aboutsummaryrefslogtreecommitdiff
path: root/src/backends/test
diff options
context:
space:
mode:
Diffstat (limited to 'src/backends/test')
-rw-r--r--src/backends/test/ActivationFixture.hpp56
-rw-r--r--src/backends/test/ActivationTestImpl.hpp560
-rw-r--r--src/backends/test/ArmComputeCl.cpp311
-rw-r--r--src/backends/test/ArmComputeNeon.cpp463
-rw-r--r--src/backends/test/BatchNormTestImpl.hpp112
-rw-r--r--src/backends/test/ClContextControlFixture.hpp21
-rw-r--r--src/backends/test/Conv2dTestImpl.hpp921
-rw-r--r--src/backends/test/ConvertFp16ToFp32TestImpl.hpp55
-rw-r--r--src/backends/test/ConvertFp32ToFp16TestImpl.hpp55
-rw-r--r--src/backends/test/CreateWorkloadCl.cpp564
-rw-r--r--src/backends/test/CreateWorkloadNeon.cpp455
-rw-r--r--src/backends/test/CreateWorkloadRef.cpp478
-rw-r--r--src/backends/test/FullyConnectedTestImpl.hpp287
-rw-r--r--src/backends/test/IsLayerSupportedTest.cpp239
-rw-r--r--src/backends/test/IsLayerSupportedTestImpl.hpp565
-rw-r--r--src/backends/test/LayerReleaseConstantDataTest.cpp212
-rw-r--r--src/backends/test/LayerTests.cpp4750
-rw-r--r--src/backends/test/LayerTests.hpp345
-rw-r--r--src/backends/test/LstmTestImpl.hpp1150
-rw-r--r--src/backends/test/MemCopyTests.cpp180
-rw-r--r--src/backends/test/NormTestImpl.hpp241
-rw-r--r--src/backends/test/PermuteTestImpl.hpp225
-rw-r--r--src/backends/test/Pooling2dTestImpl.hpp1116
-rw-r--r--src/backends/test/QuantizeHelper.hpp91
-rw-r--r--src/backends/test/Reference.cpp253
-rw-r--r--src/backends/test/ReshapeTestImpl.hpp177
-rw-r--r--src/backends/test/SoftmaxTestImpl.hpp153
-rw-r--r--src/backends/test/SplitterTestImpl.hpp307
-rw-r--r--src/backends/test/TensorCopyUtils.cpp159
-rw-r--r--src/backends/test/TensorCopyUtils.hpp14
-rw-r--r--src/backends/test/WorkloadDataValidation.cpp471
-rw-r--r--src/backends/test/WorkloadTestUtils.hpp55
32 files changed, 15041 insertions, 0 deletions
diff --git a/src/backends/test/ActivationFixture.hpp b/src/backends/test/ActivationFixture.hpp
new file mode 100644
index 0000000000..d9d4ca7470
--- /dev/null
+++ b/src/backends/test/ActivationFixture.hpp
@@ -0,0 +1,56 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "TensorCopyUtils.hpp"
+#include "WorkloadTestUtils.hpp"
+
+struct ActivationFixture
+{
+ ActivationFixture()
+ {
+ auto boostArrayExtents = boost::extents
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(batchSize)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(channels)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(height)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(width)];
+ output.resize(boostArrayExtents);
+ outputExpected.resize(boostArrayExtents);
+ input.resize(boostArrayExtents);
+
+ unsigned int inputShape[] = { batchSize, channels, height, width };
+ unsigned int outputShape[] = { batchSize, channels, height, width };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ input = MakeRandomTensor<float, 4>(inputTensorInfo, 21453);
+ }
+
+ unsigned int width = 17;
+ unsigned int height = 29;
+ unsigned int channels = 2;
+ unsigned int batchSize = 5;
+
+ boost::multi_array<float, 4> output;
+ boost::multi_array<float, 4> outputExpected;
+ boost::multi_array<float, 4> input;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ // Parameters used by some of the activation functions.
