aboutsummaryrefslogtreecommitdiff
path: root/third-party/fmt/core.h
blob: 32923ee4b462b94f50803bd6d5f675540f6afb60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
// Formatting library for C++ - the core API
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.

#ifndef FMT_CORE_H_
#define FMT_CORE_H_

#include <cstdio>  // std::FILE
#include <cstring>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>

// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 70001

#ifdef __clang__
#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
#else
#  define FMT_CLANG_VERSION 0
#endif

#if defined(__GNUC__) && !defined(__clang__)
#  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#else
#  define FMT_GCC_VERSION 0
#endif

#if defined(__INTEL_COMPILER)
#  define FMT_ICC_VERSION __INTEL_COMPILER
#else
#  define FMT_ICC_VERSION 0
#endif

#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
#  define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
#else
#  define FMT_HAS_GXX_CXX11 0
#endif

#ifdef __NVCC__
#  define FMT_NVCC __NVCC__
#else
#  define FMT_NVCC 0
#endif

#ifdef _MSC_VER
#  define FMT_MSC_VER _MSC_VER
#  define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n))
#else
#  define FMT_MSC_VER 0
#  define FMT_SUPPRESS_MSC_WARNING(n)
#endif
#ifdef __has_feature
#  define FMT_HAS_FEATURE(x) __has_feature(x)
#else
#  define FMT_HAS_FEATURE(x) 0
#endif

#if defined(__has_include) && !defined(__INTELLISENSE__) && \
    !(FMT_ICC_VERSION && FMT_ICC_VERSION < 1600)
#  define FMT_HAS_INCLUDE(x) __has_include(x)
#else
#  define FMT_HAS_INCLUDE(x) 0
#endif

#ifdef __has_cpp_attribute
#  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#  define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif

#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
  (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))

#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
  (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))

// Check if relaxed C++14 constexpr is supported.
// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
#ifndef FMT_USE_CONSTEXPR
#  define FMT_USE_CONSTEXPR                                           \
    (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
     (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) &&           \
        !FMT_NVCC && !FMT_ICC_VERSION
#endif
#if FMT_USE_CONSTEXPR
#  define FMT_CONSTEXPR constexpr
#  define FMT_CONSTEXPR_DECL constexpr
#else
#  define FMT_CONSTEXPR inline
#  define FMT_CONSTEXPR_DECL
#endif

#ifndef FMT_OVERRIDE
#  if FMT_HAS_FEATURE(cxx_override) || \
      (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
#    define FMT_OVERRIDE override
#  else
#    define FMT_OVERRIDE
#  endif
#endif

// Check if exceptions are disabled.
#ifndef FMT_EXCEPTIONS
#  if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
      FMT_MSC_VER && !_HAS_EXCEPTIONS
#    define FMT_EXCEPTIONS 0
#  else
#    define FMT_EXCEPTIONS 1
#  endif
#endif

// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
#ifndef FMT_USE_NOEXCEPT
#  define FMT_USE_NOEXCEPT 0
#endif

#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
    (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
#  define FMT_DETECTED_NOEXCEPT noexcept
#  define FMT_HAS_CXX11_NOEXCEPT 1
#else
#  define FMT_DETECTED_NOEXCEPT throw()
#  define FMT_HAS_CXX11_NOEXCEPT 0
#endif

#ifndef FMT_NOEXCEPT
#  if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
#    define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
#  else
#    define FMT_NOEXCEPT
#  endif
#endif

// [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
// warnings.
#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
    !FMT_NVCC
#  define FMT_NORETURN [[noreturn]]
#else
#  define FMT_NORETURN
#endif

#ifndef FMT_DEPRECATED
#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
#    define FMT_DEPRECATED [[deprecated]]
#  else
#    if defined(__GNUC__) || defined(__clang__)
#      define FMT_DEPRECATED __attribute__((deprecated))
#    elif FMT_MSC_VER
#      define FMT_DEPRECATED __declspec(deprecated)
#    else
#      define FMT_DEPRECATED /* deprecated */
#    endif
#  endif
#endif

// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
#  define FMT_DEPRECATED_ALIAS
#else
#  define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
#endif

#ifndef FMT_INLINE
#  if FMT_GCC_VERSION || FMT_CLANG_VERSION
#    define FMT_INLINE inline __attribute__((always_inline))
#  else
#    define FMT_INLINE inline
#  endif
#endif

#ifndef FMT_BEGIN_NAMESPACE
#  if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
      FMT_MSC_VER >= 1900
#    define FMT_INLINE_NAMESPACE inline namespace
#    define FMT_END_NAMESPACE \
      }                       \
      }
#  else
#    define FMT_INLINE_NAMESPACE namespace
#    define FMT_END_NAMESPACE \
      }                       \
      using namespace v7;     \
      }
#  endif
#  define FMT_BEGIN_NAMESPACE \
    namespace fmt {           \
    FMT_INLINE_NAMESPACE v7 {
#endif

#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
#  define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275)
#  ifdef FMT_EXPORT
#    define FMT_API __declspec(dllexport)
#    define FMT_EXTERN_TEMPLATE_API FMT_API
#    define FMT_EXPORTED
#  elif defined(FMT_SHARED)
#    define FMT_API __declspec(dllimport)
#    define FMT_EXTERN_TEMPLATE_API FMT_API
#  endif
#else
#  define FMT_CLASS_API
#endif
#ifndef FMT_API
#  define FMT_API
#endif
#ifndef FMT_EXTERN_TEMPLATE_API
#  define FMT_EXTERN_TEMPLATE_API
#endif
#ifndef FMT_INSTANTIATION_DEF_API
#  define FMT_INSTANTIATION_DEF_API FMT_API
#endif

#ifndef FMT_HEADER_ONLY
#  define FMT_EXTERN extern
#else
#  define FMT_EXTERN
#endif

// libc++ supports string_view in pre-c++17.
#if (FMT_HAS_INCLUDE(<string_view>) &&                       \
     (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
    (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
#  include <string_view>
#  define FMT_USE_STRING_VIEW
#elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
#  include <experimental/string_view>
#  define FMT_USE_EXPERIMENTAL_STRING_VIEW
#endif

#ifndef FMT_UNICODE
#  define FMT_UNICODE !FMT_MSC_VER
#endif
#if FMT_UNICODE && FMT_MSC_VER
#  pragma execution_character_set("utf-8")
#endif

FMT_BEGIN_NAMESPACE

// Implementations of enable_if_t and other metafunctions for older systems.
template <bool B, class T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
template <typename T> struct type_identity { using type = T; };
template <typename T> using type_identity_t = typename type_identity<T>::type;

struct monostate {};

// An enable_if helper to be used in template parameters which results in much
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
#define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0

namespace detail {

// A helper function to suppress bogus "conditional expression is constant"
// warnings.
template <typename T> constexpr T const_check(T value) { return value; }

FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
                                      const char* message);

#ifndef FMT_ASSERT
#  ifdef NDEBUG
// FMT_ASSERT is not empty to avoid -Werror=empty-body.
#    define FMT_ASSERT(condition, message) ((void)0)
#  else
#    define FMT_ASSERT(condition, message)                                    \
      ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
           ? (void)0                                                          \
           : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
#  endif
#endif

