aboutsummaryrefslogtreecommitdiff
path: root/src/armnn/Profiling.cpp
blob: 4caa31905c4cd1ae946ff1c4a11190c9217a7fc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "Profiling.hpp"
#include "JsonPrinter.hpp"

#if ARMNN_STREAMLINE_ENABLED
#include <streamline_annotate.h>
#endif

#include <algorithm>
#include <iomanip>
#include <iostream>
#include <fstream>
#include <map>
#include <stack>

#include <boost/algorithm/string.hpp>
#include <boost/core/ignore_unused.hpp>
namespace armnn
{

// Controls the amount of memory initially allocated to store profiling events.
// If chosen carefully, the profiling system will not make any additional allocations, thus minimizing its impact on
// measured times.
constexpr std::size_t g_ProfilingEventCountHint = 1024;

// Whether profiling reports should include the sequence of events together with their timings.
constexpr bool g_WriteProfilingEventSequence = true;

// Whether profiling reports should also report detailed information on events grouped by inference.
// This can spam the output stream, so use carefully (or adapt the code to just output information
// of interest).
constexpr bool g_AggregateProfilingEventsByInference = true;

// Whether a call to Profiler::AnalyzeEventsAndWriteResults() will be made when the Profiler is destroyed.
// It can be convenient for local tests.
constexpr bool g_WriteReportToStdOutOnProfilerDestruction = false;

Measurement FindMeasurement(const std::string& name, const Event* event)
{

    BOOST_ASSERT(event != nullptr);

    // Search though the measurements.
    for (const auto& measurement : event->GetMeasurements())
    {
        if (measurement.m_Name == name)
        {
            // Measurement found.
            return measurement;
        }
    }

    // Measurement not found.
    return Measurement{ "", 0.f, Measurement::Unit::TIME_MS };
}

std::vector<Measurement> FindKernelMeasurements(const Event* event)
{
    BOOST_ASSERT(event != nullptr);

    std::vector<Measurement> measurements;

    // Search through the measurements.
    for (const auto& measurement : event->GetMeasurements())
    {
        if (measurement.m_Name.rfind("OpenClKernelTimer", 0) == 0
            || measurement.m_Name.rfind("NeonKernelTimer", 0) == 0)
        {
            // Measurement found.
            measurements.push_back(measurement);
        }
    }

    return measurements;
}

std::map<std::string, Profiler::ProfilingEventStats> Profiler::CalculateProfilingEventStats() const
{
    std::map<std::string, ProfilingEventStats> nameToStatsMap;

    for (const auto& event : m_EventSequence)
    {
        Measurement measurement = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME, event.get());

        double durationMs = measurement.m_Value;
        auto it = nameToStatsMap.find(event->GetName());
        if (it != nameToStatsMap.end())
        {
            ProfilingEventStats& stats = it->second;
            stats.m_TotalMs += durationMs;
            stats.m_MinMs = std::min(stats.m_MinMs, durationMs);
            stats.m_MaxMs = std::max(stats.m_MaxMs, durationMs);
            ++stats.m_Count;
        }
        else
        {
            nameToStatsMap.emplace(event->GetName(), ProfilingEventStats{ durationMs, durationMs, durationMs, 1 });
        }
    }

    return nameToStatsMap;
}

const Event* GetEventPtr(const Event* ptr) { return ptr;}
const Event* GetEventPtr(const std::unique_ptr<Event>& ptr) {return ptr.get(); }

template<typename ItertType>
void Profiler::AnalyzeEventSequenceAndWriteResults(ItertType first, ItertType last, std::ostream& outStream) const
{
    // Outputs event sequence, if needed.
    if (g_WriteProfilingEventSequence)
    {
        // Makes sure timestamps are output with 6 decimals, and save old settings.
        std::streamsize oldPrecision = outStream.precision();
        outStream.precision(6);
        std::ios_base::fmtflags oldFlags = outStream.flags();
        outStream.setf(std::ios::fixed);
        // Outputs fields.
        outStream << "Event Sequence - Name | Duration (ms) | Start (ms) | Stop (ms) | Device" << std::endl;
        for (auto event = first; event != last; ++event)
        {
            const Event* eventPtr = GetEventPtr((*event));
            double startTimeMs = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME_START, eventPtr).m_Value;
            double stopTimeMs = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME_STOP, eventPtr).m_Value;

