aboutsummaryrefslogtreecommitdiff
path: root/delegate/opaque/src/Split.hpp
blob: aec0fb674a8a0b2400a8d5eb0c46af0f929ef782 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <OpaqueDelegateUtils.hpp>
#include <DelegateUtils.hpp>

#include <algorithm>
#include <iterator>
#include <vector>

namespace armnnOpaqueDelegate
{

constexpr unsigned int MaxNumOfTensorDimensions = 5U;

TfLiteStatus VisitSplitOperator(DelegateData& delegateData,
                                TfLiteOpaqueContext* tfLiteContext,
                                TfLiteOpaqueNode* tfLiteNode,
                                int nodeIndex,
                                int32_t tfLiteSplitOperatorCode)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));

    auto* splitParameters = reinterpret_cast<TfLiteSplitParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
    int numSplits =  NonNegative(splitParameters->num_splits, nodeIndex);

    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, numSplits, nodeIndex));

    // Gather input indices and use to get Axis tensor.
    const int* inputTensors;
    auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteAxisTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteAxisTensor, tfLiteSplitOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Use input indices to get input tensor.
    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLiteSplitOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numSplits) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);

    ARMNN_ASSERT(GetTensorInfoForTfLiteOpaqueTensor(tfLiteAxisTensor).GetNumElements() == 1);
    auto* axisTensorDataPtr = static_cast<uint32_t*>(TfLiteOpaqueTensorData(tfLiteAxisTensor));
    std::vector<int32_t> axisTensorData(axisTensorDataPtr, axisTensorDataPtr + 1);
    int32_t axis = axisTensorData[0];

    auto inputDimensions = static_cast<int32_t>(inputTensorInfo.GetNumDimensions());
    if (((axis < -inputDimensions) && (axis < 0)) || ((axis >= inputDimensions) && (axis > 0)))
    {
        // Square bracket denotes inclusive n while parenthesis denotes exclusive n
        // E.g. Rank 4 tensor can have axis in range [-4, 3)
        // -1 == 3, -2 == 2, -3 == 1, -4 == 0
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: Operation has invalid axis: #%d. "
                "Axis must be in range [-n, n) in node #%d:",
                axis, nodeIndex);
    }
    const unsigned int splitDim = ComputeWrappedIndex(axis, inputTensorInfo.GetNumDimensions());

    std::vector<armnn::TensorInfo> outputs;
    for (int i = 0; i < numSplits; ++i)
    {
        const TfLiteOpaqueTensor* tfLiteOutputTensor =
                TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[i]);
        if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteSplitOperatorCode, nodeIndex))
        {
            return kTfLiteError;
        }
        outputs.push_back(GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true));
    }
    const std::vector<std::reference_wrapper<armnn::TensorInfo>> outputTensorInfos(outputs.begin(), outputs.end());

    auto inputDimSize = inputTensorInfo.GetNumDimensions();
    if (inputDimSize > MaxNumOfTensorDimensions)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: The number of dimensions: #%d for input tensors of the split op cannot be "
                "greater than #%d in node #%d: ",
                inputDimSize, MaxNumOfTensorDimensions, nodeIndex);
        return kTfLiteError;
    }

    std::vector<unsigned int> splitterDimSizes(inputDimSize);

    // Add current input shape to splitterDimSizes
    for (unsigned int i = 0; i < inputDimSize; ++i)
    {
        splitterDimSizes[i] = inputTensorInfo.GetShape()[i];
    }

    if (splitterDimSizes[splitDim] % numSplits != 0)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: Number of splits #%d must evenly divide the dimension #%d in node #%d: ",
                numSplits, splitterDimSizes[splitDim], nodeIndex);
        return kTfLiteError;
    }
    splitterDimSizes[splitDim] /= numSplits;

    armnn::SplitterDescriptor splitDescriptor(numSplits, inputDimSize);
    for (int j = 0; j < numSplits; ++j)
    {
        // Set the size of the views.
        for (unsigned int dimIdx = 0; dimIdx < splitterDimSizes.size(); ++dimIdx)
        {
            splitDescriptor.SetViewSize(j, dimIdx, splitterDimSizes[dimIdx]);
        }
        splitDescriptor.SetViewOriginCoord(j, splitDim, splitterDimSizes[splitDim] * j);
    }

