aboutsummaryrefslogtreecommitdiff
path: root/src/armnn/test/EndToEndTest.cpp
blob: 5ed84d22d0775e566371a32ebb650c74d0126ce2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// See LICENSE file in the project root for full license information.
//
#include <boost/test/unit_test.hpp>

#include "armnn/Descriptors.hpp"
#include "armnn/IRuntime.hpp"
#include "armnn/INetwork.hpp"

#include "backends/test/QuantizeHelper.hpp"
#include <boost/core/ignore_unused.hpp>

BOOST_AUTO_TEST_SUITE(EndToEnd)

namespace
{
template<typename T>
bool IsFloatIterFunc(T iter)
{
    boost::ignore_unused(iter);
    return IsFloatingPointIterator<T>::value;
}
} //namespace

BOOST_AUTO_TEST_CASE(QuantizedHelper)
{
    std::vector<float> fArray;
    BOOST_TEST(IsFloatIterFunc(fArray.begin()) == true);
    BOOST_TEST(IsFloatIterFunc(fArray.cbegin()) == true);

    std::vector<double> dArray;
    BOOST_TEST(IsFloatIterFunc(dArray.begin()) == true);

    std::vector<int> iArray;
    BOOST_TEST(IsFloatIterFunc(iArray.begin()) == false);

    float floats[5];
    BOOST_TEST(IsFloatIterFunc(&floats[0]) == true);

    int ints[5];
    BOOST_TEST(IsFloatIterFunc(&ints[0]) == false);
}

BOOST_AUTO_TEST_CASE(Unsigned8)
{
    using namespace armnn;

    // Create runtime in which test will run
    armnn::IRuntimePtr runtime(armnn::IRuntime::Create(armnn::Compute::CpuRef));

    // build up the structure of the network
    armnn::INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0, "input");
    IConnectableLayer* softmax = net->AddSoftmaxLayer(SoftmaxDescriptor(), "softmax");
    IConnectableLayer* output  = net->AddOutputLayer(0, "output");

    input->GetOutputSlot(0).Connect(softmax->GetInputSlot(0));
    softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    // set the tensors in the network
    TensorInfo inputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
    inputTensorInfo.SetQuantizationOffset(100);
    inputTensorInfo.SetQuantizationScale(10000.0f);
    input->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);

    TensorInfo outputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
    outputTensorInfo.SetQuantizationOffset(0);
    outputTensorInfo.SetQuantizationScale(1.0f/255.0f);
    softmax->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*net, runtime->GetDeviceSpec());

    // load it into the runtime
    NetworkId netId;
    auto error = runtime->LoadNetwork(netId, std::move(optNet));
    BOOST_TEST(error == Status::Success);

    // create structures for input & output
    std::vector<uint8_t> inputData
    {
        1, 10, 3, 200, 5 // some inputs - one of which is sufficiently larger than the others to saturate softmax
    };
    std::vector<uint8_t> outputData(5);

    armnn::InputTensors inputTensors
    {
        {0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
    };
    armnn::OutputTensors outputTensors
    {
        {0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
    };

    // do the inference
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // check the results
    BOOST_TEST(outputData[0] == 0);
    BOOST_TEST(outputData[1] == 0);
    BOOST_TEST(outputData[2] == 0);
    BOOST_TEST(outputData[3] == 255); // softmax has been saturated
    BOOST_TEST(outputData[4] == 0);
}

template <typename T>
void ConstantUsageTest(armnn::Compute computeDevice,
    const armnn::TensorInfo& commonTensorInfo,
    const std::vector<T>& inputData,
    const std::vector<T>& constantData,
    const std::vector<T>& expectedOutputData)
{
    using namespace armnn;

    // Create runtime in which test will run
    armnn::IRuntimePtr runtime(armnn::IRuntime::Create(computeDevice));

    // build up the structure of the network
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0);
    IConnectableLayer* constant = net->AddConstantLayer(ConstTensor(commonTensorInfo, constantData));
    IConnectableLayer* add = net->AddAdditionLayer();
    IConnectableLayer* output = net->AddOutputLayer(0);

    input->GetOutputSlot(0).Connect(add->GetInputSlot(0));
    constant->GetOutputSlot(0).Connect(add->GetInputSlot(1));
    add->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    // set the tensors in the network
    input->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
    constant->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
    add->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*net, runtime->GetDeviceSpec());

    // load it into the runtime
    NetworkId netId;
    runtime->LoadNetwork(netId, std::move(optNet));

    // create structures for input & output
    std::vector<T> outputData(inputData.size());

    InputTensors inputTensors
    {
        {0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
    };
    OutputTensors outputTensors
    {
        {0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
    };

    // do the inference
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // check the results
    BOOST_TEST(outputData == expectedOutputData);
}

static void ConstantUsageFloat32Test(armnn::Compute computeDevice)
{
    const armnn::TensorInfo commonTensorInfo({ 2, 3 }, armnn::DataType::Float32);