            // Find the WallClock measurement if there is one.
            double durationMs = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME, eventPtr).m_Value;
            outStream << std::setw(50) << eventPtr->GetName() << " "
                      << std::setw(20) << durationMs
                      << std::setw(20) << startTimeMs
                      << std::setw(20) << stopTimeMs
                      << std::setw(20) << GetComputeDeviceAsCString(eventPtr->GetComputeDevice())
                      << std::endl;
        }
        outStream << std::endl;
        // Restores previous precision settings.
        outStream.flags(oldFlags);
        outStream.precision(oldPrecision);
    }

    // Aggregates results per event name.
    std::map<std::string, ProfilingEventStats> nameToStatsMap = CalculateProfilingEventStats();

    // Outputs aggregated stats.
    outStream << "Event Stats - Name | Avg (ms) | Min (ms) | Max (ms) | Total (ms) | Count" << std::endl;
    for (const auto& pair : nameToStatsMap)
    {
        const std::string& eventLabel = pair.first;
        const ProfilingEventStats& eventStats = pair.second;
        const double avgMs = eventStats.m_TotalMs / double(eventStats.m_Count);

        outStream << "\t" << std::setw(50) << eventLabel << " " << std::setw(9) << avgMs << " "
            << std::setw(9) << eventStats.m_MinMs << " " << std::setw(9) << eventStats.m_MaxMs << " "
            << std::setw(9) << eventStats.m_TotalMs << " " << std::setw(9) << eventStats.m_Count << std::endl;
    }
    outStream << std::endl;
}

Profiler::Profiler()
    : m_ProfilingEnabled(false)
{
    m_EventSequence.reserve(g_ProfilingEventCountHint);

#if ARMNN_STREAMLINE_ENABLED
    // Initialises streamline annotations.
    ANNOTATE_SETUP;
#endif
}

Profiler::~Profiler()
{
    if (m_ProfilingEnabled)
    {
        if (g_WriteReportToStdOutOnProfilerDestruction)
        {
            Print(std::cout);
        }
    }

    // Un-register this profiler from the current thread.
    ProfilerManager::GetInstance().RegisterProfiler(nullptr);
}

bool Profiler::IsProfilingEnabled()
{
    return m_ProfilingEnabled;
}

void Profiler::EnableProfiling(bool enableProfiling)
{
    m_ProfilingEnabled = enableProfiling;
}

Event* Profiler::BeginEvent(Compute compute, const std::string& label, std::vector<InstrumentPtr>&& instruments)
{
    Event* parent = m_Parents.empty() ? nullptr : m_Parents.top();
    m_EventSequence.push_back(std::make_unique<Event>(label, this, parent, compute, std::move(instruments)));
    Event* event = m_EventSequence.back().get();
    event->Start();

#if ARMNN_STREAMLINE_ENABLED
    ANNOTATE_CHANNEL_COLOR(m_Parents.size(), GetEventColor(compute), label.c_str());
#endif

    m_Parents.push(event);
    return event;
}

void Profiler::EndEvent(Event* event)
{
    event->Stop();

    BOOST_ASSERT(!m_Parents.empty());
    BOOST_ASSERT(event == m_Parents.top());
    m_Parents.pop();

    Event* parent = m_Parents.empty() ? nullptr : m_Parents.top();
    boost::ignore_unused(parent);
    BOOST_ASSERT(event->GetParentEvent() == parent);

#if ARMNN_STREAMLINE_ENABLED
    ANNOTATE_CHANNEL_END(m_Parents.size());
#endif
}

int CalcLevel(const Event* eventPtr)
{
    int level=0;
    while (eventPtr != nullptr)
    {
        eventPtr = eventPtr->GetParentEvent();
        level++;
    }
    return level;
}

void Profiler::PopulateInferences(std::vector<const Event*>& outInferences, int& outBaseLevel) const
{
    outInferences.reserve(m_EventSequence.size());
    for (const auto& event : m_EventSequence)
    {
        const Event* eventPtrRaw = event.get();
        if (eventPtrRaw->GetName() == "EnqueueWorkload")
        {
            outBaseLevel = (outBaseLevel == -1) ? CalcLevel(eventPtrRaw) : outBaseLevel;
            outInferences.push_back(eventPtrRaw);
        }
    }
}