+ float a = 0.234f;
+ float b = -12.345f;
+};
+
+
+struct PositiveActivationFixture : public ActivationFixture
+{
+ PositiveActivationFixture()
+ {
+ input = MakeRandomTensor<float, 4>(inputTensorInfo, 2342423, 0.0f, 1.0f);
+ }
+}; \ No newline at end of file
diff --git a/src/backends/test/ActivationTestImpl.hpp b/src/backends/test/ActivationTestImpl.hpp
new file mode 100644
index 0000000000..a5d327c287
--- /dev/null
+++ b/src/backends/test/ActivationTestImpl.hpp
@@ -0,0 +1,560 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+#include "ActivationFixture.hpp"
+
+#include <algorithm>
+
+template<typename T>
+LayerTestResult<T, 4> BoundedReLuTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float upperBound, float lowerBound,
+ float inputScale, int32_t inputOffset, float outputScale, int32_t outputOffset,
+ const std::vector<T>& inputData, const std::vector<T>& outputExpectedData,
+ unsigned int inputWidth, unsigned int inputHeight,
+ unsigned int inputChannels, unsigned int inputBatchSize)
+{
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputHeight = inputHeight;
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(inputScale);
+ inputTensorInfo.SetQuantizationOffset(inputOffset);
+
+ outputTensorInfo.SetQuantizationScale(outputScale);
+ outputTensorInfo.SetQuantizationOffset(outputOffset);
+ }
+
+ LayerTestResult<T, 4> result(inputTensorInfo);
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Setup bounded ReLu.
+ armnn::ActivationQueueDescriptor descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ descriptor.m_Parameters.m_Function = armnn::ActivationFunction::BoundedReLu;
+ descriptor.m_Parameters.m_A = upperBound;
+ descriptor.m_Parameters.m_B = lowerBound;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(descriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputExpectedData);
+
+ return result;
+}
+
+LayerTestResult<float, 4> BoundedReLuUpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 4u;
+ unsigned int inputHeight = 5u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<float> input = std::vector<float>{
+ -2.0f, 0.1f, 0.5f, 1.25f,
+ 0.786f, 0.9875f, -1.5f, 0.384f,
+ 1.0001f, 3.5f, 7.5f, 0.896f,
+ 2.126f, 2.0f, 0.3f, 0.15f,
+ 0.999f, 1.2f, 0.89f, 6.1f,
+ };
+
+ // Calculated manually.
+ std::vector<float> output = std::vector<float>{
+ -1.0f, 0.1f, 0.5f, 1.0f,
+ 0.786f, 0.9875f, -1.0f, 0.384f,
+ 1.0f, 1.0f, 1.0f, 0.896f,
+ 1.0f, 1.0f, 0.3f, 0.15f,
+ 0.999f, 1.0f, 0.89f, 1.0f,
+ };
+
+ return BoundedReLuTestCommon(workloadFactory, 1.0f, -1.0f, 1.0f, 0, 1.0f, 0, input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+LayerTestResult<float, 4> BoundedReLuUpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 4u;
+ unsigned int inputHeight = 5u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<float> input = std::vector<float>{
+ -1.0f, 0.1f, 0.5f, 6.25f,
+ 0.786f, 5.9875f, -0.5f, 0.384f,
+ 6.0001f, 3.5f, 7.5f, 0.896f,
+ 2.126f, 12.0f, 0.3f, 0.15f,
+ 0.999f, 1.2f, 0.89f, 6.1f,
+ };
+
+ // Calculated manually.
+ std::vector<float> output = std::vector<float>{
+ 0.0f, 0.1f, 0.5f, 6.0f,
+ 0.786f, 5.9875f, 0.0f, 0.384f,
+ 6.0f, 3.5f, 6.0f, 0.896f,
+ 2.126f, 6.0f, 0.3f, 0.15f,
+ 0.999f, 1.2f, 0.89f, 6.0f,
+ };
+
+ return BoundedReLuTestCommon(workloadFactory, 6.0f, 0.0f, 1.0f, 0, 1.0f, 0, input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 3u;
+ unsigned int inputHeight = 2u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<uint8_t> input = std::vector<uint8_t>{
+ 51, 124, 28,
+ 251, 8, 92
+ };
+
+ // Calculated manually.
