aboutsummaryrefslogtreecommitdiff
path: root/src/armnnUtils/TensorUtils.cpp
blob: 03109e0cee05f6115a9e5cf2742f3595a9980d6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//
// Copyright © 2017-2023 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <armnnUtils/TensorUtils.hpp>

#include <armnn/backends/ITensorHandle.hpp>
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/NumericCast.hpp>

#include <fmt/format.h>

using namespace armnn;

namespace armnnUtils
{

TensorShape GetTensorShape(unsigned int numberOfBatches,
                                  unsigned int numberOfChannels,
                                  unsigned int height,
                                  unsigned int width,
                                  const DataLayout dataLayout)
{
    switch (dataLayout)
    {
        case DataLayout::NCHW:
            return TensorShape({numberOfBatches, numberOfChannels, height, width});
        case DataLayout::NHWC:
            return TensorShape({numberOfBatches, height, width, numberOfChannels});
        default:
            throw InvalidArgumentException("Unknown data layout ["
                                                  + std::to_string(static_cast<int>(dataLayout)) +
                                                  "]", CHECK_LOCATION());
    }
}

TensorInfo GetTensorInfo(unsigned int numberOfBatches,
                                unsigned int numberOfChannels,
                                unsigned int height,
                                unsigned int width,
                                const DataLayout dataLayout,
                                const DataType dataType)
{
    switch (dataLayout)
    {
        case DataLayout::NCHW:
            return TensorInfo({numberOfBatches, numberOfChannels, height, width}, dataType);
        case DataLayout::NHWC:
            return TensorInfo({numberOfBatches, height, width, numberOfChannels}, dataType);
        default:
            throw InvalidArgumentException("Unknown data layout ["
                                                  + std::to_string(static_cast<int>(dataLayout)) +
                                                  "]", CHECK_LOCATION());
    }
}

TensorInfo GetTensorInfo(unsigned int numberOfBatches,
                                unsigned int numberOfChannels,
                                unsigned int depth,
                                unsigned int height,
                                unsigned int width,
                                const DataLayout dataLayout,
                                const DataType dataType)
{
    switch (dataLayout)
    {
        case DataLayout::NDHWC:
            return TensorInfo({numberOfBatches, depth, height, width, numberOfChannels}, dataType);
        case DataLayout::NCDHW:
            return TensorInfo({numberOfBatches, numberOfChannels, depth, height, width}, dataType);
        default:
            throw InvalidArgumentException("Unknown data layout ["
                                                  + std::to_string(static_cast<int>(dataLayout)) +
                                                  "]", CHECK_LOCATION());
    }
}

std::pair<float, float> FindMinMax(ITensorHandle* tensorHandle)
{
    auto tensor_data = static_cast<const float *>(tensorHandle->Map(true));
    auto tensor_size = tensorHandle->GetShape().GetNumElements();

    // Set min/max initially to first value in tensor
    float min = tensor_data[0];
    float max = tensor_data[0];

    // Loop over rest of tensor and update min/max if necessary
    for (unsigned int val = 1; val < tensor_size; val++)
    {
        if (tensor_data[val] < min)
        {
            min = tensor_data[val];
        }
        else if (tensor_data[val] > max)
        {
            max = tensor_data[val];
        }
    }

    tensorHandle->Unmap();

    return std::make_pair(min, max);
}

TensorShape ReduceDims(const TensorShape& tensorShape, unsigned int dimensions)
{
    if (tensorShape.GetNumDimensions() <= dimensions)
    {
        return tensorShape;
    }
    std::vector<unsigned int> newShape;

    unsigned int dimsToSkip = tensorShape.GetNumDimensions() - dimensions;
    unsigned int dimsSkipped = 0;
    bool insertRemainder = false;

    for (unsigned int i = 0; i < tensorShape.GetNumDimensions(); ++i)
    {
        if (tensorShape[i] == 1 && dimsSkipped < dimsToSkip && !insertRemainder)
        {
            ++dimsSkipped;
            continue;
        }
        newShape.push_back(tensorShape[i]);
        // Once we insert the first dimension we can't skip any more
        insertRemainder = true;
    }
    return TensorShape(static_cast<unsigned int>(newShape.size()), newShape.data());
}

