aboutsummaryrefslogtreecommitdiff
path: root/src/backends/test/NormTestImpl.hpp
blob: 300eeceae0aa384a9956de5a74ac40c8febc7b6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <armnn/Exceptions.hpp>
#include <armnn/LayerSupport.hpp>
#include "armnn/Types.hpp"

#include <backends/CpuTensorHandle.hpp>
#include <backends/WorkloadFactory.hpp>

LayerTestResult<float,4> SimpleNormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
                                                     armnn::NormalizationAlgorithmChannel normChannel,
                                                     armnn::NormalizationAlgorithmMethod normMethod)
{
    const unsigned int inputHeight = 2;
    const unsigned int inputWidth = 2;
    const unsigned int inputChannels = 1;
    const unsigned int inputNum = 2;

    unsigned int outputHeight = inputHeight;
    unsigned int outputWidth = inputWidth;
    unsigned int outputChannels = inputChannels;
    unsigned int outputNum = inputNum;

    unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
    unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };

    auto inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    auto outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    LayerTestResult<float,4> ret(outputTensorInfo);

    auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
        // Batch #0
        1.0f, 2.0f,
        3.0f, 4.0f,
        // Batch #1
        5.0f, 6.0f,
        7.0f, 8.0f
    }));

    float alpha = 1.f;
    float beta = 1.f;
    float kappa = 1.f;
    uint32_t normSize = 3;

    std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
    std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);

    armnn::NormalizationQueueDescriptor data;
    armnn::WorkloadInfo info;
    AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
    AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
    data.m_Parameters.m_NormChannelType = normChannel;
    data.m_Parameters.m_NormMethodType = normMethod;
    data.m_Parameters.m_NormSize = normSize;
    data.m_Parameters.m_Alpha = alpha;
    data.m_Parameters.m_Beta = beta;
    data.m_Parameters.m_K = kappa;
    data.m_Parameters.m_DataLayout = armnn::DataLayout::NCHW;

    armnn::PassthroughCpuTensorHandle refHandle(outputTensorInfo, &ret.outputExpected[0][0][0][0]);
    armnn::NormalizationQueueDescriptor refData = data;
    armnn::WorkloadInfo refInfo = info;
    SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, &refHandle);

    std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);

    inputHandle->Allocate();
    outputHandle->Allocate();

    CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);

    workloadFactory.Finalize();
    workload->Execute();

    CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());

    switch (normMethod)
    {
        case armnn::NormalizationAlgorithmMethod::LocalBrightness:
        {
            switch (normChannel)
            {
                case armnn::NormalizationAlgorithmChannel::Within:
                {
                    // When normalising within channels, the 3x3 kernel covers the entire 2x2 input at every index.
                    // Therefore, all output values should equal the inputs, but divided by:
                    // pow((kappa + (accumulatedScale * alpha)), beta)
                    // ...where accumulatedScale is the sum of every element squared.
                    float divisor[inputNum];
                    for(int i = 0; i < boost::numeric_cast<int>(inputNum); i++)
                    {
                        float accumulatedScale = input[i][0][0][0]*input[i][0][0][0] +
                                                 input[i][0][0][1]*input[i][0][0][1] +
                                                 input[i][0][1][0]*input[i][0][1][0] +
                                                 input[i][0][1][1]*input[i][0][1][1];
                        divisor[i] = powf((kappa + accumulatedScale * alpha), beta);
                    }
                    ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
                                                              std::vector<float>({input[0][0][0][0]/divisor[0],
                                                                                  input[0][0][0][1]/divisor[0],
                                                                                  input[0][0][1][0]/divisor[0],
                                                                                  input[0][0][1][1]/divisor[0],
                                                                                  input[1][0][0][0]/divisor[1],
                                                                                  input[1][0][0][1]/divisor[1],
                                                                                  input[1][0][1][0]/divisor[1],
                                                                                  input[1][0][1][1]/divisor[1]}));
                    break;
                }
                case armnn::NormalizationAlgorithmChannel::Across:
                {
                    // When normalising across channels, all output values should equal the inputs, but multiplied by:
                    // pow((kappa + (accumulatedScale * alpha)), -beta)
                    // ...where accumulatedScale is the sum of the inputs for adjacent channels for this element squared
                    // ...where adjacent channels means within half the normSize for the channel
                    // The test data has only one channel, so this is simplified below.
                    std::vector<float> outputVector;
                    for (int n = 0; n < boost::numeric_cast<int>(inputNum); ++n)
                    {
                        for (int h = 0; h < boost::numeric_cast<int>(inputHeight); ++h)
                        {
                            for (int w = 0; w < boost::numeric_cast<int>(inputWidth); ++w)
                            {
                                float accumulatedScale = input[n][0][h][w]*input[n][0][h][w];
                                float scale = powf((kappa + accumulatedScale * alpha), -beta);
                                outputVector.push_back(input[n][0][h][w] * scale);
                            }
                        }
                    }
                    ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputVector);
                    break;
                }
                default:
                {
                    throw armnn::UnimplementedException("Unsupported normalisation channel type, "
                                                        "only Across and Within are supported");
                }
            }
            break;
        }
        case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough.
        default:
        {
            throw armnn::UnimplementedException("Unsupported normalisation method type, "
                                                "only LocalBrightness is supported");
        }
    }