#if defined(FMT_USE_STRING_VIEW)
template <typename Char> using std_string_view = std::basic_string_view<Char>;
#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
template <typename Char>
using std_string_view = std::experimental::basic_string_view<Char>;
#else
template <typename T> struct std_string_view {};
#endif

#ifdef FMT_USE_INT128
// Do nothing.
#elif defined(__SIZEOF_INT128__) && !FMT_NVCC
#  define FMT_USE_INT128 1
using int128_t = __int128_t;
using uint128_t = __uint128_t;
#else
#  define FMT_USE_INT128 0
#endif
#if !FMT_USE_INT128
struct int128_t {};
struct uint128_t {};
#endif

// Casts a nonnegative integer to unsigned.
template <typename Int>
FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) {
  FMT_ASSERT(value >= 0, "negative value");
  return static_cast<typename std::make_unsigned<Int>::type>(value);
}

FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5";

template <typename Char> constexpr bool is_unicode() {
  return FMT_UNICODE || sizeof(Char) != 1 ||
         (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5);
}

#ifdef __cpp_char8_t
using char8_type = char8_t;
#else
enum char8_type : unsigned char {};
#endif
}  // namespace detail

#ifdef FMT_USE_INTERNAL
namespace internal = detail;  // DEPRECATED
#endif

/**
  An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
  subset of the API. ``fmt::basic_string_view`` is used for format strings even
  if ``std::string_view`` is available to prevent issues when a library is
  compiled with a different ``-std`` option than the client code (which is not
  recommended).
 */
template <typename Char> class basic_string_view {
 private:
  const Char* data_;
  size_t size_;

 public:
  using value_type = Char;
  using iterator = const Char*;

  constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}

  /** Constructs a string reference object from a C string and a size. */
  constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
      : data_(s),
        size_(count) {}

  /**
    \rst
    Constructs a string reference object from a C string computing
    the size with ``std::char_traits<Char>::length``.
    \endrst
   */
#if __cplusplus >= 201703L  // C++17's char_traits::length() is constexpr.
  FMT_CONSTEXPR
#endif
  basic_string_view(const Char* s)
      : data_(s), size_(std::char_traits<Char>::length(s)) {}

  /** Constructs a string reference from a ``std::basic_string`` object. */
  template <typename Traits, typename Alloc>
  FMT_CONSTEXPR basic_string_view(
      const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
      : data_(s.data()),
        size_(s.size()) {}

  template <typename S, FMT_ENABLE_IF(std::is_same<
                                      S, detail::std_string_view<Char>>::value)>
  FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
                                                      size_(s.size()) {}

  /** Returns a pointer to the string data. */
  constexpr const Char* data() const { return data_; }

  /** Returns the string size. */
  constexpr size_t size() const { return size_; }

  constexpr iterator begin() const { return data_; }
  constexpr iterator end() const { return data_ + size_; }

  constexpr const Char& operator[](size_t pos) const { return data_[pos]; }

  FMT_CONSTEXPR void remove_prefix(size_t n) {
    data_ += n;
    size_ -= n;
  }

  // Lexicographically compare this string reference to other.
  int compare(basic_string_view other) const {
    size_t str_size = size_ < other.size_ ? size_ : other.size_;
    int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
    if (result == 0)
      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
    return result;
  }

  friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
    return lhs.compare(rhs) == 0;
  }
  friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
    return lhs.compare(rhs) != 0;
  }
  friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
    return lhs.compare(rhs) < 0;
  }
  friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
    return lhs.compare(rhs) <= 0;
  }
  friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
    return lhs.compare(rhs) > 0;
  }
  friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
    return lhs.compare(rhs) >= 0;
  }
};

using string_view = basic_string_view<char>;
using wstring_view = basic_string_view<wchar_t>;

/** Specifies if ``T`` is a character type. Can be specialized by users. */
template <typename T> struct is_char : std::false_type {};
template <> struct is_char<char> : std::true_type {};
template <> struct is_char<wchar_t> : std::true_type {};
template <> struct is_char<detail::char8_type> : std::true_type {};
template <> struct is_char<char16_t> : std::true_type {};
template <> struct is_char<char32_t> : std::true_type {};

/**
  \rst
  Returns a string view of `s`. In order to add custom string type support to
  {fmt} provide an overload of `to_string_view` for it in the same namespace as
  the type for the argument-dependent lookup to work.

  **Example**::

    namespace my_ns {
    inline string_view to_string_view(const my_string& s) {
      return {s.data(), s.length()};
    }
    }
    std::string message = fmt::format(my_string("The answer is {}"), 42);
  \endrst
 */
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
inline basic_string_view<Char> to_string_view(const Char* s) {
  return s;
}

template <typename Char, typename Traits, typename Alloc>
inline basic_string_view<Char> to_string_view(
    const std::basic_string<Char, Traits, Alloc>& s) {
  return s;
}

template <typename Char>
inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) {
  return s;
}

template <typename Char,
          FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) {
  return s;
}

// A base class for compile-time strings. It is defined in the fmt namespace to
// make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
struct compile_string {};

template <typename S>
struct is_compile_string : std::is_base_of<compile_string, S> {};

template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) {
  return s;
}

namespace detail {
void to_string_view(...);
using fmt::v7::to_string_view;

// Specifies whether S is a string type convertible to fmt::basic_string_view.
// It should be a constexpr function but MSVC 2017 fails to compile it in
// enable_if and MSVC 2015 fails to compile it as an alias template.
template <typename S>
struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
};

template <typename S, typename = void> struct char_t_impl {};
template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
  using result = decltype(to_string_view(std::declval<S>()));
  using type = typename result::value_type;
};

// Reports a compile-time error if S is not a valid format string.
template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
FMT_INLINE void check_format_string(const S&) {
#ifdef FMT_ENFORCE_COMPILE_STRING
  static_assert(is_compile_string<S>::value,
                "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
                "FMT_STRING.");
#endif
}
template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
void check_format_string(S);

struct error_handler {
  constexpr error_handler() = default;
  constexpr error_handler(const error_handler&) = default;

  // This function is intentionally not constexpr to give a compile-time error.
  FMT_NORETURN FMT_API void on_error(const char* message);
};
}  // namespace detail

/** String's character type. */
template <typename S> using char_t = typename detail::char_t_impl<S>::type;

/**
  \rst
  Parsing context consisting of a format string range being parsed and an
  argument counter for automatic indexing.