TensorInfo ReduceDims(const TensorInfo& tensorInfo, unsigned int dimensions)
{
    TensorInfo strippedTensor(tensorInfo);
    TensorShape strippedShape = ReduceDims(tensorInfo.GetShape(), dimensions);
    strippedTensor.SetShape(strippedShape);
    return strippedTensor;
}

TensorShape ExpandDims(const TensorShape& tensorShape, int axis)
{
    unsigned int outputDim = tensorShape.GetNumDimensions() + 1;

    if (axis < -armnn::numeric_cast<int>(outputDim) || axis > armnn::numeric_cast<int>(tensorShape.GetNumDimensions()))
    {
        throw InvalidArgumentException(fmt::format("Invalid expansion axis {} for {}D input tensor. {}",
                                                   axis,
                                                   tensorShape.GetNumDimensions(),
                                                   CHECK_LOCATION().AsString()));
    }

    if (axis < 0)
    {
        axis = armnn::numeric_cast<int>(outputDim) + axis;
    }

    std::vector<unsigned int> outputShape;
    outputShape.reserve(tensorShape.GetNumDimensions());
    for (unsigned int i = 0; i < tensorShape.GetNumDimensions(); ++i)
    {
        outputShape.push_back(tensorShape[i]);
    }
    outputShape.insert(outputShape.begin() + axis, 1);

    return { outputDim, outputShape.data() };
}

std::vector<unsigned int> SqueezeDims(const TensorShape& tensorShape)
{
    std::vector<unsigned int> squeezedDims;

    for (unsigned int i = 0; i < tensorShape.GetNumDimensions(); ++i)
    {
        if (tensorShape[i] != 1)
        {
            squeezedDims.push_back(tensorShape[i]);
        }
    }
    return squeezedDims;
}

unsigned int GetNumElementsBetween(const TensorShape& shape,
                                   const unsigned int firstAxisInclusive,
                                   const unsigned int lastAxisExclusive)
{
    ARMNN_ASSERT(firstAxisInclusive <= lastAxisExclusive);
    ARMNN_ASSERT(lastAxisExclusive <= shape.GetNumDimensions());
    unsigned int count = 1;
    for (unsigned int i = firstAxisInclusive; i < lastAxisExclusive; i++)
    {
        count *= shape[i];
    }
    return count;
}

unsigned int GetUnsignedAxis(const unsigned int inputDimension, const int axis)
{
    ARMNN_ASSERT_MSG(axis < armnn::numeric_cast<int>(inputDimension),
                     "Required axis index greater than number of dimensions.");
    ARMNN_ASSERT_MSG(axis >= -armnn::numeric_cast<int>(inputDimension),
                     "Required axis index lower than negative of the number of dimensions");

    unsigned int uAxis = axis < 0  ?
                         inputDimension - armnn::numeric_cast<unsigned int>(abs(axis))
                         : armnn::numeric_cast<unsigned int>(axis);
    return uAxis;
}

unsigned int GetNumElementsAfter(const armnn::TensorShape& shape, unsigned int axis)
{
    unsigned int numDim = shape.GetNumDimensions();
    ARMNN_ASSERT(axis <= numDim - 1);
    unsigned int count = 1;
    for (unsigned int i = axis+1; i < numDim; i++)
    {
        count *= shape[i];
    }
    return count;
}

std::pair<unsigned int, std::vector<float>> GetPerAxisParams(const armnn::TensorInfo& info)
{
    const std::vector<float>& scales = info.GetQuantizationScales();
    armnn::Optional<unsigned int> quantizationDim = info.GetQuantizationDim();
    if (!info.HasPerAxisQuantization())
    {
        throw armnn::InvalidArgumentException(
            std::string("Per-axis quantization params not set for tensor of type ") +
            armnn::GetDataTypeName(info.GetDataType()), CHECK_LOCATION());
    }
    unsigned int axisFactor = GetNumElementsAfter(info.GetShape(), quantizationDim.value()) ;

