aboutsummaryrefslogtreecommitdiff
path: root/delegate/opaque/src/Convolution.hpp
blob: 50c57d1d1fbecb80be07bfbc475d00167354df39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <OpaqueDelegateUtils.hpp>
#include <SharedFunctions.hpp>

#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>

namespace armnnOpaqueDelegate
{

TfLiteStatus VisitConv2dOperator(DelegateData& delegateData,
                                 TfLiteOpaqueContext* tfLiteContext,
                                 TfLiteOpaqueNode* tfLiteNode,
                                 int nodeIndex,
                                 int32_t operatorCode)
{
    auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
    if (numInputs < 2)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Minimum number of inputs (%d != %d) in node #%d",
                2, numInputs, nodeIndex);
        return kTfLiteError;
    }
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensor.
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Use input indices to get filter tensor.
    const TfLiteOpaqueTensor* tfLiteFilterTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
    if (!IsValid(tfLiteContext, tfLiteFilterTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo  = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& filterTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteFilterTensor);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    auto* tfLiteNodeParameters = reinterpret_cast<TfLiteConvParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
    TfLiteFusedActivation activationType = kTfLiteActNone;
    if (tfLiteNodeParameters)
    {
        activationType = tfLiteNodeParameters->activation;
        TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData,
                                                                        tfLiteContext,
                                                                        outputTensorInfo,
                                                                        outputTensorInfo,
                                                                        activationType);
        if(activationStatus != kTfLiteOk)
        {
            return kTfLiteError;
        }
    }

    armnn::TensorInfo biasTensorInfo;
    const TfLiteOpaqueTensor* tfLiteBiasTensor = nullptr;

    bool biasEnabled = IsOptionalOperandPresent(tfLiteNode, 2);
    if(biasEnabled)
    {
        // Use input indices to get bias tensor.
        tfLiteBiasTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[2]);
        if(!IsValid(tfLiteBiasTensor))
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                    tfLiteContext,
                    "TfLiteArmnnOpaqueDelegate: Invalid bias tensor in operator #%d node #%d: ",
                    operatorCode, nodeIndex);
            return kTfLiteError;
        }
        if (IsDynamicTensor(tfLiteBiasTensor))
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                    tfLiteContext,
                    "TfLiteArmnnOpaqueDelegate: Dynamic bias tensors are not supported in node #%d: ",
                    nodeIndex);
            return kTfLiteError;
        }
        biasTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteBiasTensor);
    }
    else
    {
        biasTensorInfo = armnn::TensorInfo(armnn::TensorShape({1}), GetDataType(tfLiteInputTensor));
    }

    armnn::Optional<armnn::TensorInfo> optionalBiasInfo(biasTensorInfo);

    armnn::Convolution2dDescriptor descriptor;
    descriptor.m_BiasEnabled = biasEnabled;
    descriptor.m_StrideX = NonNegative(tfLiteNodeParameters->stride_width, nodeIndex);
    descriptor.m_StrideY = NonNegative(tfLiteNodeParameters->stride_height, nodeIndex);
    descriptor.m_DataLayout = armnn::DataLayout::NHWC;
    descriptor.m_DilationX = NonNegative(tfLiteNodeParameters->dilation_width_factor, nodeIndex);
    descriptor.m_DilationY = NonNegative(tfLiteNodeParameters->dilation_height_factor, nodeIndex);

    // TfLite uses NHWC tensors
    const unsigned int inputHeight = inputTensorInfo.GetShape()[1];
    const unsigned int inputWidth  = inputTensorInfo.GetShape()[2];

    const unsigned int filterHeight = filterTensorInfo.GetShape()[1];
    const unsigned int filterWidth  = filterTensorInfo.GetShape()[2];

    // Calculate padding
    CalcPadding(inputHeight, filterHeight, descriptor.m_StrideY, descriptor.m_DilationY,
                descriptor.m_PadTop, descriptor.m_PadBottom, tfLiteNodeParameters->padding);
    CalcPadding(inputWidth, filterWidth, descriptor.m_StrideX, descriptor.m_DilationX,
                descriptor.m_PadLeft, descriptor.m_PadRight, tfLiteNodeParameters->padding);