void Profiler::PopulateDescendants(std::map<const Event*, std::vector<const Event*>>& outDescendantsMap) const
{
    for (const auto& event : m_EventSequence)
    {
        const Event* eventPtrRaw = event.get();
        const Event* parent = eventPtrRaw->GetParentEvent();

        if (!parent)
        {
            continue;
        }

        auto it = outDescendantsMap.find(parent);
        if (it == outDescendantsMap.end())
        {
            outDescendantsMap.emplace(parent, std::vector<const Event*>({eventPtrRaw}));
        }
        else
        {
            it->second.push_back(eventPtrRaw);
        }
    }
}

void Profiler::Print(std::ostream& outStream) const
{
    // Makes sure timestamps are output with 6 decimals, and save old settings.
    std::streamsize oldPrecision = outStream.precision();
    outStream.precision(6);
    std::ios_base::fmtflags oldFlags = outStream.flags();
    outStream.setf(std::ios::fixed);
    JsonPrinter printer(outStream);

    // First find all the "inference" Events and print out duration measurements.
    int baseLevel = -1;
    std::vector<const Event*> inferences;
    PopulateInferences(inferences, baseLevel);

    // Second map out descendants hierarchy
    std::map<const Event*, std::vector<const Event*>> descendantsMap;
    PopulateDescendants(descendantsMap);

    JsonChildObject inferenceObject{"inference_measurements"};
    JsonChildObject layerObject{"layer_measurements"};
    std::vector<JsonChildObject> workloadObjects;
    std::map<unsigned int, std::vector<JsonChildObject>> workloadToKernelObjects;

    for (unsigned int inferenceIndex = 0; inferenceIndex < inferences.size(); ++inferenceIndex)
    {
        auto inference = inferences[inferenceIndex];
        Measurement measurement = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME, inference);
        inferenceObject.SetUnit(measurement.m_Unit);
        inferenceObject.AddMeasurement(measurement.m_Value);

        auto layerEventsIt = descendantsMap.find(inference);

        // Assuming 1 Execute per inference
        if (layerEventsIt != descendantsMap.end())
        {
            auto layerEvent = layerEventsIt->second[0];
            Measurement measurement = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME, layerEvent);
            layerObject.SetUnit(measurement.m_Unit);
            layerObject.AddMeasurement(measurement.m_Value);

            // Get Descendant Events for Execute
            auto workloadEventsIt = descendantsMap.find(layerEvent);
            for(unsigned int workloadIndex = 0; workloadIndex < workloadEventsIt->second.size(); ++workloadIndex)
            {
                auto workloadEvent = workloadEventsIt->second[workloadIndex];
                Measurement measurement = FindMeasurement(WallClockTimer::WALL_CLOCK_TIME, workloadEvent);
                std::vector<Measurement> kernelMeasurements = FindKernelMeasurements(workloadEvent);
                if (inferenceIndex == 0)
                {
                    // Only add second level once, in case of multiple inferences
                    JsonChildObject workloadObject{workloadEvent->GetName()};
                    workloadObject.SetUnit(measurement.m_Unit);
                    workloadObjects.push_back(workloadObject);
                }
                workloadObjects[workloadIndex].AddMeasurement(measurement.m_Value);

                for(unsigned int kernelIndex = 0; kernelIndex < kernelMeasurements.size(); ++kernelIndex)
                {
                    if (inferenceIndex == 0)
                    {
                        // Only add kernel measurement once, in case of multiple inferences
                        JsonChildObject kernelObject{kernelMeasurements[kernelIndex].m_Name};
                        kernelObject.SetUnit(kernelMeasurements[kernelIndex].m_Unit);
                        workloadToKernelObjects[workloadIndex].push_back(kernelObject);

                    }
                    workloadToKernelObjects[workloadIndex][kernelIndex].
                            AddMeasurement(kernelMeasurements[kernelIndex].m_Value);
                }
            }
        }
    }

    for (auto workloadToKernelPair : workloadToKernelObjects)
    {
        for (auto kernelObject : workloadToKernelPair.second)
        {
            workloadObjects[workloadToKernelPair.first].AddChild(kernelObject);
        }
    }

    for (auto workloadObject : workloadObjects)
    {
        layerObject.AddChild(workloadObject);
    }
    inferenceObject.AddChild(layerObject);

    printer.PrintHeader();
    printer.PrintArmNNHeader();

