aboutsummaryrefslogtreecommitdiff
path: root/delegate/opaque/src/Activation.hpp
blob: 9fce7a12e0a03acf9e452bbe206f9827e2b52ebd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <OpaqueDelegateUtils.hpp>

namespace armnnOpaqueDelegate
{

std::string GetLayerName(armnn::ActivationFunction activationFunction)
{
    std::string layerName = "ACTIVATION";
    switch (activationFunction)
    {
        case armnn::ActivationFunction::Abs:
            layerName += " ABS";
            break;
        case armnn::ActivationFunction::BoundedReLu:
            layerName += " BOUNDED_RELU";
            break;
        case armnn::ActivationFunction::Elu:
            layerName += " ELU";
            break;
        case armnn::ActivationFunction::HardSwish:
            layerName += " HARD_SWISH";
            break;
        case armnn::ActivationFunction::LeakyReLu:
            layerName += " LEAKY_RELU";
            break;
        case armnn::ActivationFunction::Linear:
            layerName += " LINEAR";
            break;
        case armnn::ActivationFunction::ReLu:
            layerName += " RELU";
            break;
        case armnn::ActivationFunction::Sigmoid:
            layerName += " SIGMOID";
            break;
        case armnn::ActivationFunction::SoftReLu:
            layerName += " SOFT_RELU";
            break;
        case armnn::ActivationFunction::Square:
            layerName += " SQUARE";
            break;
        case armnn::ActivationFunction::Sqrt:
            layerName += " SQRT";
            break;
        case armnn::ActivationFunction::TanH:
            layerName += " TANH";
            break;
        default:
            layerName += " UNKNOWN";
    }
    return layerName;
}

TfLiteStatus ValidateActivationOperator(DelegateData& delegateData,
                                        TfLiteOpaqueContext* tfLiteContext,
                                        const armnn::TensorInfo& inputInfo,
                                        const armnn::TensorInfo& outputInfo,
                                        armnn::ActivationDescriptor& activationDesc)
{
    bool isSupported = false;
    auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported, std::string layerName)
    {
        FORWARD_LAYER_OPAQUE_SUPPORT_FUNC(layerName.c_str(),
                                          tfLiteContext,
                                          IsActivationSupported,
                                          delegateData.m_Backends,
                                          isSupported,
                                          armnn::BackendId(),
                                          inputInfo,
                                          outputInfo,
                                          activationDesc);
    };

    validateFunc(outputInfo, isSupported, GetLayerName(activationDesc.m_Function));
    return isSupported ? kTfLiteOk : kTfLiteError;
}

TfLiteStatus VisitActivationOperator(DelegateData& delegateData,
                                     TfLiteOpaqueContext* tfLiteContext,
                                     TfLiteOpaqueNode* tfLiteNode,
                                     int nodeIndex,
                                     int32_t operatorCode)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    // Gather input indices and use to get input tensor.
    int numInputs = 0;
    const int* inputTensors;
    if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    // Gather output indices and use to get output tensors.
    int numOutputs = 0;
    const int* outputTensors;
    if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
    {
        TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
                nodeIndex);
        return kTfLiteError;
    }

    const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo  = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);

    armnn::ActivationDescriptor activationDesc;
    switch(operatorCode)
    {
        case kTfLiteBuiltinRelu:
        {
            activationDesc.m_Function = armnn::ActivationFunction::ReLu;
            break;
        }
        case kTfLiteBuiltinRelu6:
        {
            activationDesc.m_Function = armnn::ActivationFunction::BoundedReLu;
            activationDesc.m_A = 6.0f;
            break;
        }
        case kTfLiteBuiltinLogistic:
        {
            activationDesc.m_Function = armnn::ActivationFunction::Sigmoid;
            break;
        }
        case kTfLiteBuiltinTanh:
        {
            activationDesc.m_Function = armnn::ActivationFunction::TanH;
            activationDesc.m_A = 1.0f;
            activationDesc.m_B = 1.0f;
            break;
        }
        case kTfLiteBuiltinElu:
        {
            activationDesc.m_Function = armnn::ActivationFunction::Elu;
            activationDesc.m_A = 1.0f;
            break;
        }
        case kTfLiteBuiltinHardSwish:
        {
            activationDesc.m_Function = armnn::ActivationFunction::HardSwish;
            break;
        }
        default:
        {
            return kTfLiteError;
        }
    }
    if (!delegateData.m_Network)
    {
        return ValidateActivationOperator(delegateData,
                                          tfLiteContext,
                                          inputTensorInfo,
                                          outputTensorInfo,
                                          activationDesc);
    }
    armnn::IConnectableLayer* activationLayer = delegateData.m_Network->AddActivationLayer(activationDesc);
    ARMNN_ASSERT(activationLayer != nullptr);

    armnn::IOutputSlot& outputSlot = activationLayer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    // try to connect the Constant Inputs if there are any
    if(ProcessInputs(activationLayer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
    {
        return kTfLiteError;
    }

    // Connect
    return Connect(activationLayer, tfLiteContext, tfLiteNode, delegateData);
}

} // namespace armnnDelegate