  You can use one of the following type aliases for common character types:

  +-----------------------+-------------------------------------+
  | Type                  | Definition                          |
  +=======================+=====================================+
  | format_parse_context  | basic_format_parse_context<char>    |
  +-----------------------+-------------------------------------+
  | wformat_parse_context | basic_format_parse_context<wchar_t> |
  +-----------------------+-------------------------------------+
  \endrst
 */
template <typename Char, typename ErrorHandler = detail::error_handler>
class basic_format_parse_context : private ErrorHandler {
 private:
  basic_string_view<Char> format_str_;
  int next_arg_id_;

 public:
  using char_type = Char;
  using iterator = typename basic_string_view<Char>::iterator;

  explicit constexpr basic_format_parse_context(
      basic_string_view<Char> format_str, ErrorHandler eh = {})
      : ErrorHandler(eh), format_str_(format_str), next_arg_id_(0) {}

  /**
    Returns an iterator to the beginning of the format string range being
    parsed.
   */
  constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }

  /**
    Returns an iterator past the end of the format string range being parsed.
   */
  constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }

  /** Advances the begin iterator to ``it``. */
  FMT_CONSTEXPR void advance_to(iterator it) {
    format_str_.remove_prefix(detail::to_unsigned(it - begin()));
  }

  /**
    Reports an error if using the manual argument indexing; otherwise returns
    the next argument index and switches to the automatic indexing.
   */
  FMT_CONSTEXPR int next_arg_id() {
    // Don't check if the argument id is valid to avoid overhead and because it
    // will be checked during formatting anyway.
    if (next_arg_id_ >= 0) return next_arg_id_++;
    on_error("cannot switch from manual to automatic argument indexing");
    return 0;
  }

  /**
    Reports an error if using the automatic argument indexing; otherwise
    switches to the manual indexing.
   */
  FMT_CONSTEXPR void check_arg_id(int) {
    if (next_arg_id_ > 0)
      on_error("cannot switch from automatic to manual argument indexing");
    else
      next_arg_id_ = -1;
  }

  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}

  FMT_CONSTEXPR void on_error(const char* message) {
    ErrorHandler::on_error(message);
  }

  constexpr ErrorHandler error_handler() const { return *this; }
};

using format_parse_context = basic_format_parse_context<char>;
using wformat_parse_context = basic_format_parse_context<wchar_t>;

template <typename Context> class basic_format_arg;
template <typename Context> class basic_format_args;
template <typename Context> class dynamic_format_arg_store;

// A formatter for objects of type T.
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
  // A deleted default constructor indicates a disabled formatter.
  formatter() = delete;
};

// Specifies if T has an enabled formatter specialization. A type can be
// formattable even if it doesn't have a formatter e.g. via a conversion.
template <typename T, typename Context>
using has_formatter =
    std::is_constructible<typename Context::template formatter_type<T>>;

// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};
template <typename Char>
struct is_contiguous<std::basic_string<Char>> : std::true_type {};

namespace detail {

// Extracts a reference to the container from back_insert_iterator.
template <typename Container>
inline Container& get_container(std::back_insert_iterator<Container> it) {
  using bi_iterator = std::back_insert_iterator<Container>;
  struct accessor : bi_iterator {
    accessor(bi_iterator iter) : bi_iterator(iter) {}
    using bi_iterator::container;
  };
  return *accessor(it).container;
}

/**
  \rst
  A contiguous memory buffer with an optional growing ability. It is an internal
  class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
  \endrst
 */
template <typename T> class buffer {
 private:
  T* ptr_;
  size_t size_;
  size_t capacity_;

 protected:
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
  FMT_SUPPRESS_MSC_WARNING(26495)
  buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}

  buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
      : ptr_(p),
        size_(sz),
        capacity_(cap) {}

  ~buffer() = default;

  /** Sets the buffer data and capacity. */
  void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
    ptr_ = buf_data;
    capacity_ = buf_capacity;
  }

  /** Increases the buffer capacity to hold at least *capacity* elements. */
  virtual void grow(size_t capacity) = 0;

 public:
  using value_type = T;
  using const_reference = const T&;

  buffer(const buffer&) = delete;
  void operator=(const buffer&) = delete;

  T* begin() FMT_NOEXCEPT { return ptr_; }
  T* end() FMT_NOEXCEPT { return ptr_ + size_; }

  const T* begin() const FMT_NOEXCEPT { return ptr_; }
  const T* end() const FMT_NOEXCEPT { return ptr_ + size_; }

  /** Returns the size of this buffer. */
  size_t size() const FMT_NOEXCEPT { return size_; }

  /** Returns the capacity of this buffer. */
  size_t capacity() const FMT_NOEXCEPT { return capacity_; }

  /** Returns a pointer to the buffer data. */
  T* data() FMT_NOEXCEPT { return ptr_; }

  /** Returns a pointer to the buffer data. */
  const T* data() const FMT_NOEXCEPT { return ptr_; }

  /** Clears this buffer. */
  void clear() { size_ = 0; }

  // Tries resizing the buffer to contain *count* elements. If T is a POD type
  // the new elements may not be initialized.
  void try_resize(size_t count) {
    try_reserve(count);
    size_ = count <= capacity_ ? count : capacity_;
  }

  // Tries increasing the buffer capacity to *new_capacity*. It can increase the
  // capacity by a smaller amount than requested but guarantees there is space
  // for at least one additional element either by increasing the capacity or by
  // flushing the buffer if it is full.
  void try_reserve(size_t new_capacity) {
    if (new_capacity > capacity_) grow(new_capacity);
  }

  void push_back(const T& value) {
    try_reserve(size_ + 1);
    ptr_[size_++] = value;
  }

  /** Appends data to the end of the buffer. */
  template <typename U> void append(const U* begin, const U* end);

  template <typename I> T& operator[](I index) { return ptr_[index]; }
  template <typename I> const T& operator[](I index) const {
    return ptr_[index];
  }
};

// A buffer that writes to an output iterator when flushed.
template <typename OutputIt, typename T>
class iterator_buffer : public buffer<T> {
 private:
  enum { buffer_size = 256 };

  OutputIt out_;
  T data_[buffer_size];

 protected:
  void grow(size_t) final {
    if (this->size() == buffer_size) flush();
  }
  void flush();

 public:
  explicit iterator_buffer(OutputIt out)
      : buffer<T>(data_, 0, buffer_size), out_(out) {}
  ~iterator_buffer() { flush(); }

  OutputIt out() {
    flush();
    return out_;
  }
};

template <typename T> class iterator_buffer<T*, T> : public buffer<T> {
 protected:
  void grow(size_t) final {}

 public:
  explicit iterator_buffer(T* out) : buffer<T>(out, 0, ~size_t()) {}

  T* out() { return &*this->end(); }
};

// A buffer that writes to a container with the contiguous storage.
template <typename Container>
class iterator_buffer<std::back_insert_iterator<Container>,
                      enable_if_t<is_contiguous<Container>::value,
                                  typename Container::value_type>>
    : public buffer<typename Container::value_type> {
 private:
  Container& container_;

 protected:
  void grow(size_t capacity) FMT_OVERRIDE {
    container_.resize(capacity);
    this->set(&container_[0], capacity);
  }

 public:
  explicit iterator_buffer(Container& c)
      : buffer<typename Container::value_type>(c.size()), container_(c) {}
  explicit iterator_buffer(std::back_insert_iterator<Container> out)
      : iterator_buffer(get_container(out)) {}
  std::back_insert_iterator<Container> out() {
    return std::back_inserter(container_);
  }
};

template <typename Container>
using container_buffer = iterator_buffer<std::back_insert_iterator<Container>,
                                         typename Container::value_type>;

