"], is_begin=True)
- offset_end = get_slice_offsets(ifm.shape, end, op.attrs["end_mask"], is_begin=False)
- # Check "end - begin" doesn't result in any zero or negative elements
- valid = all((e - b) > 0 for b, e in zip(offset_begin, offset_end))
- return valid, f"Op has begin_values={begin.values} and end_values={end.values}"
-
- @staticmethod
- def constraint_matching_inputs_types(op):
- "Both Input data types must match"
- ifm_dtype = op.ifm.dtype
- ifm2_dtype = op.ifm2.dtype
- valid = ifm_dtype == ifm2_dtype
- return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"
-
- @staticmethod
- def constraint_matching_signed(op):
- "For IFM that are signed, OFM must also be signed"
- valid = True
- ifm_dtype = op.ifm.dtype
- ofm_dtype = op.ofm.dtype
- if ifm_dtype.type & BaseType.Signed:
- valid = bool(ofm_dtype.type & BaseType.Signed)
- return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"
-
- @staticmethod
- def constraint_unsigned_valid(op):
- "For IFM that are unsigned, OFM must either be the same type or int32"
- valid = True
- ifm_dtype = op.ifm.dtype
- ofm_dtype = op.ofm.dtype
- if ifm_dtype.type & BaseType.Unsigned:
- valid = (ifm_dtype == ofm_dtype) or (ofm_dtype == DataType.int32)
- return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"
-
- @staticmethod
- def constraint_inputs_int32(op):
- "Both Input data types must be int32"
- ifm_dtype = op.ifm.dtype
- ifm2_dtype = op.ifm2.dtype
- valid = (ifm_dtype == DataType.int32) and (ifm2_dtype == DataType.int32)
- return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"
-
- @staticmethod
- def constraint_output_int32(op):
- "OFM must be int32"
- ofm_dtype = op.ofm.dtype
- valid = ofm_dtype == DataType.int32
- return valid, f"Op has ofm_dtype={ofm_dtype}"
-
- @staticmethod
- def constraint_input_8bit(op):
- "IFM must be int8 or uint8"
- ifm_dtype = op.ifm.dtype
- valid = (ifm_dtype == DataType.int8) or (ifm_dtype == DataType.uint8)
- return valid, f"Op has ifm_dtype={ifm_dtype}"
-
- @staticmethod
- def constraint_matching_quantization_parameters(op):
- "Both Input quantization parameters must match OFM quantization parameters"
- valid = True
- extra = []
- if not check_quantized_tens_scaling_equal(op.ofm, op.ifm):
- valid = False
- extra.append(op.ifm.name)
- if op.ifm2 is not None and not check_quantized_tens_scaling_equal(op.ofm, op.ifm2):
- valid = False
- extra.append(op.ifm2.name)
- extra = ", ".join(extra)
- return valid, f"Op has tensors with different quantization parameters to the OFM '{op.ofm.name}': {extra}"
-
- @staticmethod
- def constraint_elemwise_batch_size(op):
- "Batch size must be 1 for Input tensors with more than 2 dimensions"
- valid = True
- extra = []
- for tens in (op.ifm, op.ifm2):
- # Unary ops have ifm2 as None
- if tens is not None:
- if (len(tens.shape) > 2) and (tens.shape[0] != 1):
- valid = False
- extra.append(tens.name)
- extra = ", ".join(extra)
- return valid, f"Op has invalid input tensors: {extra}"
-
- @staticmethod
- def constraint_matching_either_shapes(op):
- "At least one Input's shape must match the OFM's shape"
- ifm_shape = op.ifm.shape
- ifm2_shape = op.ifm2.shape if op.ifm2 else None
- ofm_shape = op.ofm.shape
- valid = (ifm_shape == ofm_shape) or (ifm2_shape == ofm_shape)
- return valid, f"Op has ifm_shape={ifm_shape}, ifm2_shape={ifm2_shape} and ofm_shape={ofm_shape}"
-
- @staticmethod
- def constraint_broadcast_shapes(op):
- "Broadcasting is only allowed for rank indices with dimension 1, from either IFM1 or IFM2"
- ifm_shape = op.ifm.shape
- ifm2_shape = op.ifm2.shape if op.ifm2 else None
- ofm_shape = op.ofm.shape
