aboutsummaryrefslogtreecommitdiff
path: root/delegate/opaque/src/LogicalBinary.hpp
blob: 44a443bb4d822686a76bba6af8026160f3584905 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <OpaqueDelegateUtils.hpp>

namespace armnnOpaqueDelegate
{

std::string GetLayerName(armnn::LogicalBinaryOperation logicalBinaryOperation)
{
    std::string layerName = "LOGICAL_BINARY";
    switch (logicalBinaryOperation)
    {
        case armnn::LogicalBinaryOperation::LogicalAnd:
            layerName += " LOGICAL_AND";
            break;
        case armnn::LogicalBinaryOperation::LogicalOr:
            layerName += " LOGICAL_OR";
            break;
        default:
            layerName += " UNKNOWN";
    }
    return layerName;
}

TfLiteStatus VisitLogicalBinaryOperator(DelegateData& delegateData,
                                        TfLiteOpaqueContext* tfLiteContext,
                                        TfLiteOpaqueNode* tfLiteNode,
                                        int nodeIndex,
                                        int32_t logicalOperatorCode,
                                        armnn::LogicalBinaryOperation binaryOperation)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensor.
    int numInputs = 0;
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    // Use input indices to get input tensors.
    const TfLiteOpaqueTensor* tfLiteInputTensor0 = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor0, logicalOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor1 = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor1, logicalOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    // Use output indices to get output tensor.
    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, logicalOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    armnn::TensorInfo inputTensorInfo0 = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor0);
    armnn::TensorInfo inputTensorInfo1 = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor1);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    // Check if we need to expand the dims of any input tensor infos.
    // This is required for a few of the backends.
    if(inputTensorInfo0.GetNumDimensions() != inputTensorInfo1.GetNumDimensions())
    {
        ExpandTensorRankToEqual(inputTensorInfo0, inputTensorInfo1);
    }

    // Setup descriptor and assign operation
    armnn::LogicalBinaryDescriptor desc;
    desc.m_Operation = binaryOperation;

    // Check if supported
    bool isSupported = false;
    armnn::BackendId setBackend;
    auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported, std::string layerName)
    {
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC(layerName.c_str(),
                                          tfLiteContext,
                                          IsLogicalBinarySupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          inputTensorInfo0,
                                          inputTensorInfo1,
                                          outputTensorInfo,
                                          desc);
    };

    if (!delegateData.m_Network)
    {
        validateFunc(outputTensorInfo, isSupported, GetLayerName(binaryOperation));
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* logicalBinaryLayer = delegateData.m_Network->AddLogicalBinaryLayer(desc);
    logicalBinaryLayer->SetBackendId(setBackend);
    ARMNN_ASSERT(logicalBinaryLayer != nullptr);

    armnn::IOutputSlot& outputSlot = logicalBinaryLayer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    auto inputsTensorsProcess = ProcessInputs(logicalBinaryLayer,
                                              delegateData,
                                              tfLiteContext,
                                              tfLiteNode);
    if (inputsTensorsProcess == kTfLiteError)
    {
        return inputsTensorsProcess;
    }

    return Connect(logicalBinaryLayer, tfLiteContext, tfLiteNode, delegateData);
}

} // namespace armnnOpaqueDelegate