aboutsummaryrefslogtreecommitdiff
path: root/delegate/opaque/src/Pooling.hpp
blob: 45a10f383301d8cfe81f63a64d5803cae8fd974d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <OpaqueDelegateUtils.hpp>
#include <SharedFunctions.hpp>

#include <flatbuffers/flexbuffers.h>

namespace armnnOpaqueDelegate
{

TfLiteStatus VisitPooling2dOperator(DelegateData& delegateData,
                                    TfLiteOpaqueContext* tfLiteContext,
                                    TfLiteOpaqueNode* tfLiteNode,
                                    int nodeIndex,
                                    int32_t tfLitePoolingOperatorCode)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensors.
    int numInputs = 0;
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLitePoolingOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLitePoolingOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    auto* tfLiteNodeParameters = reinterpret_cast<TfLitePoolParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
    TfLiteFusedActivation activationType = kTfLiteActNone;
    if (tfLiteNodeParameters)
    {
        activationType = tfLiteNodeParameters->activation;
        TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData,
                                                                        tfLiteContext,
                                                                        outputTensorInfo,
                                                                        outputTensorInfo,
                                                                        activationType);
        if(activationStatus != kTfLiteOk)
        {
            return kTfLiteError;
        }
    }

    armnn::PoolingAlgorithm poolingAlgorithm;
    switch(tfLitePoolingOperatorCode)
    {
        case kTfLiteBuiltinAveragePool2d:
            poolingAlgorithm = armnn::PoolingAlgorithm::Average;
            break;
        case kTfLiteBuiltinL2Pool2d:
            poolingAlgorithm = armnn::PoolingAlgorithm::L2;
            break;
        case kTfLiteBuiltinMaxPool2d:
            poolingAlgorithm = armnn::PoolingAlgorithm::Max;
            break;
        default:
            return kTfLiteError;
    }

    armnn::Pooling2dDescriptor descriptor;
    descriptor.m_PoolType = poolingAlgorithm;

    descriptor.m_PoolWidth = tfLiteNodeParameters->filter_width;
    descriptor.m_PoolHeight = tfLiteNodeParameters->filter_height;
    descriptor.m_StrideX = tfLiteNodeParameters->stride_width;
    descriptor.m_StrideY = tfLiteNodeParameters->stride_height;
    descriptor.m_DataLayout = armnn::DataLayout::NHWC;

    unsigned int inputHeight = inputTensorInfo.GetShape()[1];
    unsigned int inputWidth  = inputTensorInfo.GetShape()[2];

    CalcPadding(inputHeight, descriptor.m_PoolHeight, descriptor.m_StrideY, 1u,
                descriptor.m_PadTop, descriptor.m_PadBottom, tfLiteNodeParameters->padding);
    CalcPadding(inputWidth, descriptor.m_PoolWidth, descriptor.m_StrideX, 1u,
                descriptor.m_PadLeft, descriptor.m_PadRight, tfLiteNodeParameters->padding);

    bool isSupported = false;
    armnn::BackendId setBackend;
    auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
    {
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("POOLING_2D",
                                          tfLiteContext,
                                          IsPooling2dSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          inputTensorInfo,
                                          outputTensorInfo,
                                          descriptor);
    };

    if (!delegateData.m_Network)
    {
        validateFunc(outputTensorInfo, isSupported);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* poolingLayer = delegateData.m_Network->AddPooling2dLayer(descriptor);
    poolingLayer->SetBackendId(setBackend);
    ARMNN_ASSERT(poolingLayer != nullptr);

    armnn::IOutputSlot& outputSlot = poolingLayer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    // try to connect the Constant Inputs if there are any
    if(ProcessInputs(poolingLayer, delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
    {
        return kTfLiteError;
    }

    if(Connect(poolingLayer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk)
    {
        return kTfLiteError;
    }

    // Check and create activation
    return FusedActivation(tfLiteContext, tfLiteNode, activationType, poolingLayer, 0, delegateData);
}

TfLiteStatus VisitPooling3dOperator(DelegateData& delegateData,
                                    TfLiteOpaqueContext* tfLiteContext,
                                    TfLiteOpaqueNode* tfLiteNode,
                                    int nodeIndex,
                                    std::string customOperatorName)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensors.
    int numInputs = 0;
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, kTfLiteBuiltinCustom, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, kTfLiteBuiltinCustom, nodeIndex))
    {
        return kTfLiteError;
    }

    // Set the input and output info
    const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    // Custom Operators are defined by the name string associated to the operator. Use this to determine
    // which pooling algorithm to create the armnn operator with. L2 Pooling3D is unsupported in TfLite.
    armnn::PoolingAlgorithm poolingAlgorithm;
    if (customOperatorName == "MaxPool3D")
    {
        poolingAlgorithm = armnn::PoolingAlgorithm::Max;
    }
    else if (customOperatorName == "AveragePool3D")
    {
        poolingAlgorithm = armnn::PoolingAlgorithm::Average;
    }
    else
    {
        return kTfLiteError;
    }
    // Create the armnn pool3d descriptor and set the algorithm parsed above.
    armnn::Pooling3dDescriptor descriptor;
    descriptor.m_PoolType = poolingAlgorithm;