// An output iterator that appends to the buffer.
// It is used to reduce symbol sizes for the common case.
template <typename T>
class buffer_appender : public std::back_insert_iterator<buffer<T>> {
 public:
  explicit buffer_appender(buffer<T>& buf)
      : std::back_insert_iterator<buffer<T>>(buf) {}
  buffer_appender(std::back_insert_iterator<buffer<T>> it)
      : std::back_insert_iterator<buffer<T>>(it) {}
};

// Maps an output iterator into a buffer.
template <typename T, typename OutputIt>
iterator_buffer<OutputIt, T> get_buffer(OutputIt);
template <typename T> buffer<T>& get_buffer(buffer_appender<T>);

template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) {
  return out;
}
template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) {
  return get_container(out);
}

template <typename Buffer>
auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
  return buf.out();
}
template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) {
  return buffer_appender<T>(buf);
}

template <typename T, typename Char = char, typename Enable = void>
struct fallback_formatter {
  fallback_formatter() = delete;
};

// Specifies if T has an enabled fallback_formatter specialization.
template <typename T, typename Context>
using has_fallback_formatter =
    std::is_constructible<fallback_formatter<T, typename Context::char_type>>;

struct view {};

template <typename Char, typename T> struct named_arg : view {
  const Char* name;
  const T& value;
  named_arg(const Char* n, const T& v) : name(n), value(v) {}
};

template <typename Char> struct named_arg_info {
  const Char* name;
  int id;
};

template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
struct arg_data {
  // args_[0].named_args points to named_args_ to avoid bloating format_args.
  T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : 1)];
  named_arg_info<Char> named_args_[NUM_NAMED_ARGS];

  template <typename... U>
  arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
  arg_data(const arg_data& other) = delete;
  const T* args() const { return args_ + 1; }
  named_arg_info<Char>* named_args() { return named_args_; }
};

template <typename T, typename Char, size_t NUM_ARGS>
struct arg_data<T, Char, NUM_ARGS, 0> {
  T args_[NUM_ARGS != 0 ? NUM_ARGS : 1];

  template <typename... U>
  FMT_INLINE arg_data(const U&... init) : args_{init...} {}
  FMT_INLINE const T* args() const { return args_; }
  FMT_INLINE std::nullptr_t named_args() { return nullptr; }
};

template <typename Char>
inline void init_named_args(named_arg_info<Char>*, int, int) {}

template <typename Char, typename T, typename... Tail>
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
                     int named_arg_count, const T&, const Tail&... args) {
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
}

template <typename Char, typename T, typename... Tail>
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
                     int named_arg_count, const named_arg<Char, T>& arg,
                     const Tail&... args) {
  named_args[named_arg_count++] = {arg.name, arg_count};
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
}

template <typename... Args>
FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {}

template <typename T> struct is_named_arg : std::false_type {};

template <typename T, typename Char>
struct is_named_arg<named_arg<Char, T>> : std::true_type {};

template <bool B = false> constexpr size_t count() { return B ? 1 : 0; }
template <bool B1, bool B2, bool... Tail> constexpr size_t count() {
  return (B1 ? 1 : 0) + count<B2, Tail...>();
}

template <typename... Args> constexpr size_t count_named_args() {
  return count<is_named_arg<Args>::value...>();
}

enum class type {
  none_type,
  // Integer types should go first,
  int_type,
  uint_type,
  long_long_type,
  ulong_long_type,
  int128_type,
  uint128_type,
  bool_type,
  char_type,
  last_integer_type = char_type,
  // followed by floating-point types.
  float_type,
  double_type,
  long_double_type,
  last_numeric_type = long_double_type,
  cstring_type,
  string_type,
  pointer_type,
  custom_type
};

// Maps core type T to the corresponding type enum constant.
template <typename T, typename Char>
struct type_constant : std::integral_constant<type, type::custom_type> {};

#define FMT_TYPE_CONSTANT(Type, constant) \
  template <typename Char>                \
  struct type_constant<Type, Char>        \
      : std::integral_constant<type, type::constant> {}

FMT_TYPE_CONSTANT(int, int_type);
FMT_TYPE_CONSTANT(unsigned, uint_type);
FMT_TYPE_CONSTANT(long long, long_long_type);
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
FMT_TYPE_CONSTANT(int128_t, int128_type);
FMT_TYPE_CONSTANT(uint128_t, uint128_type);
FMT_TYPE_CONSTANT(bool, bool_type);
FMT_TYPE_CONSTANT(Char, char_type);
FMT_TYPE_CONSTANT(float, float_type);
FMT_TYPE_CONSTANT(double, double_type);
FMT_TYPE_CONSTANT(long double, long_double_type);
FMT_TYPE_CONSTANT(const Char*, cstring_type);
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
FMT_TYPE_CONSTANT(const void*, pointer_type);

constexpr bool is_integral_type(type t) {
  return t > type::none_type && t <= type::last_integer_type;
}

constexpr bool is_arithmetic_type(type t) {
  return t > type::none_type && t <= type::last_numeric_type;
}

template <typename Char> struct string_value {
  const Char* data;
  size_t size;
};

template <typename Char> struct named_arg_value {
  const named_arg_info<Char>* data;
  size_t size;
};

template <typename Context> struct custom_value {
  using parse_context = typename Context::parse_context_type;
  const void* value;
  void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
};

// A formatting argument value.
template <typename Context> class value {
 public:
  using char_type = typename Context::char_type;

  union {
    int int_value;
    unsigned uint_value;
    long long long_long_value;
    unsigned long long ulong_long_value;
    int128_t int128_value;
    uint128_t uint128_value;
    bool bool_value;
    char_type char_value;
    float float_value;
    double double_value;
    long double long_double_value;
    const void* pointer;
    string_value<char_type> string;
    custom_value<Context> custom;
    named_arg_value<char_type> named_args;
  };

  constexpr FMT_INLINE value(int val = 0) : int_value(val) {}
  constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
  FMT_INLINE value(long long val) : long_long_value(val) {}
  FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
  FMT_INLINE value(int128_t val) : int128_value(val) {}
  FMT_INLINE value(uint128_t val) : uint128_value(val) {}
  FMT_INLINE value(float val) : float_value(val) {}
  FMT_INLINE value(double val) : double_value(val) {}
  FMT_INLINE value(long double val) : long_double_value(val) {}
  FMT_INLINE value(bool val) : bool_value(val) {}
  FMT_INLINE value(char_type val) : char_value(val) {}
  FMT_INLINE value(const char_type* val) { string.data = val; }
  FMT_INLINE value(basic_string_view<char_type> val) {
    string.data = val.data();
    string.size = val.size();
  }
  FMT_INLINE value(const void* val) : pointer(val) {}
  FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
      : named_args{args, size} {}

  template <typename T> FMT_INLINE value(const T& val) {
    custom.value = &val;
    // Get the formatter type through the context to allow different contexts
    // have different extension points, e.g. `formatter<T>` for `format` and
    // `printf_formatter<T>` for `printf`.
    custom.format = format_custom_arg<
        T, conditional_t<has_formatter<T, Context>::value,
                         typename Context::template formatter_type<T>,
                         fallback_formatter<T, char_type>>>;
  }

 private:
  // Formats an argument of a custom type, such as a user-defined class.
  template <typename T, typename Formatter>
  static void format_custom_arg(const void* arg,
                                typename Context::parse_context_type& parse_ctx,
                                Context& ctx) {
    Formatter f;
    parse_ctx.advance_to(f.parse(parse_ctx));
    ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
  }
};

template <typename Context, typename T>
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value);

// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
enum { long_short = sizeof(long) == sizeof(int) };
using long_type = conditional_t<long_short, int, long long>;
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;

struct unformattable {};

// Maps formatting arguments to core types.
template <typename Context> struct arg_mapper {
  using char_type = typename Context::char_type;

  FMT_CONSTEXPR int map(signed char val) { return val; }
  FMT_CONSTEXPR unsigned map(unsigned char val) { return val; }
  FMT_CONSTEXPR int map(short val) { return val; }
  FMT_CONSTEXPR unsigned map(unsigned short val) { return val; }
  FMT_CONSTEXPR int map(int val) { return val; }
  FMT_CONSTEXPR unsigned map(unsigned val) { return val; }
  FMT_CONSTEXPR long_type map(long val) { return val; }
  FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; }
  FMT_CONSTEXPR long long map(long long val) { return val; }
  FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; }
  FMT_CONSTEXPR int128_t map(int128_t val) { return val; }
  FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; }
  FMT_CONSTEXPR bool map(bool val) { return val; }

  template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
  FMT_CONSTEXPR char_type map(T val) {
    static_assert(
        std::is_same<T, char>::value || std::is_same<T, char_type>::value,
        "mixing character types is disallowed");
    return val;
  }

  FMT_CONSTEXPR float map(float val) { return val; }
  FMT_CONSTEXPR double map(double val) { return val; }
  FMT_CONSTEXPR long double map(long double val) { return val; }

  FMT_CONSTEXPR const char_type* map(char_type* val) { return val; }
  FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; }
  template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
    static_assert(std::is_same<char_type, char_t<T>>::value,
                  "mixing character types is disallowed");
    return to_string_view(val);
  }
  template <typename T,
            FMT_ENABLE_IF(
                std::is_constructible<basic_string_view<char_type>, T>::value &&
                !is_string<T>::value && !has_formatter<T, Context>::value &&
                !has_fallback_formatter<T, Context>::value)>
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
    return basic_string_view<char_type>(val);
  }
  template <
      typename T,
      FMT_ENABLE_IF(
          std::is_constructible<std_string_view<char_type>, T>::value &&
          !std::is_constructible<basic_string_view<char_type>, T>::value &&
          !is_string<T>::value && !has_formatter<T, Context>::value &&
          !has_fallback_formatter<T, Context>::value)>
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
    return std_string_view<char_type>(val);
  }
  FMT_CONSTEXPR const char* map(const signed char* val) {
    static_assert(std::is_same<char_type, char>::value, "invalid string type");
    return reinterpret_cast<const char*>(val);
  }
  FMT_CONSTEXPR const char* map(const unsigned char* val) {
    static_assert(std::is_same<char_type, char>::value, "invalid string type");
    return reinterpret_cast<const char*>(val);
  }
  FMT_CONSTEXPR const char* map(signed char* val) {
    const auto* const_val = val;
    return map(const_val);
  }
  FMT_CONSTEXPR const char* map(unsigned char* val) {
    const auto* const_val = val;
    return map(const_val);
  }

  FMT_CONSTEXPR const void* map(void* val) { return val; }
  FMT_CONSTEXPR const void* map(const void* val) { return val; }
  FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; }
  template <typename T> FMT_CONSTEXPR int map(const T*) {
    // Formatting of arbitrary pointers is disallowed. If you want to output
    // a pointer cast it to "void *" or "const void *". In particular, this
    // forbids formatting of "[const] volatile char *" which is printed as bool
    // by iostreams.
    static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
    return 0;
  }

  template <typename T,
            FMT_ENABLE_IF(std::is_enum<T>::value &&
                          !has_formatter<T, Context>::value &&
                          !has_fallback_formatter<T, Context>::value)>
  FMT_CONSTEXPR auto map(const T& val)
      -> decltype(std::declval<arg_mapper>().map(
          static_cast<typename std::underlying_type<T>::type>(val))) {
    return map(static_cast<typename std::underlying_type<T>::type>(val));
  }
  template <typename T,
            FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
                          (has_formatter<T, Context>::value ||
                           has_fallback_formatter<T, Context>::value))>
  FMT_CONSTEXPR const T& map(const T& val) {
    return val;
  }

  template <typename T>
  FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val)
      -> decltype(std::declval<arg_mapper>().map(val.value)) {
    return map(val.value);
  }

  unformattable map(...) { return {}; }
};

// A type constant after applying arg_mapper<Context>.
template <typename T, typename Context>
using mapped_type_constant =
    type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
                  typename Context::char_type>;

enum { packed_arg_bits = 4 };
// Maximum number of arguments with packed types.
enum { max_packed_args = 62 / packed_arg_bits };
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
}  // namespace detail

// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in basic_memory_buffer.
template <typename Context> class basic_format_arg {
 private:
  detail::value<Context> value_;
  detail::type type_;

  template <typename ContextType, typename T>
  friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg(
      const T& value);

  template <typename Visitor, typename Ctx>
  friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
                                             const basic_format_arg<Ctx>& arg)
      -> decltype(vis(0));

  friend class basic_format_args<Context>;
  friend class dynamic_format_arg_store<Context>;

  using char_type = typename Context::char_type;

  template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
  friend struct detail::arg_data;

  basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
      : value_(args, size) {}

 public:
  class handle {
   public:
    explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}

    void format(typename Context::parse_context_type& parse_ctx,
                Context& ctx) const {
      custom_.format(custom_.value, parse_ctx, ctx);
    }

   private:
    detail::custom_value<Context> custom_;
  };

  constexpr basic_format_arg() : type_(detail::type::none_type) {}

  constexpr explicit operator bool() const FMT_NOEXCEPT {
    return type_ != detail::type::none_type;
  }

  detail::type type() const { return type_; }

  bool is_integral() const { return detail::is_integral_type(type_); }
  bool is_arithmetic() const { return detail::is_arithmetic_type(type_); }
};

/**
  \rst
  Visits an argument dispatching to the appropriate visit method based on
  the argument type. For example, if the argument type is ``double`` then
  ``vis(value)`` will be called with the value of type ``double``.
  \endrst
 */
template <typename Visitor, typename Context>
FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg(
    Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
  using char_type = typename Context::char_type;
  switch (arg.type_) {
  case detail::type::none_type:
    break;
  case detail::type::int_type:
    return vis(arg.value_.int_value);
  case detail::type::uint_type:
    return vis(arg.value_.uint_value);
  case detail::type::long_long_type:
    return vis(arg.value_.long_long_value);
  case detail::type::ulong_long_type:
    return vis(arg.value_.ulong_long_value);
#if FMT_USE_INT128
  case detail::type::int128_type:
    return vis(arg.value_.int128_value);
  case detail::type::uint128_type:
    return vis(arg.value_.uint128_value);
#else
  case detail::type::int128_type:
  case detail::type::uint128_type:
    break;
#endif
  case detail::type::bool_type:
    return vis(arg.value_.bool_value);
  case detail::type::char_type:
    return vis(arg.value_.char_value);
  case detail::type::float_type:
    return vis(arg.value_.float_value);
  case detail::type::double_type:
    return vis(arg.value_.double_value);
  case detail::type::long_double_type:
    return vis(arg.value_.long_double_value);
  case detail::type::cstring_type:
    return vis(arg.value_.string.data);
  case detail::type::string_type:
    return vis(basic_string_view<char_type>(arg.value_.string.data,
                                            arg.value_.string.size));
  case detail::type::pointer_type:
    return vis(arg.value_.pointer);
  case detail::type::custom_type:
    return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
  }
  return vis(monostate());
}

template <typename T> struct formattable : std::false_type {};

namespace detail {

// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
template <typename... Ts> struct void_t_impl { using type = void; };

template <typename... Ts>
using void_t = typename detail::void_t_impl<Ts...>::type;

