aboutsummaryrefslogtreecommitdiff
path: root/delegate/opaque/src/FullyConnected.hpp
blob: 3282cab543d70b7537934e2e3ea8041cab7e0343 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <OpaqueDelegateUtils.hpp>
#include <SharedFunctions.hpp>

namespace armnnOpaqueDelegate
{

TfLiteStatus VisitFullyConnectedOperator(DelegateData& delegateData,
                                         TfLiteOpaqueContext* tfLiteContext,
                                         TfLiteOpaqueNode* tfLiteNode,
                                         int nodeIndex,
                                         int32_t operatorCode)
{
    auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
    if (numInputs < 2)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Minimum number of inputs (%d != %d) in node #%d",
                2, numInputs, nodeIndex);
        return kTfLiteError;
    }
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensor.
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteWeightsTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
    if (!IsValid(tfLiteContext, tfLiteWeightsTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo   = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& weightsTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteWeightsTensor);
    const armnn::TensorInfo& outputTensorInfo  = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    // Check that we support fused activation before we attempt to create a layer
    auto* tfLiteNodeParameters =
            reinterpret_cast<TfLiteFullyConnectedParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
    TfLiteFusedActivation activationType=kTfLiteActNone;
    if (tfLiteNodeParameters)
    {
        activationType = tfLiteNodeParameters->activation;
        TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData, tfLiteContext, outputTensorInfo,
                                                                        outputTensorInfo, activationType);
        if(activationStatus != kTfLiteOk)
        {
            return kTfLiteError;
        }
    }

    // Fully Connected Layer accepts two dimensional weights input
    int32_t weightsDimension = static_cast<int32_t>(weightsTensorInfo.GetNumDimensions());
    if (weightsDimension != 2)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Dimension #$d for Fully Connected weights is not supported by Armnn"
                " in operator #%d node #%d: ", weightsDimension, operatorCode, nodeIndex);
        return kTfLiteError;
    }

    armnn::TensorInfo biasTensorInfo;
    const TfLiteOpaqueTensor* tfLiteBiasTensor = nullptr;

    bool biasEnabled = IsOptionalOperandPresent(tfLiteNode, 2);
    if (biasEnabled)
    {
        // Use input indices to get bias tensor.
        tfLiteBiasTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[2]);
        if (!IsValid(tfLiteContext, tfLiteBiasTensor, operatorCode, nodeIndex))
        {
            return kTfLiteError;
        }
        biasTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteBiasTensor);
    }
    else
    {
        biasTensorInfo = armnn::TensorInfo(armnn::TensorShape({1}), GetDataType(tfLiteInputTensor));
    }

    armnn::TensorInfo reshapedTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    if (inputTensorInfo.GetNumDimensions() > 2)
    {
        // Calculate reshape to flatten to 2D [batch_size, input_size]
        std::vector<unsigned int> reshapedDimensions(2);
        reshapedDimensions[1] = weightsTensorInfo.GetShape()[1];
        reshapedDimensions[0] = inputTensorInfo.GetNumElements() / reshapedDimensions[1];

        if (inputTensorInfo.GetNumElements() % reshapedDimensions[1] != 0)
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Failed to deduce input tensor shape from filter size #%d #%d node #%d: ",
                reshapedDimensions[1], operatorCode, nodeIndex);
            return kTfLiteError;
        }

        reshapedTensorInfo.SetShape(armnn::TensorShape{ 2, reshapedDimensions.data() });
    }
    armnn::TensorInfo reshapedOutputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor);

    if (outputTensorInfo.GetNumDimensions() > 2)
    {
        // Calculate reshape to flatten to 2D [batch_size, input_size]
        std::vector<unsigned int> reshapedDimensions(2);
        reshapedDimensions[1] = weightsTensorInfo.GetShape()[0];
        reshapedDimensions[0] = outputTensorInfo.GetNumElements() / reshapedDimensions[1];

        if (outputTensorInfo.GetNumElements() % reshapedDimensions[1] != 0)
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Failed to deduce output tensor shape from filter size #%d #%d node #%d: ",
                reshapedDimensions[1], operatorCode, nodeIndex);
            return kTfLiteError;
        }
        reshapedOutputTensorInfo.SetShape(armnn::TensorShape{ 2, reshapedDimensions.data() });
    }

    armnn::FullyConnectedDescriptor descriptor;
    descriptor.m_TransposeWeightMatrix = true;
    descriptor.m_BiasEnabled           = biasEnabled;
    descriptor.m_ConstantWeights       = weightsTensorInfo.IsConstant();

    bool isSupported = false;
    armnn::BackendId setBackend;
    auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
    {