- valid = True
- if ifm_shape is not None and ifm2_shape is not None:
- # align trailing dimensions
- size = min(len(ifm_shape), len(ifm2_shape))
- for i, i2, o in zip(ifm_shape[-size:], ifm2_shape[-size:], ofm_shape[-size:]):
- mi = max(i, i2)
- # Input dimensions should match or one should be of dimension 1
- # Output dimension should match the largest input dimension, together
- # with constraint_match_either_shapes ensures broadcast from only one input
- if not (i == i2 or i == 1 or i2 == 1) or o != mi:
- valid = False
- break
-
- return valid, f"Op has ifm_shape={ifm_shape} and ifm2_shape={ifm2_shape}"
-
- @staticmethod
- def constraint_alpha_valid(op):
- "Alpha must not be negative"
- alpha = op.attrs["alpha"]
- valid = alpha >= 0
- return valid, f"Op has alpha={alpha}"
-
- @staticmethod
- def constraint_keep_dim_ifm_ofm(op):
- "The IFM and OFM must have the same number of dimensions if keep_num_dims is set to true"
- valid = True
- if op.attrs.get("keep_num_dims"):
- valid = len(op.ifm.shape) == len(op.ofm.shape)
- return valid, f"Op has ifm shape={op.ifm.shape} and ofm shape={op.ofm.shape}"
-
- @staticmethod
- def constraint_mean_input_dims(op):
- "Input tensor must be at least 2D"
- dims = len(op.inputs[0].shape)
- return 2 <= dims <= 4, f"Input is {dims}D"
-
- @staticmethod
- def constraint_mean_axis(op):
- "Axis indices must correspond to height and width axes"
- dims = len(op.inputs[0].shape)
- axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
- if dims == 2 or dims == 3:
- valid = axis in (0, 1, [0], [1], [0, 1], [1, 0])
- elif dims == 4:
- valid = axis in (1, 2, [1], [2], [1, 2], [2, 1])
- return valid, f"Axis is {axis}"
-
- @classmethod
- @docstring_format_args([mean_kernel_product_avgpool])
- def constraint_mean_height_width_product_avgpool(cls, op):
- """Product of height and width can be at most {}"""
- shape = op.inputs[0].shape
- hi = 0 if len(shape) < 4 else 1
- h, w = shape[hi : hi + 2]
- max_prod = cls.mean_kernel_product_avgpool
- return h * w <= max_prod, f"Product of height and width is {h * w}"
-
- @classmethod
- @docstring_format_args([mean_kernel_product])
- def constraint_mean_height_width_product(cls, op):
- """Product of height and width can be at most {} when IFM and OFM have different scale or zero point,
- or keep_dims is True"""
- ifmq, ofmq = op.ifm.quantization, op.ofm.quantization
- keep_dims = op.attrs.get("keep_dims")
- # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
- if not keep_dims and ifmq.scale_f32 == ofmq.scale_f32 and ifmq.zero_point == ofmq.zero_point:
- return True, ""
- shape = op.inputs[0].shape
- hi = 0 if len(shape) < 4 else 1
- h, w = shape[hi : hi + 2]
- max_prod = cls.mean_kernel_product
- return h * w <= max_prod, f"Product of height and width is {h * w}"
-
- @classmethod
- @docstring_format_args([mean_kernel_product_int8])
- def constraint_mean_height_width_product_int8(cls, op):
- """Product of IFM height and width can be at most {} when the following are true:
- IFM dimensions are 4,
- Axis indices are 1 and 2,
- keep_dims is set to True and
- IFM datatype is int8"""
- shape = op.ifm.shape
- axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
- # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
- # and constraint_mean_height_width_product
- if (
- len(shape) != 4
- or op.ifm.dtype != DataType.int8
- or not op.attrs.get("keep_dims")
- or axis not in ([1, 2], [2, 1])
- ):
- return True, ""
- hi = 0 if len(shape) < 4 else 1
- h, w = shape[hi : hi + 2]
- max_prod = cls.mean_kernel_product_int8
- return h * w <= max_prod, f"Product of height and width is {h * w}"