+ std::vector<uint8_t> output = std::vector<uint8_t>{
+ 0, 122, 0,
+ 255, 0, 58
+ };
+
+ float inputScale = 12.0f / 255.0f;
+ int32_t inputOffset = 63;
+ float outputScale = 6.0f / 255.0f;
+ int32_t outputOffset = 0;
+
+ return BoundedReLuTestCommon(workloadFactory, 6.0f, 0.0f,
+ inputScale, inputOffset, outputScale, outputOffset,
+ input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 3u;
+ unsigned int inputHeight = 2u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<uint8_t> input = std::vector<uint8_t>{
+ 51, 230, 28,
+ 251, 8, 92
+ };
+
+ // Calculated manually.
+ std::vector<uint8_t> output = std::vector<uint8_t>{
+ 51, 192, 32,
+ 192, 32, 92
+ };
+
+ int32_t inputOffset = 112;
+ float inputScale = 0.0125f;
+
+ return BoundedReLuTestCommon(workloadFactory, 1.0f, -1.0f,
+ inputScale, inputOffset, inputScale, inputOffset, // Input/output scale & offset same.
+ input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+namespace
+{
+
+struct BoundedReLuRandomInputTestTraits
+{
+ constexpr static unsigned int inputHeight = 31u;
+ constexpr static unsigned int inputWidth = 19u;
+ constexpr static unsigned int inputChannels = 4u;
+ constexpr static unsigned int inputBatchSize = 2;
+
+ constexpr static unsigned int outputHeight = inputHeight;
+ constexpr static unsigned int outputWidth = inputWidth;
+ constexpr static unsigned int outputChannels = inputChannels;
+ constexpr static unsigned int outputBatchSize = inputBatchSize;
+
+ static armnn::TensorInfo GetInputTensorInfo()
+ {
+ return armnn::TensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ }
+
+ static armnn::TensorInfo GetOutputTensorInfo()
+ {
+ return armnn::TensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+ }
+};
+
+boost::multi_array<float, 4> BoundedReLuRandomInputTest(armnn::IWorkloadFactory& workloadFactory,
+ float lowerBound,
+ float upperBound,
+ const armnn::ActivationDescriptor& activationDescriptor)
+{
+ const armnn::TensorInfo inputTensorInfo = BoundedReLuRandomInputTestTraits::GetInputTensorInfo();
+ const armnn::TensorInfo outputTensorInfo = BoundedReLuRandomInputTestTraits::GetOutputTensorInfo();
+
+ boost::multi_array<float, 4> output(GetTensorShapeAsArray<4>(outputTensorInfo));
+
+ // Min/max random values passed to MakeRandomTensor are purposely outside of the ReLu
+ // range [lowerBound, upperBound].
+ auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 4605828, lowerBound - 5.0f, upperBound * 2.0f);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Set up bounded ReLu.
+ armnn::ActivationQueueDescriptor descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+ descriptor.m_Parameters = activationDescriptor;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(descriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&output[0][0][0][0], outputHandle.get());
+
+ return output;
+}
+
+} // namespace
+
+LayerTestResult<float, 4> CompareBoundedReLuTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& otherWorkloadFactory,
+ float upperBound,
+ float lowerBound)
+{
+ LayerTestResult<float, 4> result(BoundedReLuRandomInputTestTraits::GetOutputTensorInfo());
+
+ armnn::ActivationDescriptor activationDescriptor;
+ activationDescriptor.m_Function = armnn::ActivationFunction::BoundedReLu;
+ activationDescriptor.m_A = upperBound;
+ activationDescriptor.m_B = lowerBound;
+
+ result.output = BoundedReLuRandomInputTest(workloadFactory, 0.0f, upperBound, activationDescriptor);
+ result.outputExpected = BoundedReLuRandomInputTest(otherWorkloadFactory, 0.0f, upperBound, activationDescriptor);
+
+ return result;
+}
+
+template<typename T>
+LayerTestResult<T,4> ConstantLinearActivationTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int inputHeight = 20;
+ unsigned int inputWidth = 17;
+ unsigned int inputChannels = 3;
+ unsigned int batchSize = 5;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, inputChannels, inputHeight, inputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Do linear activation that should leave the tensor unchanged.
+ armnn::ActivationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_A = 1.0f;
+ data.m_Parameters.m_B = 0.0f;
+ data.m_Parameters.m_Function = armnn::ActivationFunction::Linear;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ boost::multi_array<T, 4> input = MakeRandomTensor<T, 4>(inputTensorInfo, 7123561);
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ // Ensure output equals input.