// Detect the iterator category of *any* given type in a SFINAE-friendly way.
// Unfortunately, older implementations of std::iterator_traits are not safe
// for use in a SFINAE-context.
template <typename It, typename Enable = void>
struct iterator_category : std::false_type {};

template <typename T> struct iterator_category<T*> {
  using type = std::random_access_iterator_tag;
};

template <typename It>
struct iterator_category<It, void_t<typename It::iterator_category>> {
  using type = typename It::iterator_category;
};

// Detect if *any* given type models the OutputIterator concept.
template <typename It> class is_output_iterator {
  // Check for mutability because all iterator categories derived from
  // std::input_iterator_tag *may* also meet the requirements of an
  // OutputIterator, thereby falling into the category of 'mutable iterators'
  // [iterator.requirements.general] clause 4. The compiler reveals this
  // property only at the point of *actually dereferencing* the iterator!
  template <typename U>
  static decltype(*(std::declval<U>())) test(std::input_iterator_tag);
  template <typename U> static char& test(std::output_iterator_tag);
  template <typename U> static const char& test(...);

  using type = decltype(test<It>(typename iterator_category<It>::type{}));

 public:
  enum { value = !std::is_const<remove_reference_t<type>>::value };
};

template <typename OutputIt>
struct is_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
    : std::true_type {};

template <typename OutputIt>
struct is_contiguous_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
    : is_contiguous<Container> {};
template <typename Char>
struct is_contiguous_back_insert_iterator<buffer_appender<Char>>
    : std::true_type {};

// A type-erased reference to an std::locale to avoid heavy <locale> include.
class locale_ref {
 private:
  const void* locale_;  // A type-erased pointer to std::locale.

 public:
  locale_ref() : locale_(nullptr) {}
  template <typename Locale> explicit locale_ref(const Locale& loc);

  explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }

  template <typename Locale> Locale get() const;
};

template <typename> constexpr unsigned long long encode_types() { return 0; }

template <typename Context, typename Arg, typename... Args>
constexpr unsigned long long encode_types() {
  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
         (encode_types<Context, Args...>() << packed_arg_bits);
}

template <typename Context, typename T>
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) {
  basic_format_arg<Context> arg;
  arg.type_ = mapped_type_constant<T, Context>::value;
  arg.value_ = arg_mapper<Context>().map(value);
  return arg;
}

template <typename T> int check(unformattable) {
  static_assert(
      formattable<T>(),
      "Cannot format an argument. To make type T formattable provide a "
      "formatter<T> specialization: https://fmt.dev/dev/api.html#udt");
  return 0;
}
template <typename T, typename U> inline const U& check(const U& val) {
  return val;
}

// The type template parameter is there to avoid an ODR violation when using
// a fallback formatter in one translation unit and an implicit conversion in
// another (not recommended).
template <bool IS_PACKED, typename Context, type, typename T,
          FMT_ENABLE_IF(IS_PACKED)>
inline value<Context> make_arg(const T& val) {
  return check<T>(arg_mapper<Context>().map(val));
}

template <bool IS_PACKED, typename Context, type, typename T,
          FMT_ENABLE_IF(!IS_PACKED)>
inline basic_format_arg<Context> make_arg(const T& value) {
  return make_arg<Context>(value);
}

template <typename T> struct is_reference_wrapper : std::false_type {};
template <typename T>
struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};

template <typename T> const T& unwrap(const T& v) { return v; }
template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
  return static_cast<const T&>(v);
}

class dynamic_arg_list {
  // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
  // templates it doesn't complain about inability to deduce single translation
  // unit for placing vtable. So storage_node_base is made a fake template.
  template <typename = void> struct node {
    virtual ~node() = default;
    std::unique_ptr<node<>> next;
  };

  template <typename T> struct typed_node : node<> {
    T value;

    template <typename Arg>
    FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}

    template <typename Char>
    FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
        : value(arg.data(), arg.size()) {}
  };

  std::unique_ptr<node<>> head_;

 public:
  template <typename T, typename Arg> const T& push(const Arg& arg) {
    auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
    auto& value = new_node->value;
    new_node->next = std::move(head_);
    head_ = std::move(new_node);
    return value;
  }
};
}  // namespace detail

// Formatting context.
template <typename OutputIt, typename Char> class basic_format_context {
 public:
  /** The character type for the output. */
  using char_type = Char;

 private:
  OutputIt out_;
  basic_format_args<basic_format_context> args_;
  detail::locale_ref loc_;

 public:
  using iterator = OutputIt;
  using format_arg = basic_format_arg<basic_format_context>;
  using parse_context_type = basic_format_parse_context<Char>;
  template <typename T> using formatter_type = formatter<T, char_type>;

  basic_format_context(const basic_format_context&) = delete;
  void operator=(const basic_format_context&) = delete;
  /**
   Constructs a ``basic_format_context`` object. References to the arguments are
   stored in the object so make sure they have appropriate lifetimes.
   */
  basic_format_context(OutputIt out,
                       basic_format_args<basic_format_context> ctx_args,
                       detail::locale_ref loc = detail::locale_ref())
      : out_(out), args_(ctx_args), loc_(loc) {}

  format_arg arg(int id) const { return args_.get(id); }
  format_arg arg(basic_string_view<char_type> name) { return args_.get(name); }
  int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); }
  const basic_format_args<basic_format_context>& args() const { return args_; }

  detail::error_handler error_handler() { return {}; }
  void on_error(const char* message) { error_handler().on_error(message); }

  // Returns an iterator to the beginning of the output range.
  iterator out() { return out_; }

  // Advances the begin iterator to ``it``.
  void advance_to(iterator it) {
    if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
  }

  detail::locale_ref locale() { return loc_; }
};

template <typename Char>
using buffer_context =
    basic_format_context<detail::buffer_appender<Char>, Char>;
using format_context = buffer_context<char>;
using wformat_context = buffer_context<wchar_t>;

// Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
#define FMT_BUFFER_CONTEXT(Char) \
  basic_format_context<detail::buffer_appender<Char>, Char>