    return { axisFactor, scales };
}

template<typename PrimitiveType>
void CheckSizes(const std::vector<PrimitiveType>& data, const armnn::TensorInfo& tensorInfo, unsigned int size = 1)
{
    if (data.size() / size != tensorInfo.GetNumElements())
    {
        throw InvalidArgumentException(
                fmt::format("The data does not contain the expected number of elements {} != {}. {}",
                            data.size(), tensorInfo.GetNumElements(), CHECK_LOCATION().AsString()));
    }
}

template<typename PrimitiveType>
std::unique_ptr<float[]> ToFloatArray(const std::vector<PrimitiveType>& data, const armnn::TensorInfo& tensorInfo)
{
    CheckSizes(data, tensorInfo);

    std::unique_ptr<float[]> returnBuffer(new float[tensorInfo.GetNumElements()]);

    if (tensorInfo.HasPerAxisQuantization())
    {
        unsigned int axis = tensorInfo.GetQuantizationDim().value();
        auto axisDimensionality = tensorInfo.GetShape()[axis];
        auto axisFactor = armnnUtils::GetNumElementsAfter(tensorInfo.GetShape(), axis);

        for (unsigned int i = 0; i < tensorInfo.GetNumElements(); ++i)
        {
            unsigned int axisIndex;

            if (i < axisFactor)
            {
                axisIndex = 0;
            }
            else
            {
                axisIndex = (i / axisFactor) % axisDimensionality;
            }
            returnBuffer[i] = Dequantize<PrimitiveType>(data[i],
                                                        tensorInfo.GetQuantizationScales()[axisIndex],
                                                        tensorInfo.GetQuantizationOffset());
        }
    }
    else
    {
        for (unsigned int i = 0; i < tensorInfo.GetNumElements(); ++i)
        {
            returnBuffer[i] = Dequantize<PrimitiveType>(data[i],
                                                        tensorInfo.GetQuantizationScale(),
                                                        tensorInfo.GetQuantizationOffset());
        }
    }
    return returnBuffer;
}

std::unique_ptr<float[]> ToFloatArray(const std::vector<uint8_t>& data, const armnn::TensorInfo& tensorInfo)
{
    if (tensorInfo.GetDataType() == DataType::QAsymmS8 || tensorInfo.GetDataType() == DataType::QSymmS8)
    {
        CheckSizes(data, tensorInfo);
        std::vector<int8_t> buffer(tensorInfo.GetNumElements());
        ::memcpy(buffer.data(), data.data(), data.size());
        return ToFloatArray<int8_t>(buffer, tensorInfo);
    }
    else if (tensorInfo.GetDataType() == DataType::QAsymmU8)
    {
        CheckSizes(data, tensorInfo);
        return ToFloatArray<uint8_t>(data, tensorInfo);
    }
    else if (tensorInfo.GetDataType() == DataType::Signed32)
    {
        CheckSizes(data, tensorInfo, 4);
        std::vector<int32_t> buffer(tensorInfo.GetNumElements());
        ::memcpy(buffer.data(), data.data(), data.size());
        return ToFloatArray<int32_t>(buffer, tensorInfo);
    }
    else if (tensorInfo.GetDataType() == DataType::Signed64)
    {
        CheckSizes(data, tensorInfo, 8);
        std::vector<int64_t> buffer(tensorInfo.GetNumElements());
        ::memcpy(buffer.data(), data.data(), data.size());
        return ToFloatArray<int64_t>(buffer, tensorInfo);
    }
    throw InvalidArgumentException(
            fmt::format("Unsupported datatype {}. {}",
                        GetDataTypeName(tensorInfo.GetDataType()),
                        CHECK_LOCATION().AsString()));
}

} // namespace armnnUtils