+ ret.outputExpected = input;
+
+ return ret;
+}
+
+LayerTestResult<float, 4> ConstantLinearActivationTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantLinearActivationTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> ConstantLinearActivationUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantLinearActivationTestCommon<uint8_t>(workloadFactory, 4.0f, 3);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleActivationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::ActivationFunction activationFunction,
+ float activationParameterA,
+ float activationParameterB,
+ float qScale,
+ int32_t qOffset,
+ const std::vector<float>& inputData,
+ const std::vector<float>& outputExpectedData)
+{
+ constexpr static unsigned int inputWidth = 16u;
+ constexpr static unsigned int inputHeight = 1u;
+ constexpr static unsigned int inputChannels = 1u;
+ constexpr static unsigned int inputBatchSize = 1u;
+
+ constexpr static unsigned int outputWidth = inputWidth;
+ constexpr static unsigned int outputHeight = inputHeight;
+ constexpr static unsigned int outputChannels = inputChannels;
+ constexpr static unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 4> result(inputTensorInfo);
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Setup bounded ReLu.
+ armnn::ActivationQueueDescriptor descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ descriptor.m_Parameters.m_Function = activationFunction;
+ descriptor.m_Parameters.m_A = activationParameterA;
+ descriptor.m_Parameters.m_B = activationParameterB;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(descriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ // Calculated manually.
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, outputExpectedData));
+
+ return result;
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleSigmoidTestCommon(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ std::vector<float> inputData = {
+ -0.1f, -0.2f, -0.3f, -0.4f,
+ 0.1f, 0.2f, 0.3f, 0.4f,
+ -1.0f, -2.0f, -3.0f, -4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f
+ };
+
+ // Calculate output values for input.
+ auto f = [](float value)
+ {
+ return 1.0f / (1.0f + std::exp(-value));
+ };
+ std::vector<float> outputExpectedData(inputData.size());
+ std::transform(inputData.begin(), inputData.end(), outputExpectedData.begin(), f);
+
+ return SimpleActivationTest<T>(workloadFactory,
+ armnn::ActivationFunction::Sigmoid,
+ 0.f,
+ 0.f,
+ qScale,
+ qOffset,
+ inputData,
+ outputExpectedData);
+}
+
+LayerTestResult<float, 4> SimpleSigmoidTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleSigmoidTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> SimpleSigmoidUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleSigmoidTestCommon<uint8_t>(workloadFactory, 0.1f, 50);
+}
+
+template<typename T>
+LayerTestResult<T,4> CompareActivationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f,
+ unsigned int batchSize = 5,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int width = 17;
+ unsigned int height = 29;
+ unsigned int channels = 2;
+
+ float a = 0.234f;
+ float b = -12.345f;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, channels, height, width};
+
+ inputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ float minVal = -10.f;
+ if (f == armnn::ActivationFunction::Sqrt)
+ {
+ minVal = 0.f;
+ }
+
+ boost::multi_array<T, 4> input = MakeRandomTensor<T, 4>(inputTensorInfo, 21453, minVal, 10.f);
+
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+ auto boostArrayExtents = boost::extents
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(batchSize)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(channels)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(height)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(width)];
+ ret.output.resize(boostArrayExtents);
+ ret.outputExpected.resize(boostArrayExtents);
+
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ActivationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_A = a;
+ data.m_Parameters.m_B = b;
+ data.m_Parameters.m_Function = f;
+
+ armnn::ActivationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(data, info);
+ BOOST_ASSERT(workload != nullptr);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateActivation(refData, refInfo);
+ BOOST_ASSERT(workloadRef != nullptr);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ inputHandleRef->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+LayerTestResult<float,4> CompareActivationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f,
