aboutsummaryrefslogtreecommitdiff
path: root/src/backends/reference/workloads/RefElementwiseBinaryWorkload.cpp
blob: e71cdd4e3c99c889ccc6f49a779b612c3c41fc53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "RefElementwiseBinaryWorkload.hpp"

#include "Decoders.hpp"
#include "ElementwiseFunction.hpp"
#include "Encoders.hpp"
#include "RefWorkloadUtils.hpp"
#include "Maximum.hpp"
#include "Minimum.hpp"
#include "SquaredDifference.hpp"
#include "Power.hpp"

#include <Profiling.hpp>

#include <armnn/TypesUtils.hpp>

#include <functional>

namespace armnn
{

template<typename DataType>
void ExecuteFunction(std::vector<ITensorHandle*> inputs,
                     std::vector<ITensorHandle*> outputs,
                     BinaryOperation operation)
{
    const TensorInfo& inputInfo0 = GetTensorInfo(inputs[0]);
    const TensorInfo& inputInfo1 = GetTensorInfo(inputs[1]);
    const TensorInfo& outputInfo = GetTensorInfo(outputs[0]);

    const TensorShape& inShape0 = inputInfo0.GetShape();
    const TensorShape& inShape1 = inputInfo1.GetShape();
    const TensorShape& outShape = outputInfo.GetShape();

    std::unique_ptr<Decoder<DataType>> input0 = MakeDecoder<DataType>(inputInfo0, inputs[0]->Map());
    std::unique_ptr<Decoder<DataType>> input1 = MakeDecoder<DataType>(inputInfo1, inputs[1]->Map());
    std::unique_ptr<Encoder<DataType>> output = MakeEncoder<DataType>(outputInfo, outputs[0]->Map());

    using AddFunction     = ElementwiseBinaryFunction<std::plus<DataType>>;
    using DivFunction     = ElementwiseBinaryFunction<std::divides<DataType>>;
    using MaximumFunction = ElementwiseBinaryFunction<armnn::maximum<DataType>>;
    using MinimumFunction = ElementwiseBinaryFunction<armnn::minimum<DataType>>;
    using MulFunction     = ElementwiseBinaryFunction<std::multiplies<DataType>>;
    using SubFunction     = ElementwiseBinaryFunction<std::minus<DataType>>;
    using SqDiffFunction  = ElementwiseBinaryFunction<armnn::squaredDifference<DataType>>;
    using PowerFunction   = ElementwiseBinaryFunction<armnn::power<DataType>>;

    switch (operation)
    {
        case BinaryOperation::Add:
        {
            AddFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::Div:
        {
            DivFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::Maximum:
        {
            MaximumFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::Minimum:
        {
            MinimumFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::Mul:
        {
            MulFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::Sub:
        {
            SubFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::SqDiff:
        {
            SqDiffFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        case BinaryOperation::Power:
        {
            PowerFunction(inShape0, inShape1, outShape, *input0, *input1, *output);
            break;
        }
        default:
        {
            throw InvalidArgumentException(std::string("Unsupported binary operation ") +
                                           GetBinaryOperationAsCString(operation), CHECK_LOCATION());
        }
    }
}

RefElementwiseBinaryWorkload::RefElementwiseBinaryWorkload(const ElementwiseBinaryQueueDescriptor& desc,
                                                         const WorkloadInfo& info)
    : RefBaseWorkload<ElementwiseBinaryQueueDescriptor>(desc, info)
{}

void RefElementwiseBinaryWorkload::Execute() const
{
    Execute(m_Data.m_Inputs, m_Data.m_Outputs);
}

void RefElementwiseBinaryWorkload::ExecuteAsync(ExecutionData& executionData)
{

    WorkingMemDescriptor* workingMemDescriptor = static_cast<WorkingMemDescriptor*>(executionData.m_Data);
    Execute(workingMemDescriptor->m_Inputs, workingMemDescriptor->m_Outputs);
}

void RefElementwiseBinaryWorkload::Execute(std::vector<ITensorHandle*> inputs,
                                           std::vector<ITensorHandle*> outputs) const
{
    ARMNN_SCOPED_PROFILING_EVENT(Compute::CpuRef, "RefElementwiseBinaryWorkload_Execute");

    if (GetTensorInfo(inputs[0]).GetDataType() == DataType::Signed32)
    {
        ExecuteFunction<int32_t>(inputs, outputs, m_Data.m_Parameters.m_Operation);
    }
    else
    {
        ExecuteFunction<float>(inputs, outputs, m_Data.m_Parameters.m_Operation);
    }
}

} // namespace armnn