        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("FULLY_CONNECTED",
                                          tfLiteContext,
                                          IsFullyConnectedSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          reshapedTensorInfo,
                                          outputTensorInfo,
                                          weightsTensorInfo,
                                          biasTensorInfo,
                                          descriptor);
    };

    if (!delegateData.m_Network)
    {
        validateFunc(reshapedOutputTensorInfo, isSupported);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* layer = delegateData.m_Network->AddFullyConnectedLayer(descriptor);
    layer->SetBackendId(setBackend);
    ARMNN_ASSERT(layer != nullptr);

    // Add a constant layer for weights and biases if inputs are constant.
    if (weightsTensorInfo.IsConstant())
    {
        auto weightsTensor = CreateConstTensor(tfLiteWeightsTensor, weightsTensorInfo);

        armnn::IConnectableLayer* weightsLayer = delegateData.m_Network->AddConstantLayer(weightsTensor);

        weightsLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(1u));
        weightsLayer->GetOutputSlot(0).SetTensorInfo(weightsTensorInfo);
    }

    if (biasEnabled)
    {
        if(biasTensorInfo.IsConstant())
        {
            auto biasTensor = CreateConstTensor(tfLiteBiasTensor, biasTensorInfo);

            armnn::IConnectableLayer* biasLayer = delegateData.m_Network->AddConstantLayer(biasTensor);
            ARMNN_ASSERT(biasLayer != nullptr);

            biasLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(2u));
            biasLayer->GetOutputSlot(0).SetTensorInfo(biasTensorInfo);
        }
    }

    // The data input can also be constant, so we must check that this is also allocated to an input slot
    if(inputTensorInfo.IsConstant())
    {
        auto input = CreateConstTensor(tfLiteInputTensor, inputTensorInfo);

        armnn::IConnectableLayer* inputLayer = delegateData.m_Network->AddConstantLayer(input);
        inputLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0u));
        inputLayer->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
    }

    armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    armnn::IConnectableLayer* reshapeLayer = nullptr;
    if (inputTensorInfo.GetNumDimensions() > 2)
    {
        // Add reshape to flatten to 2D [batch_size, input_size]
        armnn::ReshapeDescriptor reshapeDescriptor;
        reshapeDescriptor.m_TargetShape = reshapedTensorInfo.GetShape();
        reshapeLayer = delegateData.m_Network->AddReshapeLayer(reshapeDescriptor);
        ARMNN_ASSERT(reshapeLayer != nullptr);

        reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedTensorInfo);

        // Connect
        delegateData.m_OutputSlotForNode[inputTensors[0]]->Connect(reshapeLayer->GetInputSlot(0));
        reshapeLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));

        if (!descriptor.m_ConstantWeights)
        {
            delegateData.m_OutputSlotForNode[inputTensors[1]]->Connect(layer->GetInputSlot(1));
        }

        if (biasEnabled && !biasTensorInfo.IsConstant())
        {
            delegateData.m_OutputSlotForNode[inputTensors[2]]->Connect(layer->GetInputSlot(2));
        }
        delegateData.m_OutputSlotForNode[outputTensors[0]] = &outputSlot;
    }

    if (reshapeLayer == nullptr)
    {
        if(Connect(layer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk)
        {
            return kTfLiteError;
        }
    }

    if (outputTensorInfo.GetNumDimensions() > 2)
    {
        layer = AddReshapeLayer(tfLiteContext,
                                tfLiteNode,
                                layer,
                                reshapedOutputTensorInfo,
                                outputTensorInfo,
                                delegateData);
        if (!layer)
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                    tfLiteContext,
                    "TfLiteArmnnOpaqueDelegate: Failed to add reshape for FullyConnected #%d node #%d: ",
                    operatorCode,
                    nodeIndex);
            return kTfLiteError;
        }
    }

    if (!tfLiteNodeParameters)
    {
        // No Activation
        return kTfLiteOk;
    }

    // Check and Create Activation
    return FusedActivation(tfLiteContext, tfLiteNode, activationType, layer, 0, delegateData);
}

} // namespace armnnOpaqueDelegate