    ConstantUsageTest(computeDevice,
        commonTensorInfo,
        std::vector<float>{ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }, // input
        std::vector<float>{ 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }, // const input
        std::vector<float>{ 7.f, 7.f, 7.f, 7.f, 7.f, 7.f }  // expected output
    );
}

static void ConstantUsageUint8Test(armnn::Compute computeDevice)
{
    armnn::TensorInfo commonTensorInfo({ 2, 3 }, armnn::DataType::QuantisedAsymm8);

    const float scale = 0.023529f;
    const int8_t offset = -43;

    commonTensorInfo.SetQuantizationScale(scale);
    commonTensorInfo.SetQuantizationOffset(offset);

    ConstantUsageTest(computeDevice,
        commonTensorInfo,
        QuantizedVector<uint8_t>(scale, offset, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }), // input
        QuantizedVector<uint8_t>(scale, offset, { 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }), // const input
        QuantizedVector<uint8_t>(scale, offset, { 7.f, 7.f, 7.f, 7.f, 7.f, 7.f })  // expected output
    );
}

BOOST_AUTO_TEST_CASE(ConstantUsage_Ref_Float32)
{
    ConstantUsageFloat32Test(armnn::Compute::CpuRef);
}

#if ARMCOMPUTENEON_ENABLED
BOOST_AUTO_TEST_CASE(ConstantUsage_Neon_Float32)
{
    ConstantUsageFloat32Test(armnn::Compute::CpuAcc);
}
#endif

#if ARMCOMPUTECL_ENABLED
BOOST_AUTO_TEST_CASE(ConstantUsage_Cl_Float32)
{
    ConstantUsageFloat32Test(armnn::Compute::GpuAcc);
}
#endif

BOOST_AUTO_TEST_CASE(ConstantUsage_Ref_Uint8)
{
    ConstantUsageUint8Test(armnn::Compute::CpuRef);
}

BOOST_AUTO_TEST_CASE(TrivialAdd)
{
    // This test was designed to match "AddTwo" in android nn/runtime/test/TestTrivialModel.cpp

    using namespace armnn;

    // Create runtime in which test will run
    armnn::IRuntimePtr runtime(armnn::IRuntime::Create(armnn::Compute::CpuRef));

    // build up the structure of the network
    armnn::INetworkPtr net(INetwork::Create());

    IConnectableLayer* input1 = net->AddInputLayer(0);
    IConnectableLayer* input2 = net->AddInputLayer(1);
    IConnectableLayer* add    = net->AddAdditionLayer();
    IConnectableLayer* output = net->AddOutputLayer(0);

    input1->GetOutputSlot(0).Connect(add->GetInputSlot(0));
    input2->GetOutputSlot(0).Connect(add->GetInputSlot(1));
    add->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    // set the tensors in the network
    TensorInfo tensorInfo(TensorShape({3, 4}), DataType::Float32);
    input1->GetOutputSlot(0).SetTensorInfo(tensorInfo);
    input2->GetOutputSlot(0).SetTensorInfo(tensorInfo);
    add->GetOutputSlot(0).SetTensorInfo(tensorInfo);

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*net, runtime->GetDeviceSpec());

    // load it into the runtime
    NetworkId netId;
    runtime->LoadNetwork(netId, std::move(optNet));

    // create structures for input & output - matching android nn test
    std::vector<float> input1Data
    {
        1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f
    };
    std::vector<float> input2Data
    {
        100.f, 200.f, 300.f, 400.f, 500.f, 600.f, 700.f, 800.f, 900.f, 1000.f, 1100.f, 1200.f
    };
    std::vector<float> outputData(12);

    InputTensors inputTensors
    {
        {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), input1Data.data())},
        {1,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), input2Data.data())}
    };
    OutputTensors outputTensors
    {
        {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
    };

    // do the inference
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // check the results
    BOOST_TEST(outputData[0] == 101);
    BOOST_TEST(outputData[1] == 202);
    BOOST_TEST(outputData[2] == 303);
    BOOST_TEST(outputData[3] == 404);
    BOOST_TEST(outputData[4] == 505);
    BOOST_TEST(outputData[5] == 606);
    BOOST_TEST(outputData[6] == 707);
    BOOST_TEST(outputData[7] == 808);
    BOOST_TEST(outputData[8] == 909);
    BOOST_TEST(outputData[9] == 1010);
    BOOST_TEST(outputData[10] == 1111);
    BOOST_TEST(outputData[11] == 1212);
}

BOOST_AUTO_TEST_CASE(MultipleOutputs)
{
    using namespace armnn;

    // Create runtime in which test will run
    armnn::IRuntimePtr  runtime(armnn::IRuntime::Create(armnn::Compute::CpuRef));

