aboutsummaryrefslogtreecommitdiff
path: root/src/armnn/Graph.cpp
blob: 83d82a5ffe2491bde24032fc12c4325e4be8a81e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "Graph.hpp"
#include "LayersFwd.hpp"

#include <armnn/Utils.hpp>
#include <armnn/TypesUtils.hpp>

#include <boost/polymorphic_cast.hpp>
#include <boost/log/trivial.hpp>
#include <boost/assert.hpp>
#include <boost/format.hpp>

#include <unordered_map>
#include <DotSerializer.hpp>
#include <sstream>


namespace armnn
{

Graph::Graph(const Graph& other)
:   m_LayersInOrder(other.m_LayersInOrder)
{
    std::unordered_map<const Layer*, Layer*> otherToClonedMap;

    for (auto&& otherLayer : other.m_Layers)
    {
        Layer* const layer = otherLayer->Clone(*this);
        otherToClonedMap.emplace(otherLayer, layer);
    }

    // Copies slot connections.
    for (auto&& otherLayer : other.m_Layers)
    {
        Layer* const thisLayer = otherToClonedMap[otherLayer];

        auto outputSlot = thisLayer->BeginOutputSlots();
        for (auto&& otherOutputSlot : otherLayer->GetOutputSlots())
        {
            for (auto&& otherInputSlot : otherOutputSlot.GetConnections())
            {
                const Layer& otherTgtLayer = otherInputSlot->GetOwningLayer();
                Layer* const thisTgtLayer = otherToClonedMap[&otherTgtLayer];

                InputSlot& inputSlot = thisTgtLayer->GetInputSlot(otherInputSlot->GetSlotIndex());
                outputSlot->Connect(inputSlot);
            }
            outputSlot->SetTensorInfo(otherOutputSlot.GetTensorInfo());
            ++outputSlot;
        }
    }
}

Status Graph::Print() const
{
    if (m_Layers.empty())
    {
        BOOST_LOG_TRIVIAL(info) << "\n Graph is empty.\n";
        return Status::Success;
    }
    BOOST_LOG_TRIVIAL(info) << "\n";
    BOOST_LOG_TRIVIAL(info) << "Walking Pattern: \n";

    for (auto&& it : TopologicalSort())
    {
        BOOST_LOG_TRIVIAL(info) << it->GetName() << ":" << GetLayerTypeAsCString(it->GetType())
                                << ":" << it->GetBackendId().Get();
    }
    BOOST_LOG_TRIVIAL(info) << "\n\n";

    return Status::Success;
}

Status Graph::SerializeToDot(std::ostream& stream)
{
    {
        DotGraph graph(stream, "Optimized");

        {
            // Default node attributes:
            DotDefaults nodes(stream, "node");
            nodes.GetAttributeSet()
                .AddAttribute("shape", "record");
        }

        {
            // Default edge attributes:
            DotDefaults edges(stream, "edge");
            edges.GetAttributeSet()
                .AddAttribute("fontsize", 8)
                .AddAttribute("fontcolor", "blue")
                .AddAttribute("fontname", "arial-bold");
        }

        // First declares the nodes.
        for (auto&& layer : m_Layers)
        {
            DotNode node(stream, layer->GetGuid(), GetLayerTypeAsCString(layer->GetType()));
            // Extracts the layer parameters.
            ParameterStringifyFunction extractParams = [&node](const std::string & name, const std::string & value){
                node.GetContents().AddContent(name + " : " + value);
            };
            layer->SerializeLayerParameters(extractParams);
        }

        // Second declares the edges.
        for (auto&& layer : m_Layers)
        {
            LayerGuid toId = layer->GetGuid();

            for (unsigned int i=0;i<layer->GetNumInputSlots(); i++)
            {
                OutputSlot* outputSlot = static_cast<OutputSlot*>(layer->GetInputSlot(i).GetConnection());
                LayerGuid fromId = outputSlot->GetOwningLayer().GetGuid();
                DotEdge edge(stream, fromId, toId);

                // Now print the tensor shape on the edge.
                {
                    // Constructs the label attribute with HTML markup.
                    std::stringstream ss;
                    ss << "< " << outputSlot->GetTensorInfo().GetShape() << " >";
                    edge.GetAttributeSet().AddAttribute("label", ss);
                }
            }
        }
    }

    if (stream.bad())
    {
        return Status::Failure;
    }
    return Status::Success;
}

Status Graph::AllocateDynamicBuffers()
{
    // Layers must be sorted in topological order
    BOOST_ASSERT(m_LayersInOrder);

    std::unordered_set<const ITensorHandle*> preallocatedTensors;
    std::unordered_map<const ITensorHandle*, unsigned int> handleReferenceCounts;

    // Finds the first TensorHandle ancestor of a SubTensorHandle. If the ITensorHandle provided
    // is a TensorHandle, the function just returns it
    auto TraceSubTensorHandleAncestry = [](ITensorHandle* const subTensorHandle)
    {
        ITensorHandle* ancestor = subTensorHandle;
        while (ancestor && ancestor->GetParent())
        {
            ancestor = ancestor->GetParent();
        }
        return ancestor;
    };

    // Checks whether a TensorHandle has been pre-allocated
    auto IsPreallocated = [&](ITensorHandle* const tensorHandle)
    {
        return tensorHandle && preallocatedTensors.find(tensorHandle) != preallocatedTensors.end();
    };