    // custom_initial_data and custom_initial_data_size are void* variables defined in the tflite registration
    // used to access the custom option buffer for the operator.
    const void* customData = nullptr;
    int customDataSize = 0;
    if (TfLiteOpaqueNodeGetCustomInitialData(tfLiteNode, &customData, &customDataSize) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to initialise initial custom data from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    // Reinterpret the void* to a byte buffer to access the options data in the flexbuffers map.
    const flexbuffers::Map& m = flexbuffers::GetRoot(reinterpret_cast<const uint8_t*>(customData),
                                                     customDataSize).AsMap();
    // poolDims is a vector of [ 1, Depth, Height, Width, 1 ]
    const auto poolDims = m["ksize"].AsTypedVector();
    descriptor.m_PoolWidth = poolDims[3].AsInt32();
    descriptor.m_PoolHeight = poolDims[2].AsInt32();
    descriptor.m_PoolDepth = poolDims[1].AsInt32();

    // strideDimes is a vector of [ 1, Z, Y, X, 1]
    const auto strideDims = m["strides"].AsTypedVector();
    descriptor.m_StrideX = strideDims[3].AsInt32();
    descriptor.m_StrideY = strideDims[2].AsInt32();
    descriptor.m_StrideZ = strideDims[1].AsInt32();
    descriptor.m_DataLayout = armnn::DataLayout::NDHWC;

    unsigned int inputDepth = inputTensorInfo.GetShape()[1];
    unsigned int inputHeight = inputTensorInfo.GetShape()[2];
    unsigned int inputWidth = inputTensorInfo.GetShape()[3];

    // CalcPadding expects a TfLitePadding type. Parse flexbuffers to extract padding string and create TfLitePadding.
    std::string paddingStr = m["padding"].AsString().str();
    TfLitePadding padding;
    if (paddingStr == "VALID")
    {
        padding = kTfLitePaddingValid;
    }
    else if (paddingStr == "SAME")
    {
        padding = kTfLitePaddingSame;
    }
    else
    {
        padding = kTfLitePaddingUnknown;
    }
    // Calculates padding for each pooling dimension separately
    CalcPadding(inputHeight, descriptor.m_PoolHeight, descriptor.m_StrideY, 1u,
                descriptor.m_PadTop, descriptor.m_PadBottom, padding);
    CalcPadding(inputWidth, descriptor.m_PoolWidth, descriptor.m_StrideX, 1u,
                descriptor.m_PadLeft, descriptor.m_PadRight, padding);
    CalcPadding(inputDepth, descriptor.m_PoolDepth, descriptor.m_StrideZ, 1u,
                descriptor.m_PadFront, descriptor.m_PadBack, padding);


    // Check activation by parsing the string from the flexbuffer map
    std::string activationTypeStr = m["activation"].AsString().str();
    TfLiteFusedActivation activationType = kTfLiteActNone;

    if (activationTypeStr == "kTfLiteActRelu")
    {
        activationType = kTfLiteActRelu;
    }
    else if (activationTypeStr == "kTfLiteActReluN1To1")
    {
        activationType = kTfLiteActReluN1To1;
    }
    else if (activationTypeStr == "kTfLiteActRelu6")
    {
        activationType = kTfLiteActRelu6;
    }
    else if (activationTypeStr == "kTfLiteActTanh")
    {
        activationType = kTfLiteActTanh;
    }
    else if (activationTypeStr == "kTfLiteActSignBit")
    {
        activationType = kTfLiteActSignBit;
    }
    else if (activationTypeStr == "kTfLiteActSigmoid")
    {
        activationType = kTfLiteActSigmoid;
    }
    else
    {
        activationType = kTfLiteActNone;
    }

    TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData,
                                                                    tfLiteContext,
                                                                    outputTensorInfo,
                                                                    outputTensorInfo,
                                                                    activationType);
    if(activationStatus != kTfLiteOk)
    {
        return kTfLiteError;
    }

    // Validate the output info.
    bool isSupported = false;
    armnn::BackendId setBackend;
    auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
    {
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("POOLING_3D",
                                          tfLiteContext,
                                          IsPooling3dSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          inputTensorInfo,
                                          outputTensorInfo,
                                          descriptor);
    };

    if (!delegateData.m_Network)
    {
        validateFunc(outputTensorInfo, isSupported);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    // Create the Layer
    armnn::IConnectableLayer* poolingLayer = delegateData.m_Network->AddPooling3dLayer(descriptor);
    poolingLayer->SetBackendId(setBackend);
    ARMNN_ASSERT(poolingLayer != nullptr);

    // Create and set output slots
    armnn::IOutputSlot& outputSlot = poolingLayer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    // try to connect the Constant Inputs if there are any
    if(ProcessInputs(poolingLayer, delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
    {
        return kTfLiteError;
    }

    if(Connect(poolingLayer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk)
    {
        return kTfLiteError;
    }

    return FusedActivation(tfLiteContext, tfLiteNode, activationType, poolingLayer, 0, delegateData);
}

} // namespace armnnOpaqueDelegate