    // print inference object, also prints child layer and kernel measurements
    printer.PrintJsonChildObject(inferenceObject);

    // end of ArmNN
    printer.PrintNewLine();
    printer.PrintFooter();

    // end of main JSON object
    printer.PrintNewLine();
    printer.PrintFooter();
    printer.PrintNewLine();

    // Restores previous precision settings.
    outStream.flags(oldFlags);
    outStream.precision(oldPrecision);
}

void Profiler::AnalyzeEventsAndWriteResults(std::ostream& outStream) const
{
    // Stack should be empty now.
    const bool saneMarkerSequence = m_Parents.empty();

    // Abort if the sequence of markers was found to have incorrect information:
    // The stats cannot be trusted.
    if (!saneMarkerSequence)
    {
        outStream << "Cannot write profiling stats. "
            "Unexpected errors were found when analyzing the sequence of logged events, which may lead to plainly "
            "wrong stats. The profiling system may contain implementation issues or could have been used in an "
            "unsafe manner." << std::endl;
        return;
    }

    // Analyzes the full sequence of events.
    AnalyzeEventSequenceAndWriteResults(m_EventSequence.cbegin(),
                                        m_EventSequence.cend(),
                                        outStream);

    // Aggregates events by tag if requested (spams the output stream if done for all tags).
    if (g_AggregateProfilingEventsByInference)
    {
        outStream << std::endl;
        outStream << "***" << std::endl;
        outStream << "*** Per Inference Stats" << std::endl;
        outStream << "***" << std::endl;
        outStream << std::endl;

        int baseLevel = -1;
        std::vector<const Event*> inferences;
        PopulateInferences(inferences, baseLevel);

        // Second map out descendants hierarchy
        std::map<const Event*, std::vector<const Event*>> descendantsMap;
        PopulateDescendants(descendantsMap);

        std::function<void (const Event*, std::vector<const Event*>&)>
            FindDescendantEvents = [&](const Event* eventPtr,
                std::vector<const Event*>& sequence)
            {
                sequence.push_back(eventPtr);

                if (CalcLevel(eventPtr) > baseLevel+2) //We only care about levels as deep as workload executions.
                {
                    return;
                }

                auto children = descendantsMap.find(eventPtr);
                if (children == descendantsMap.end())
                {
                    return;
                }

                for (const Event* child : children->second)
                {
                    return FindDescendantEvents(child, sequence);
                }
            };

        // Third, find events belonging to each inference
        int inferenceIdx = 0;
        for (auto inference : inferences)
        {
            std::vector<const Event*> sequence;

            //build sequence, depth first
            FindDescendantEvents(inference, sequence);

            outStream << "> Begin Inference: " << inferenceIdx << std::endl;
            outStream << std::endl;
            AnalyzeEventSequenceAndWriteResults(sequence.cbegin(),
                                                sequence.cend(),
                                                outStream);
            outStream << std::endl;
            outStream << "> End Inference: " << inferenceIdx << std::endl;

            inferenceIdx++;
        }
    }
}

std::uint32_t Profiler::GetEventColor(Compute compute) const
{
    switch(compute)
    {
        case Compute::CpuRef:
            // Cyan
            return 0xffff001b;
        case Compute::CpuAcc:
            // Green
            return 0x00ff001b;
        case Compute::GpuAcc:
            // Purple
            return 0xff007f1b;
        default:
            // Dark gray
            return 0x5555551b;
    }
}

// The thread_local pointer to the profiler instance.
thread_local Profiler* tl_Profiler = nullptr;

ProfilerManager& ProfilerManager::GetInstance()
{
    // Global reference to the single ProfileManager instance allowed.
    static ProfilerManager s_ProfilerManager;
    return s_ProfilerManager;
}

void ProfilerManager::RegisterProfiler(Profiler* profiler)
{
    tl_Profiler = profiler;
}

Profiler* ProfilerManager::GetProfiler()
{
    return tl_Profiler;
}

} // namespace armnn