+ unsigned int batchSize)
+{
+ return CompareActivationTestImpl<float>(workloadFactory, refWorkloadFactory, f, batchSize);
+}
+
+LayerTestResult<uint8_t,4> CompareActivationUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f)
+{
+ return CompareActivationTestImpl<uint8_t>(workloadFactory, refWorkloadFactory, f, 5, 0.1f, 50);
+}
diff --git a/src/backends/test/ArmComputeCl.cpp b/src/backends/test/ArmComputeCl.cpp
new file mode 100644
index 0000000000..9a516b6d60
--- /dev/null
+++ b/src/backends/test/ArmComputeCl.cpp
@@ -0,0 +1,311 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <boost/test/unit_test.hpp>
+#include "test/TensorHelpers.hpp"
+#include "LayerTests.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/ClWorkloadFactory.hpp"
+#include "backends/ClWorkloads/ClWorkloadUtils.hpp"
+#include "backends/RefWorkloadFactory.hpp"
+#include "backends/ClLayerSupport.hpp"
+#include "ActivationFixture.hpp"
+#include "ClContextControlFixture.hpp"
+
+#include <arm_compute/core/CL/CLKernelLibrary.h>
+#include <arm_compute/runtime/CL/CLScheduler.h>
+#include <string>
+#include <iostream>
+
+#include "test/UnitTests.hpp"
+
+BOOST_FIXTURE_TEST_SUITE(Compute_ArmComputeCl, ClContextControlFixture)
+using FactoryType = armnn::ClWorkloadFactory;
+
+// ============================================================================
+// UNIT tests
+
+// Activation
+ARMNN_AUTO_TEST_CASE(ConstantLinearActivation, ConstantLinearActivationTest)
+
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta1, SimpleSoftmaxTest, 1.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2, SimpleSoftmaxTest, 2.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta1Uint8, SimpleSoftmaxUint8Test, 1.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2Uint8, SimpleSoftmaxUint8Test, 2.0f)
+
+ARMNN_AUTO_TEST_CASE(ReLu1Uint8, BoundedReLuUint8UpperAndLowerBoundTest)
+ARMNN_AUTO_TEST_CASE(ReLu6Uint8, BoundedReLuUint8UpperBoundOnlyTest)
+
+// Fully Connected
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnected, FullyConnectedFloat32Test, false, false)
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnectedWithBias, FullyConnectedFloat32Test, true, false)
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnectedWithTranspose, FullyConnectedFloat32Test, false, true)
+ARMNN_AUTO_TEST_CASE(FullyConnectedUint8, FullyConnectedUint8Test, false)
+ARMNN_AUTO_TEST_CASE(FullyConnectedBiasedUint8, FullyConnectedUint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(FullyConnectedLarge, FullyConnectedLargeTest, false)
+ARMNN_AUTO_TEST_CASE(FullyConnectedLargeTransposed, FullyConnectedLargeTest, true)
+
+// Convolution
+ARMNN_AUTO_TEST_CASE(SimpleConvolution1d, Convolution1dTest, true)
+
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d, SimpleConvolution2d3x5Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2dSquare, SimpleConvolution2d3x3Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d3x3Uint8, SimpleConvolution2d3x3Uint8Test, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolution2d, SimpleConvolution2d3x5Test, false)
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolution2dSquare, SimpleConvolution2d3x3Test, false)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2dAsymmetricPadding, Convolution2dAsymmetricPaddingTest)
+
+// Depthwise Convolution
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dDepthMul1, DepthwiseConvolution2dDepthMul1Test, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1, DepthwiseConvolution2dDepthMul1Test, false)
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dDepthMul1Uint8, DepthwiseConvolution2dDepthMul1Uint8Test, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1Uint8, DepthwiseConvolution2dDepthMul1Uint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, false)
+
+// Softmax
+BOOST_AUTO_TEST_CASE(Softmax4dSupport)
+{
+ const unsigned int numDimensions = 4u;
+ std::array<unsigned int, numDimensions> dimensionSizes;
+ dimensionSizes.fill(1u);
+
+ const armnn::TensorInfo inputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+ const armnn::TensorInfo outputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+
+ // 4D Softmax should be reported as unsupported on the CL backend
+ BOOST_TEST(!armnn::IsSoftmaxSupportedCl(inputInfo, outputInfo, armnn::SoftmaxDescriptor()));
+}
+
+// Splitter
+ARMNN_AUTO_TEST_CASE(SimpleSplitter, SplitterTest)
+ARMNN_AUTO_TEST_CASE(SimpleSplitterUint8, SplitterUint8Test)