/**
  \rst
  An array of references to arguments. It can be implicitly converted into
  `~fmt::basic_format_args` for passing into type-erased formatting functions
  such as `~fmt::vformat`.
  \endrst
 */
template <typename Context, typename... Args>
class format_arg_store
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
    // Workaround a GCC template argument substitution bug.
    : public basic_format_args<Context>
#endif
{
 private:
  static const size_t num_args = sizeof...(Args);
  static const size_t num_named_args = detail::count_named_args<Args...>();
  static const bool is_packed = num_args <= detail::max_packed_args;

  using value_type = conditional_t<is_packed, detail::value<Context>,
                                   basic_format_arg<Context>>;

  detail::arg_data<value_type, typename Context::char_type, num_args,
                   num_named_args>
      data_;

  friend class basic_format_args<Context>;

  static constexpr unsigned long long desc =
      (is_packed ? detail::encode_types<Context, Args...>()
                 : detail::is_unpacked_bit | num_args) |
      (num_named_args != 0
           ? static_cast<unsigned long long>(detail::has_named_args_bit)
           : 0);

 public:
  format_arg_store(const Args&... args)
      :
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
        basic_format_args<Context>(*this),
#endif
        data_{detail::make_arg<
            is_packed, Context,
            detail::mapped_type_constant<Args, Context>::value>(args)...} {
    detail::init_named_args(data_.named_args(), 0, 0, args...);
  }
};

/**
  \rst
  Constructs a `~fmt::format_arg_store` object that contains references to
  arguments and can be implicitly converted to `~fmt::format_args`. `Context`
  can be omitted in which case it defaults to `~fmt::context`.
  See `~fmt::arg` for lifetime considerations.
  \endrst
 */
template <typename Context = format_context, typename... Args>
inline format_arg_store<Context, Args...> make_format_args(
    const Args&... args) {
  return {args...};
}

/**
  \rst
  Constructs a `~fmt::format_arg_store` object that contains references
  to arguments and can be implicitly converted to `~fmt::format_args`.
  If ``format_str`` is a compile-time string then `make_args_checked` checks
  its validity at compile time.
  \endrst
 */
template <typename... Args, typename S, typename Char = char_t<S>>
inline auto make_args_checked(const S& format_str,
                              const remove_reference_t<Args>&... args)
    -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
  static_assert(
      detail::count<(
              std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
              std::is_reference<Args>::value)...>() == 0,
      "passing views as lvalues is disallowed");
  detail::check_format_string<Args...>(format_str);
  return {args...};
}

/**
  \rst
  Returns a named argument to be used in a formatting function. It should only
  be used in a call to a formatting function.

  **Example**::

    fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
  \endrst
 */
template <typename Char, typename T>
inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) {
  static_assert(!detail::is_named_arg<T>(), "nested named arguments");
  return {name, arg};
}

/**
  \rst
  A dynamic version of `fmt::format_arg_store`.
  It's equipped with a storage to potentially temporary objects which lifetimes
  could be shorter than the format arguments object.

  It can be implicitly converted into `~fmt::basic_format_args` for passing
  into type-erased formatting functions such as `~fmt::vformat`.
  \endrst
 */
template <typename Context>
class dynamic_format_arg_store
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
    // Workaround a GCC template argument substitution bug.
    : public basic_format_args<Context>
#endif
{
 private:
  using char_type = typename Context::char_type;

  template <typename T> struct need_copy {
    static constexpr detail::type mapped_type =
        detail::mapped_type_constant<T, Context>::value;

    enum {
      value = !(detail::is_reference_wrapper<T>::value ||
                std::is_same<T, basic_string_view<char_type>>::value ||
                std::is_same<T, detail::std_string_view<char_type>>::value ||
                (mapped_type != detail::type::cstring_type &&
                 mapped_type != detail::type::string_type &&
                 mapped_type != detail::type::custom_type))
    };
  };

  template <typename T>
  using stored_type = conditional_t<detail::is_string<T>::value,
                                    std::basic_string<char_type>, T>;

  // Storage of basic_format_arg must be contiguous.
  std::vector<basic_format_arg<Context>> data_;
  std::vector<detail::named_arg_info<char_type>> named_info_;

  // Storage of arguments not fitting into basic_format_arg must grow
  // without relocation because items in data_ refer to it.
  detail::dynamic_arg_list dynamic_args_;

  friend class basic_format_args<Context>;

  unsigned long long get_types() const {
    return detail::is_unpacked_bit | data_.size() |
           (named_info_.empty()
                ? 0ULL
                : static_cast<unsigned long long>(detail::has_named_args_bit));
  }

  const basic_format_arg<Context>* data() const {
    return named_info_.empty() ? data_.data() : data_.data() + 1;
  }

  template <typename T> void emplace_arg(const T& arg) {
    data_.emplace_back(detail::make_arg<Context>(arg));
  }

  template <typename T>
  void emplace_arg(const detail::named_arg<char_type, T>& arg) {
    if (named_info_.empty()) {
      constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
      data_.insert(data_.begin(), {zero_ptr, 0});
    }
    data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
    auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
      data->pop_back();
    };
    std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
        guard{&data_, pop_one};
    named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
    data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
    guard.release();
  }

 public:
  /**
    \rst
    Adds an argument into the dynamic store for later passing to a formatting
    function.

    Note that custom types and string types (but not string views) are copied
    into the store dynamically allocating memory if necessary.

    **Example**::

      fmt::dynamic_format_arg_store<fmt::format_context> store;
      store.push_back(42);
      store.push_back("abc");
      store.push_back(1.5f);
      std::string result = fmt::vformat("{} and {} and {}", store);
    \endrst
  */
  template <typename T> void push_back(const T& arg) {
    if (detail::const_check(need_copy<T>::value))
      emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
    else
      emplace_arg(detail::unwrap(arg));
  }

  /**
    \rst
    Adds a reference to the argument into the dynamic store for later passing to
    a formatting function. Supports named arguments wrapped in
    ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``.

    **Example**::

      fmt::dynamic_format_arg_store<fmt::format_context> store;
      char str[] = "1234567890";
      store.push_back(std::cref(str));
      int a1_val{42};
      auto a1 = fmt::arg("a1_", a1_val);
      store.push_back(std::cref(a1));

      // Changing str affects the output but only for string and custom types.
      str[0] = 'X';

      std::string result = fmt::vformat("{} and {a1_}");
      assert(result == "X234567890 and 42");
    \endrst
  */
  template <typename T> void push_back(std::reference_wrapper<T> arg) {
    static_assert(
        detail::is_named_arg<typename std::remove_cv<T>::type>::value ||
            need_copy<T>::value,
        "objects of built-in types and string views are always copied");
    emplace_arg(arg.get());
  }

  /**
    Adds named argument into the dynamic store for later passing to a formatting
    function. ``std::reference_wrapper`` is supported to avoid copying of the
    argument.
  */
  template <typename T>
  void push_back(const detail::named_arg<char_type, T>& arg) {
    const char_type* arg_name =
        dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
    if (detail::const_check(need_copy<T>::value)) {
      emplace_arg(
          fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
    } else {
      emplace_arg(fmt::arg(arg_name, arg.value));
    }
  }

  /** Erase all elements from the store */
  void clear() {
    data_.clear();
    named_info_.clear();
    dynamic_args_ = detail::dynamic_arg_list();
  }

  /**
    \rst
    Reserves space to store at least *new_cap* arguments including
    *new_cap_named* named arguments.
    \endrst
  */
  void reserve(size_t new_cap, size_t new_cap_named) {
    FMT_ASSERT(new_cap >= new_cap_named,
               "Set of arguments includes set of named arguments");
    data_.reserve(new_cap);
    named_info_.reserve(new_cap_named);
  }
};