    armnn::BackendId setBackend;
    if (!delegateData.m_Network)
    {
        bool isSupported = false;
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("CONV2D",
                                          tfLiteContext,
                                          IsConvolution2dSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          inputTensorInfo,
                                          outputTensorInfo,
                                          descriptor,
                                          filterTensorInfo,
                                          optionalBiasInfo);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    // Set up filter and biases
    armnn::IConnectableLayer* layer = delegateData.m_Network->AddConvolution2dLayer(descriptor);
    layer->SetBackendId(setBackend);

    if(filterTensorInfo.IsConstant())
    {
        auto filter = CreateConstTensor(tfLiteFilterTensor, filterTensorInfo);

        armnn::IConnectableLayer* weightsLayer = delegateData.m_Network->AddConstantLayer(filter);
        weightsLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(1u));
        weightsLayer->GetOutputSlot(0).SetTensorInfo(filterTensorInfo);
    }

    if (biasEnabled)
    {
        if(biasTensorInfo.IsConstant())
        {
            auto biasTensor = CreateConstTensor(tfLiteBiasTensor, biasTensorInfo);
            armnn::IConnectableLayer* biasLayer = delegateData.m_Network->AddConstantLayer(biasTensor);
            ARMNN_ASSERT(biasLayer != nullptr);
            biasLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(2u));
            biasLayer->GetOutputSlot(0).SetTensorInfo(biasTensorInfo);
        }
    }

    // The data input can also be constant, so we must check that this is also allocated to an input slot
    if(inputTensorInfo.IsConstant())
    {
        auto input = CreateConstTensor(tfLiteInputTensor, inputTensorInfo);

        armnn::IConnectableLayer* inputLayer = delegateData.m_Network->AddConstantLayer(input);
        inputLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0u));
        inputLayer->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
    }

    ARMNN_ASSERT(layer != nullptr);

    armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    if(Connect(layer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk)
    {
        return kTfLiteError;
    }

    if (!tfLiteNodeParameters)
    {
        // No Activation
        return kTfLiteOk;
    }

    // Check and Create activation
    return FusedActivation(tfLiteContext, tfLiteNode, activationType, layer, 0, delegateData);
}

TfLiteStatus VisitDepthwiseConv2dOperator(DelegateData& delegateData,
                                          TfLiteOpaqueContext* tfLiteContext,
                                          TfLiteOpaqueNode* tfLiteNode,
                                          int nodeIndex,
                                          int32_t operatorCode)
{
    auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
    if (numInputs < 2)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Minimum number of inputs (%d != %d) in node #%d",
                2, numInputs, nodeIndex);
        return kTfLiteError;
    }
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensor.
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Use input indices to get filter tensor.
    const TfLiteOpaqueTensor* tfLiteFilterTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
    if (!IsValid(tfLiteContext, tfLiteFilterTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo  = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& filterTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteFilterTensor);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    auto* tfLiteNodeParameters =
            reinterpret_cast<TfLiteDepthwiseConvParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));

    TfLiteFusedActivation activationType = kTfLiteActNone;
    if (tfLiteNodeParameters)
    {
        activationType = tfLiteNodeParameters->activation;
        TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData,
                                                                        tfLiteContext,
                                                                        outputTensorInfo,
                                                                        outputTensorInfo,
                                                                        activationType);
        if(activationStatus != kTfLiteOk)
        {
            return kTfLiteError;
        }
    }

    armnn::TensorInfo biasTensorInfo;
    const TfLiteOpaqueTensor* tfLiteBiasTensor = nullptr;

    bool biasEnabled = IsOptionalOperandPresent(tfLiteNode, 2);
    if(biasEnabled)
    {
        // Use input indices to get bias tensor.
        tfLiteBiasTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[2]);
        if(!IsValid(tfLiteBiasTensor))
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                    tfLiteContext,
                    "TfLiteArmnnOpaqueDelegate: Invalid bias tensor in operator #%d node #%d: ",
                    operatorCode, nodeIndex);
            return kTfLiteError;
        }
        if (IsDynamicTensor(tfLiteBiasTensor))
        {
            TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                    tfLiteContext,
                    "TfLiteArmnnOpaqueDelegate: Dynamic bias tensors are not supported in node #%d: ",
                    nodeIndex);
            return kTfLiteError;
        }
        biasTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteBiasTensor);
    }
    else
    {
        biasTensorInfo = armnn::TensorInfo(armnn::TensorShape({1}), GetDataType(tfLiteInputTensor));
    }

    armnn::DepthwiseConvolution2dDescriptor descriptor;
    descriptor.m_BiasEnabled = biasEnabled;
    descriptor.m_StrideX = NonNegative(tfLiteNodeParameters->stride_width, nodeIndex);
    descriptor.m_StrideY = NonNegative(tfLiteNodeParameters->stride_height, nodeIndex);
    descriptor.m_DataLayout = armnn::DataLayout::NHWC;
    descriptor.m_DilationX = NonNegative(tfLiteNodeParameters->dilation_width_factor, nodeIndex);
    descriptor.m_DilationY = NonNegative(tfLiteNodeParameters->dilation_height_factor, nodeIndex);