    // Constant tensor handles need to last from the beginning of execution till the end,
    // therefore we pre-allocate them upfront
    for (auto&& layer : m_Layers)
    {
        if (layer->GetType() == LayerType::Constant)
        {
            for (auto&& slot = layer->BeginOutputSlots(); slot != layer->EndOutputSlots(); ++slot)
            {
                ITensorHandle *tensorHandle = TraceSubTensorHandleAncestry(slot->GetOutputHandler().GetData());

                if (tensorHandle && !IsPreallocated(tensorHandle))
                {
                    tensorHandle->Allocate();
                    preallocatedTensors.insert(tensorHandle);
                }
            }
        }
    }

    // Iterate over the network in topological order
    for (auto&& layer : m_Layers)
    {
        // Count the amount of times each output slot references a certain buffer (ITensorHandle).
        // The first time we encounter a new tensor handle, we start managing its lifetime.
        for (auto&& slot = layer->BeginOutputSlots(); slot != layer->EndOutputSlots(); ++slot)
        {
            ITensorHandle *tensorHandle = TraceSubTensorHandleAncestry(slot->GetOutputHandler().GetData());

            if (tensorHandle && !IsPreallocated(tensorHandle))
            {
                unsigned int numConnections = slot->GetNumConnections();
                if (handleReferenceCounts.find(tensorHandle) == handleReferenceCounts.end())
                {
                    handleReferenceCounts[tensorHandle] = numConnections;
                    tensorHandle->Manage();
                }
                else
                {
                    handleReferenceCounts[tensorHandle] += numConnections;
                }
            }
        }

        // Loop through the input slots in the same layer and decrement the reference counter associated
        // to each tensor handle we encounter. Once it reaches zero, we end the lifetime of the tensor handle
        for (auto&& slot = layer->BeginInputSlots(); slot != layer->EndInputSlots(); ++slot)
        {
            ITensorHandle *tensorHandle = TraceSubTensorHandleAncestry(
                slot->GetConnectedOutputSlot()->GetOutputHandler().GetData());

            if (tensorHandle && !IsPreallocated(tensorHandle))
            {
                --handleReferenceCounts[tensorHandle];

                if (handleReferenceCounts[tensorHandle] == 0u)
                {
                    // Stop managing lifetime of tensor handle
                    tensorHandle->Allocate();
                    handleReferenceCounts.erase(tensorHandle);
                }
            }
        }
    }

    return Status::Success;
}

const Graph& Graph::TopologicalSort() const
{
    if (!m_LayersInOrder)
    {
        // Resets layer order.
        for (auto&& it : m_Layers)
        {
            it->ResetPriority();
        }

        auto compareLayerPriority = [](const LayersList::value_type& layerA, const LayersList::value_type& layerB)
            {
                return layerA->GetPriority() < layerB->GetPriority();
            };

        m_Layers.sort(compareLayerPriority);

        m_LayersInOrder = true;
    }

    return *this;
}

void Graph::AddCopyLayers()
{
    // Returns true if the given layer could potentially need an intermediate copy layer (depending on its
    // connections to other layers). At the time of writing, copy layers will be inserted in the following situations:
    // CPU -> CL (and viceversa)
    // CPU -> Neon (and viceversa)
    auto MayNeedCopyLayer = [](const Layer& layer)
        {
            // All layers should have been associated with a valid compute device at this point.
            BOOST_ASSERT(layer.GetBackendId() != Compute::Undefined);
            // Does not need another copy layer if a copy layer is already present.
            return layer.GetType() != LayerType::MemCopy;
        };

    for (auto&& srcLayer : m_Layers)
    {
        if (MayNeedCopyLayer(*srcLayer))
        {
            unsigned int srcOutputIndex = 0;
            for (auto&& srcOutput : srcLayer->GetOutputSlots())
            {
                std::vector<InputSlot*> connectionCopy = srcOutput.GetConnections();
                for (auto&& dstInput : connectionCopy)
                {
                    Layer& dstLayer = dstInput->GetOwningLayer();
                    if (MayNeedCopyLayer(dstLayer) && (dstLayer.GetBackendId() != srcLayer->GetBackendId()))
                    {
                        // A copy layer is needed in between the source and destination layers.
                        // Record the operation rather than attempting to modify the graph as we go.
                        // (invalidating iterators)
                        const std::string copyLayerName = boost::str(boost::format("[ %1% (%2%) -> %3% (%4%) ]")
                                                                     % srcLayer->GetName()
                                                                     % srcOutputIndex
                                                                     % dstLayer.GetName()
                                                                     % dstInput->GetSlotIndex());

                        MemCopyLayer* const copyLayer = InsertNewLayer<MemCopyLayer>(*dstInput, copyLayerName.c_str());
                        copyLayer->SetBackendId(dstLayer.GetBackendId());
                    }
                }
                ++srcOutputIndex;
            }
        }
    }
}

void Graph::InferTensorInfos()
{
    for (auto&& layer : TopologicalSort())
    {
        for (auto&& input : layer->GetInputSlots())
        {
            boost::ignore_unused(input);
            BOOST_ASSERT_MSG(input.GetConnectedOutputSlot()->IsTensorInfoSet(),
                             "All inputs must have the TensorInfo set at this point.");
        }
        layer->ValidateTensorShapesFromInputs();
    }
}

} // namespace armnn