/**
  \rst
  A view of a collection of formatting arguments. To avoid lifetime issues it
  should only be used as a parameter type in type-erased functions such as
  ``vformat``::

    void vlog(string_view format_str, format_args args);  // OK
    format_args args = make_format_args(42);  // Error: dangling reference
  \endrst
 */
template <typename Context> class basic_format_args {
 public:
  using size_type = int;
  using format_arg = basic_format_arg<Context>;

 private:
  // A descriptor that contains information about formatting arguments.
  // If the number of arguments is less or equal to max_packed_args then
  // argument types are passed in the descriptor. This reduces binary code size
  // per formatting function call.
  unsigned long long desc_;
  union {
    // If is_packed() returns true then argument values are stored in values_;
    // otherwise they are stored in args_. This is done to improve cache
    // locality and reduce compiled code size since storing larger objects
    // may require more code (at least on x86-64) even if the same amount of
    // data is actually copied to stack. It saves ~10% on the bloat test.
    const detail::value<Context>* values_;
    const format_arg* args_;
  };

  bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; }
  bool has_named_args() const {
    return (desc_ & detail::has_named_args_bit) != 0;
  }

  detail::type type(int index) const {
    int shift = index * detail::packed_arg_bits;
    unsigned int mask = (1 << detail::packed_arg_bits) - 1;
    return static_cast<detail::type>((desc_ >> shift) & mask);
  }

  basic_format_args(unsigned long long desc,
                    const detail::value<Context>* values)
      : desc_(desc), values_(values) {}
  basic_format_args(unsigned long long desc, const format_arg* args)
      : desc_(desc), args_(args) {}

 public:
  basic_format_args() : desc_(0) {}

  /**
   \rst
   Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
   \endrst
   */
  template <typename... Args>
  FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store)
      : basic_format_args(store.desc, store.data_.args()) {}

  /**
   \rst
   Constructs a `basic_format_args` object from
   `~fmt::dynamic_format_arg_store`.
   \endrst
   */
  FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store)
      : basic_format_args(store.get_types(), store.data()) {}

  /**
   \rst
   Constructs a `basic_format_args` object from a dynamic set of arguments.
   \endrst
   */
  basic_format_args(const format_arg* args, int count)
      : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
                          args) {}

  /** Returns the argument with the specified id. */
  format_arg get(int id) const {
    format_arg arg;
    if (!is_packed()) {
      if (id < max_size()) arg = args_[id];
      return arg;
    }
    if (id >= detail::max_packed_args) return arg;
    arg.type_ = type(id);
    if (arg.type_ == detail::type::none_type) return arg;
    arg.value_ = values_[id];
    return arg;
  }

  template <typename Char> format_arg get(basic_string_view<Char> name) const {
    int id = get_id(name);
    return id >= 0 ? get(id) : format_arg();
  }

  template <typename Char> int get_id(basic_string_view<Char> name) const {
    if (!has_named_args()) return {};
    const auto& named_args =
        (is_packed() ? values_[-1] : args_[-1].value_).named_args;
    for (size_t i = 0; i < named_args.size; ++i) {
      if (named_args.data[i].name == name) return named_args.data[i].id;
    }
    return -1;
  }

  int max_size() const {
    unsigned long long max_packed = detail::max_packed_args;
    return static_cast<int>(is_packed() ? max_packed
                                        : desc_ & ~detail::is_unpacked_bit);
  }
};

/** An alias to ``basic_format_args<context>``. */
// It is a separate type rather than an alias to make symbols readable.
struct format_args : basic_format_args<format_context> {
  template <typename... Args>
  FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {}
};
struct wformat_args : basic_format_args<wformat_context> {
  using basic_format_args::basic_format_args;
};

namespace detail {

template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
std::basic_string<Char> vformat(
    basic_string_view<Char> format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args);

FMT_API std::string vformat(string_view format_str, format_args args);

template <typename Char>
buffer_appender<Char> vformat_to(
    buffer<Char>& buf, basic_string_view<Char> format_str,
    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args);

template <typename Char, typename Args,
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {}

FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
#ifndef _WIN32
inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
#endif
}  // namespace detail

/** Formats a string and writes the output to ``out``. */
// GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with
// vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead.
template <typename OutputIt, typename S, typename Char = char_t<S>,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value)>
OutputIt vformat_to(
    OutputIt out, const S& format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
  decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out));
  detail::vformat_to(buf, to_string_view(format_str), args);
  return detail::get_iterator(buf);
}

/**
 \rst
 Formats arguments, writes the result to the output iterator ``out`` and returns
 the iterator past the end of the output range.

 **Example**::

   std::vector<char> out;
   fmt::format_to(std::back_inserter(out), "{}", 42);
 \endrst
 */
template <typename OutputIt, typename S, typename... Args,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value&&
                            detail::is_string<S>::value)>
inline OutputIt format_to(OutputIt out, const S& format_str, Args&&... args) {
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
  return vformat_to(out, to_string_view(format_str), vargs);
}

template <typename S, typename Char = char_t<S>>
FMT_INLINE std::basic_string<Char> vformat(
    const S& format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
  return detail::vformat(to_string_view(format_str), args);
}

/**
  \rst
  Formats arguments and returns the result as a string.

  **Example**::

    #include <fmt/core.h>
    std::string message = fmt::format("The answer is {}", 42);
  \endrst
*/
// Pass char_t as a default template parameter instead of using
// std::basic_string<char_t<S>> to reduce the symbol size.
template <typename S, typename... Args, typename Char = char_t<S>>
FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) {
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
  return detail::vformat(to_string_view(format_str), vargs);
}

FMT_API void vprint(string_view, format_args);
FMT_API void vprint(std::FILE*, string_view, format_args);

/**
  \rst
  Formats ``args`` according to specifications in ``format_str`` and writes the
  output to the file ``f``. Strings are assumed to be Unicode-encoded unless the
  ``FMT_UNICODE`` macro is set to 0.

  **Example**::

    fmt::print(stderr, "Don't {}!", "panic");
  \endrst
 */
template <typename S, typename... Args, typename Char = char_t<S>>
inline void print(std::FILE* f, const S& format_str, Args&&... args) {
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
  return detail::is_unicode<Char>()
             ? vprint(f, to_string_view(format_str), vargs)
             : detail::vprint_mojibake(f, to_string_view(format_str), vargs);
}

/**
  \rst
  Formats ``args`` according to specifications in ``format_str`` and writes
  the output to ``stdout``. Strings are assumed to be Unicode-encoded unless
  the ``FMT_UNICODE`` macro is set to 0.

  **Example**::

    fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
  \endrst
 */
template <typename S, typename... Args, typename Char = char_t<S>>
inline void print(const S& format_str, Args&&... args) {
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
  return detail::is_unicode<Char>()
             ? vprint(to_string_view(format_str), vargs)
             : detail::vprint_mojibake(stdout, to_string_view(format_str),
                                       vargs);
}
FMT_END_NAMESPACE

#endif  // FMT_CORE_H_