    armnn::BackendId setBackend;
    if (!delegateData.m_Network)
    {
        // Check if supported
        bool isSupported = false;
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SPLIT",
                                   tfLiteContext,
                                   IsSplitterSupported,
                                   delegateData.m_Backends,
                                   isSupported,
                                   setBackend,
                                   inputTensorInfo,
                                   outputTensorInfos,
                                   splitDescriptor);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    auto layerName = GetName(armnn::LayerType::Splitter, nodeIndex);
    armnn::IConnectableLayer* layer = delegateData.m_Network->AddSplitterLayer(splitDescriptor, layerName.c_str());
    layer->SetBackendId(setBackend);
    ARMNN_ASSERT(layer != nullptr);

    for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
    {
        layer->GetOutputSlot(k).SetTensorInfo(outputs[k]);
    }

    // Connect the input slots
    delegateData.m_OutputSlotForNode[inputTensors[1]]->Connect(layer->GetInputSlot(0));

    if(numSplits != static_cast<int>(layer->GetNumOutputSlots()))
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: Expected number of splits #%d does not "
                "match the number of output slots #%d in node #%d: ",
                numSplits, layer->GetNumOutputSlots(), nodeIndex);
        return kTfLiteError;
    }

    // Prepare output slots
    for (unsigned int outputIndex = 0; outputIndex < layer->GetNumOutputSlots(); ++outputIndex)
    {
        armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(outputIndex);
        delegateData.m_OutputSlotForNode[
                static_cast<unsigned long>(outputTensors[outputIndex])] = &outputSlot;
    }
    return kTfLiteOk;
}

TfLiteStatus VisitSplitVOperator(DelegateData& delegateData,
                                 TfLiteOpaqueContext* tfLiteContext,
                                 TfLiteOpaqueNode* tfLiteNode,
                                 int nodeIndex,
                                 int32_t tfLiteSplitVOperatorCode)
{

    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 3, nodeIndex));

    const int* inputTensors;
    auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLiteSplitVOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteSplitsTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
    if (!IsValid(tfLiteContext, tfLiteSplitsTensor, tfLiteSplitVOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteAxisTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[2]);
    if (!IsValid(tfLiteContext, tfLiteAxisTensor, tfLiteSplitVOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& splitsTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteSplitsTensor);
    ARMNN_ASSERT(splitsTensorInfo.GetNumDimensions() == 1);
    ARMNN_ASSERT(GetTensorInfoForTfLiteOpaqueTensor(tfLiteAxisTensor).GetNumElements() == 1);

    auto* axisTensorDataPtr = static_cast<uint32_t*>(TfLiteOpaqueTensorData(tfLiteAxisTensor));
    std::vector<int32_t> axisTensorData(axisTensorDataPtr, axisTensorDataPtr + 1);
    int32_t axis = axisTensorData[0];

    auto inputDimensions = static_cast<int32_t>(inputTensorInfo.GetNumDimensions());
    if (((axis < -inputDimensions) && (axis < 0)) || ((axis >= inputDimensions) && (axis > 0)))
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: Operation has invalid axis: #%d. "
                "Axis must be in range [-n, n) in node #%d:",
                axis, nodeIndex);
    }
    const unsigned int splitDim = ComputeWrappedIndex(axisTensorData[0], inputTensorInfo.GetNumDimensions());

    auto* splitVParameters = reinterpret_cast<TfLiteSplitVParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
    int numSplits = 0;
    if (splitVParameters)
    {
        numSplits = NonNegative(splitVParameters->num_splits, nodeIndex);
    }
    else
    {
        numSplits = splitsTensorInfo.GetNumElements();
    }

    if (numSplits <= 0)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: Invalid number of splits %d  in node #%d",
                numSplits, nodeIndex);
        return kTfLiteError;
    }

    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, numSplits, nodeIndex));