    // build up the structure of the network
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0);

    // ReLu1
    ActivationDescriptor activation1Descriptor;
    activation1Descriptor.m_Function = ActivationFunction::BoundedReLu;
    activation1Descriptor.m_A = 1.f;
    activation1Descriptor.m_B = -1.f;
    IConnectableLayer* activation1 = net->AddActivationLayer(activation1Descriptor);

    // ReLu6
    ActivationDescriptor activation2Descriptor;
    activation2Descriptor.m_Function = ActivationFunction::BoundedReLu;
    activation2Descriptor.m_A = 6.0f;
    IConnectableLayer* activation2 = net->AddActivationLayer(activation2Descriptor);

    // BoundedReLu(min=2, max=5)
    ActivationDescriptor activation3Descriptor;
    activation3Descriptor.m_Function = ActivationFunction::BoundedReLu;
    activation3Descriptor.m_A = 5.0f;
    activation3Descriptor.m_B = 2.0f;
    IConnectableLayer* activation3 = net->AddActivationLayer(activation3Descriptor);

    IConnectableLayer* output1 = net->AddOutputLayer(0);
    IConnectableLayer* output2 = net->AddOutputLayer(1);
    IConnectableLayer* output3 = net->AddOutputLayer(2);

    input->GetOutputSlot(0).Connect(activation1->GetInputSlot(0));
    input->GetOutputSlot(0).Connect(activation2->GetInputSlot(0));
    input->GetOutputSlot(0).Connect(activation3->GetInputSlot(0));

    activation1->GetOutputSlot(0).Connect(output1->GetInputSlot(0));
    activation2->GetOutputSlot(0).Connect(output2->GetInputSlot(0));
    activation3->GetOutputSlot(0).Connect(output3->GetInputSlot(0));

    // set the tensors in the network
    TensorInfo tensorInfo(TensorShape({ 10 }), DataType::Float32);
    input->GetOutputSlot(0).SetTensorInfo(tensorInfo);
    activation1->GetOutputSlot(0).SetTensorInfo(tensorInfo);
    activation2->GetOutputSlot(0).SetTensorInfo(tensorInfo);
    activation3->GetOutputSlot(0).SetTensorInfo(tensorInfo);

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*net, runtime->GetDeviceSpec());

    // load it into the runtime
    NetworkId netId;
    runtime->LoadNetwork(netId, std::move(optNet));

    // create structures for input & output
    const std::vector<float> inputData{ 3.f, 5.f, 2.f, 3.f, 7.f, 0.f, -2.f, -1.f, 3.f, 3.f };

    std::vector<float> output1Data(inputData.size());
    std::vector<float> output2Data(inputData.size());
    std::vector<float> output3Data(inputData.size());

    InputTensors inputTensors
    {
        {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
    };
    OutputTensors outputTensors
    {
        {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), output1Data.data())},
        {1,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 1), output2Data.data())},
        {2,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 2), output3Data.data())}
    };

    // do the inference
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // check the results
    BOOST_TEST(output1Data == std::vector<float>({ 1.f, 1.f, 1.f, 1.f, 1.f, 0.f, -1.f, -1.f, 1.f, 1.f })); // ReLu1
    BOOST_TEST(output2Data == std::vector<float>({ 3.f, 5.f, 2.f, 3.f, 6.f, 0.f, 0.f, 0.f, 3.f, 3.f })); // ReLu6
    BOOST_TEST(output3Data == std::vector<float>({ 3.f, 5.f, 2.f, 3.f, 5.f, 2.f, 2.f, 2.f, 3.f, 3.f })); // [2, 5]
}

#if ARMCOMPUTENEON_ENABLED
BOOST_AUTO_TEST_CASE(ErrorOnLoadNetwork)
{
    using namespace armnn;

    // Create runtime in which test will run
    // Note we don't allow falling back to CpuRef if an operation (excluding inputs, outputs, etc.) isn't supported
    armnn::IRuntime::CreationOptions options(armnn::Compute::CpuAcc);
    options.m_UseCpuRefAsFallback = false;
    armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));

    // build up the structure of the network
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0);

    // This layer configuration isn't supported by CpuAcc and isn't allowed to fall back, so LoadNetwork will fail.
    NormalizationDescriptor descriptor;
    IConnectableLayer* pooling = net->AddNormalizationLayer(descriptor);

    IConnectableLayer* output = net->AddOutputLayer(0);

    input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0));
    pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
    pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*net, runtime->GetDeviceSpec());

    // Load it into the runtime. It should fail.
    NetworkId netId;
    BOOST_TEST(runtime->LoadNetwork(netId, std::move(optNet)) == Status::Failure);
}
#endif // ARMCOMPUTENEON_ENABLED

BOOST_AUTO_TEST_SUITE_END()