    // Assuming input is NHWC
    unsigned int inputHeight = inputTensorInfo.GetShape()[1];
    unsigned int inputWidth  = inputTensorInfo.GetShape()[2];

    // TensorflowLite weights come in the format [1, H, W, I * M]
    unsigned int filterHeight = filterTensorInfo.GetShape()[1];
    unsigned int filterWidth  = filterTensorInfo.GetShape()[2];

    // Calculate padding
    CalcPadding(inputHeight, filterHeight, descriptor.m_StrideY, descriptor.m_DilationY,
                descriptor.m_PadTop, descriptor.m_PadBottom, tfLiteNodeParameters->padding);
    CalcPadding(inputWidth, filterWidth, descriptor.m_StrideX, descriptor.m_DilationX,
                descriptor.m_PadLeft, descriptor.m_PadRight, tfLiteNodeParameters->padding);

    armnn::BackendId setBackend;
    if (!delegateData.m_Network)
    {
        bool isSupported = false;
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("DEPTHWISE_CONV2D",
                                          tfLiteContext,
                                          IsDepthwiseConvolutionSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          setBackend,
                                          inputTensorInfo,
                                          outputTensorInfo,
                                          descriptor,
                                          filterTensorInfo,
                                          armnn::Optional<armnn::TensorInfo>(biasTensorInfo));
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* layer = delegateData.m_Network->AddDepthwiseConvolution2dLayer(descriptor);
    layer->SetBackendId(setBackend);

    if(filterTensorInfo.IsConstant())
    {
        // For depthwise the weights layout is the same as for tflite [1, H, W, I*M]. No permutation required.
        auto filter = CreateConstTensor(tfLiteFilterTensor, filterTensorInfo);

        armnn::IConnectableLayer* weightsLayer = delegateData.m_Network->AddConstantLayer(filter);
        weightsLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(1u));
        weightsLayer->GetOutputSlot(0).SetTensorInfo(filterTensorInfo);
    }

    if (biasEnabled)
    {
        if(biasTensorInfo.IsConstant())
        {
            auto biasTensor = CreateConstTensor(tfLiteBiasTensor, biasTensorInfo);

            armnn::IConnectableLayer* biasLayer = delegateData.m_Network->AddConstantLayer(biasTensor);
            ARMNN_ASSERT(biasLayer != nullptr);
            biasLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(2u));
            biasLayer->GetOutputSlot(0).SetTensorInfo(biasTensorInfo);
        }
    }

    // The data input can also be constant, so we must check that this is also allocated to an input slot
    if(inputTensorInfo.IsConstant())
    {
        auto input = CreateConstTensor(tfLiteInputTensor, inputTensorInfo);

        armnn::IConnectableLayer* inputLayer = delegateData.m_Network->AddConstantLayer(input);
        inputLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0u));
        inputLayer->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
    }

    ARMNN_ASSERT(layer != nullptr);

    armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    if(Connect(layer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk)
    {
        return kTfLiteError;
    }

    if (!tfLiteNodeParameters)
    {
        // No Activation
        return kTfLiteOk;
    }
    // Check and create activation
    return FusedActivation(tfLiteContext, tfLiteNode, activationType, layer, 0, delegateData);
}

TfLiteStatus VisitConvolutionOperator(DelegateData& delegateData,
                                      TfLiteOpaqueContext* tfLiteContext,
                                      TfLiteOpaqueNode* tfLiteNode,
                                      int nodeIndex,
                                      int32_t operatorCode)
{
    switch(operatorCode)
    {
        case kTfLiteBuiltinConv2d:
            return VisitConv2dOperator(delegateData, tfLiteContext, tfLiteNode, nodeIndex, operatorCode);
        case kTfLiteBuiltinDepthwiseConv2d:
            return VisitDepthwiseConv2dOperator(delegateData, tfLiteContext, tfLiteNode, nodeIndex, operatorCode);
        default:
            return kTfLiteError;
    }
}

}