    // Gather output indices and use to get output tensors.
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numSplits) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }
    std::vector<armnn::TensorInfo> outputs;
    for (int i = 0; i < numSplits; ++i)
    {
        const TfLiteOpaqueTensor* tfLiteOutputTensor =
                TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[i]);
        if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteSplitVOperatorCode, nodeIndex))
        {
            return kTfLiteError;
        }
        outputs.push_back(GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true));
    }
    const std::vector<std::reference_wrapper<armnn::TensorInfo>> outputTensorInfos(outputs.begin(), outputs.end());

    auto inputDimSize = inputTensorInfo.GetNumDimensions();
    if (inputDimSize > MaxNumOfTensorDimensions)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: The number of dimensions: #%d for input tensors of the split op cannot be "
                "greater than #%d in node #%d: ",
                inputDimSize, MaxNumOfTensorDimensions, nodeIndex);
        return kTfLiteError;
    }

    std::vector<int32_t> splitsTensorData(numSplits);
    std::memcpy(splitsTensorData.data(), TfLiteOpaqueTensorData(tfLiteSplitsTensor), splitsTensorInfo.GetNumBytes());


    unsigned int index         = 0;
    unsigned int inferredIndex = 0;
    int numberOfInferred       = 0;
    int splitSum = 0;

    for (auto splitData : splitsTensorData)
    {
        if (splitData < 0)
        {
            ++numberOfInferred;
            inferredIndex = index;
        }
        else
        {
            splitSum += splitData;
        }
        ++index;
    }

    // Check for inferred axis
    if (numberOfInferred == 0)
    {
        if (splitSum != armnn::numeric_cast<int>(inputTensorInfo.GetShape()[splitDim]))
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                    tfLiteContext,
                    "TfLiteOpaqueArmnnDelegate: SplitV split_sizes does not sum to the dimension "
                    "of value along split_dim in node #%d",
                    nodeIndex);
            return kTfLiteError;
        }
    }
    else if (numberOfInferred == 1)
    {
        splitsTensorData[inferredIndex] = armnn::numeric_cast<int>(inputTensorInfo.GetShape()[splitDim]) - splitSum;
    }
    else
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteOpaqueArmnnDelegate: SplitV cannot infer split size for "
                "more than one split in node #%d",
                nodeIndex);
        return kTfLiteError;
    }

    armnn::SplitterDescriptor splitDescriptor(numSplits, inputDimSize);
    unsigned int accumSplit = 0;
    for (int j = 0; j < numSplits; ++j)
    {
        unsigned int splitSize = armnn::numeric_cast<unsigned int>(splitsTensorData[j]);

        // Set the size of the views.
        for (unsigned int dimIdx = 0; dimIdx < inputTensorInfo.GetNumDimensions(); ++dimIdx)
        {
            unsigned int dimSize = inputTensorInfo.GetShape()[dimIdx];
            if (dimIdx == splitDim)
            {
                dimSize = splitSize;
            }
            splitDescriptor.SetViewSize(j, dimIdx, dimSize);
        }

        splitDescriptor.SetViewOriginCoord(j, splitDim, accumSplit);
        accumSplit += splitSize;
    }

    armnn::BackendId setBackend;
    if (!delegateData.m_Network)
    {
        // Check if supported
        bool isSupported = false;
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SPLITV",
                                          tfLiteContext,
                                          IsSplitterSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          inputTensorInfo,
                                          outputTensorInfos,
                                          splitDescriptor);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    auto layerName = GetName(armnn::LayerType::Splitter, nodeIndex);
    armnn::IConnectableLayer* layer = delegateData.m_Network->AddSplitterLayer(splitDescriptor, layerName.c_str());
    layer->SetBackendId(setBackend);
    ARMNN_ASSERT(layer != nullptr);

    for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
    {
        layer->GetOutputSlot(k).SetTensorInfo(outputs[k]);
    }

    // try to connect the Constant Inputs if there are any
    if (ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk)
    {
        return kTfLiteError;
    }

    // Connect
    return Connect(layer, tfLiteContext, tfLiteNode, delegateData);
}

} // namespace armnnOpaqueDelegate