    return ret;
}

// This is test implementation for CL and NEON,
// as currently, only Across Normalization is supported on CL and NEON for NHWC.
LayerTestResult<float,4> SimpleNormalizationNhwcClNeonTestImpl(armnn::IWorkloadFactory& workloadFactory,
                                                               armnn::NormalizationAlgorithmChannel normChannel,
                                                               armnn::NormalizationAlgorithmMethod normMethod)
{
    const unsigned int inputHeight = 2;
    const unsigned int inputWidth = 2;
    const unsigned int inputChannels = 1;
    const unsigned int inputNum = 2;

    unsigned int outputHeight = inputHeight;
    unsigned int outputWidth = inputWidth;
    unsigned int outputChannels = inputChannels;
    unsigned int outputNum = inputNum;

    unsigned int inputShape[] = { inputNum, inputHeight, inputWidth, inputChannels };
    unsigned int outputShape[] = { outputNum, outputHeight, outputWidth, outputChannels };

    auto inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    auto outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    LayerTestResult<float,4> ret(outputTensorInfo);

    auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
        // Batch #0
        1.0f, 2.0f,
        3.0f, 4.0f,
        // Batch #1
        5.0f, 6.0f,
        7.0f, 8.0f
    }));

    float alpha = 1.f;
    float beta = 1.f;
    float kappa = 1.f;
    uint32_t normSize = 3;

    std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
    std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);

    armnn::NormalizationQueueDescriptor data;
    armnn::WorkloadInfo info;
    AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
    AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
    data.m_Parameters.m_NormChannelType = normChannel;
    data.m_Parameters.m_NormMethodType = normMethod;
    data.m_Parameters.m_NormSize = normSize;
    data.m_Parameters.m_Alpha = alpha;
    data.m_Parameters.m_Beta = beta;
    data.m_Parameters.m_K = kappa;
    data.m_Parameters.m_DataLayout = armnn::DataLayout::NHWC;

    armnn::PassthroughCpuTensorHandle refHandle(outputTensorInfo, &ret.outputExpected[0][0][0][0]);
    armnn::NormalizationQueueDescriptor refData = data;
    armnn::WorkloadInfo refInfo = info;
    SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, &refHandle);

    std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);

    inputHandle->Allocate();
    outputHandle->Allocate();

    CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);

    workloadFactory.Finalize();
    workload->Execute();

    CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());

    switch (normMethod)
    {
        case armnn::NormalizationAlgorithmMethod::LocalBrightness:
        {
            switch (normChannel)
            {
                case armnn::NormalizationAlgorithmChannel::Across:
                {
                    std::vector<float> expectedOutput{ 0.5f, 0.400000006f, 0.300000012f, 0.235294119f,
                                                       0.192307696f, 0.16216217f, 0.140000001f, 0.123076923f };
                    ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, expectedOutput);
                    break;
                }
                default:
                {
                    throw armnn::UnimplementedException("Unsupported normalisation channel type, "
                                                        "Only Cross-map is supported for NHWC layout");
                }
            }
            break;
        }
        case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough.
        default:
        {
            throw armnn::UnimplementedException("Unsupported normalisation method type, "
                                                "only LocalBrightness is supported");
        }
    }

    return ret;
}

LayerTestResult<float,4> CompareNormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
                                                      armnn::IWorkloadFactory& refWorkloadFactory,
                                                      armnn::NormalizationAlgorithmChannel normChannel,
                                                      armnn::NormalizationAlgorithmMethod normMethod)
{
    constexpr unsigned int inputNum = 5;
    constexpr unsigned int inputChannels = 3;
    constexpr unsigned int inputHeight = 32;
    constexpr unsigned int inputWidth = 24;

    constexpr unsigned int outputNum = inputNum;
    constexpr unsigned int outputChannels = inputChannels;
    constexpr unsigned int outputHeight = inputHeight;
    constexpr unsigned int outputWidth = inputWidth;

    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
    unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    LayerTestResult<float,4> ret(outputTensorInfo);

    auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 111234);

    constexpr float alpha = 1.f;
    constexpr float beta = 1.f;
    constexpr float kappa = 1.f;
    constexpr uint32_t normSize = 5;

    std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
    std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);

    armnn::NormalizationQueueDescriptor data;
    armnn::WorkloadInfo info;
    AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
    AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
    data.m_Parameters.m_NormChannelType = normChannel;
    data.m_Parameters.m_NormMethodType  = normMethod;
    data.m_Parameters.m_NormSize        = normSize;
    data.m_Parameters.m_Alpha           = alpha;
    data.m_Parameters.m_Beta            = beta;
    data.m_Parameters.m_K               = kappa;

    std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
    std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);

    armnn::NormalizationQueueDescriptor refData = data;
    armnn::WorkloadInfo refInfo = info;
    SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
    SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());

    // Don't execute if Normalization is not supported for the method and channel types, as an exception will be raised.
    armnn::Compute compute = workloadFactory.GetCompute();
    const size_t reasonIfUnsupportedMaxLen = 255;
    char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
    ret.supported = armnn::IsNormalizationSupported(compute, inputTensorInfo, outputTensorInfo, data.m_Parameters,
                                                    reasonIfUnsupported, reasonIfUnsupportedMaxLen);
    if (!ret.supported)
    {
        return ret;
    }

    std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);
    std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateNormalization(refData, refInfo);

    outputHandleRef->Allocate();
    inputHandleRef->Allocate();

    inputHandle->Allocate();
    outputHandle->Allocate();

    CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
    CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);

    workloadFactory.Finalize();
    workload->Execute();
    refWorkloadFactory.Finalize();
    workloadRef->Execute();

    CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
    CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());

    return ret;
}