+
+ARMNN_AUTO_TEST_CASE(CopyViaSplitter, CopyViaSplitterTest)
+ARMNN_AUTO_TEST_CASE(CopyViaSplitterUint8, CopyViaSplitterUint8Test)
+
+// Merger
+ARMNN_AUTO_TEST_CASE(SimpleMerger, MergerTest)
+ARMNN_AUTO_TEST_CASE(MergerUint8, MergerUint8Test)
+
+// Pooling
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize3x3Stride2x4, SimpleMaxPooling2dSize3x3Stride2x4Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize3x3Stride2x4Uint8, SimpleMaxPooling2dSize3x3Stride2x4Uint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleMaxPooling2d, IgnorePaddingSimpleMaxPooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleMaxPooling2dUint8, IgnorePaddingSimpleMaxPooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingMaxPooling2dSize3, IgnorePaddingMaxPooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingMaxPooling2dSize3Uint8, IgnorePaddingMaxPooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2d, IgnorePaddingSimpleAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dUint8, IgnorePaddingSimpleAveragePooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dNoPadding, IgnorePaddingSimpleAveragePooling2dNoPaddingTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dNoPaddingUint8,
+ IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3, IgnorePaddingAveragePooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3Uint8, IgnorePaddingAveragePooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleL2Pooling2d, IgnorePaddingSimpleL2Pooling2dTest)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_IgnorePaddingSimpleL2Pooling2dUint8, IgnorePaddingSimpleL2Pooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingL2Pooling2dSize3, IgnorePaddingL2Pooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_IgnorePaddingL2Pooling2dSize3Uint8, IgnorePaddingL2Pooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(SimpleAveragePooling2d, SimpleAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(SimpleAveragePooling2dUint8, SimpleAveragePooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3x2Stride2x2,
+ IgnorePaddingAveragePooling2dSize3x2Stride2x2Test,
+ false)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3x2Stride2x2NoPadding,
+ IgnorePaddingAveragePooling2dSize3x2Stride2x2Test,
+ true)
+ARMNN_AUTO_TEST_CASE(LargeTensorsAveragePooling2d, LargeTensorsAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(LargeTensorsAveragePooling2dUint8, LargeTensorsAveragePooling2dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(SimpleL2Pooling2d, SimpleL2Pooling2dTest)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_SimpleL2Pooling2dUint8, SimpleL2Pooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize3Stride1, L2Pooling2dSize3Stride1Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize3Stride1Uint8, L2Pooling2dSize3Stride1Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize3Stride3, L2Pooling2dSize3Stride3Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize3Stride3Uint8, L2Pooling2dSize3Stride3Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize3Stride4, L2Pooling2dSize3Stride4Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize3Stride4Uint8, L2Pooling2dSize3Stride4Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize7, L2Pooling2dSize7Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize7Uint8, L2Pooling2dSize7Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize9, L2Pooling2dSize9Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize9Uint8, L2Pooling2dSize9Uint8Test)
+
+// Add
+ARMNN_AUTO_TEST_CASE(SimpleAdd, AdditionTest)
+ARMNN_AUTO_TEST_CASE(AddBroadcast1Element, AdditionBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(AddBroadcast, AdditionBroadcastTest)
+
+ARMNN_AUTO_TEST_CASE(AdditionUint8, AdditionUint8Test)
+ARMNN_AUTO_TEST_CASE(AddBroadcastUint8, AdditionBroadcastUint8Test)
+ARMNN_AUTO_TEST_CASE(AddBroadcast1ElementUint8, AdditionBroadcast1ElementUint8Test)
+
+// Sub
+ARMNN_AUTO_TEST_CASE(SimpleSub, SubtractionTest)
+
+// Div
+ARMNN_AUTO_TEST_CASE(SimpleDivision, DivisionTest)
+ARMNN_AUTO_TEST_CASE(DivisionByZero, DivisionByZeroTest)
+ARMNN_AUTO_TEST_CASE(DivisionBroadcast1Element, DivisionBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(DivisionBroadcast1DVector, DivisionBroadcast1DVectorTest)
+// NOTE: quantized division is not supported by CL and not required by the
+// android NN api
+
+// Mul
+ARMNN_AUTO_TEST_CASE(SimpleMultiplication, MultiplicationTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1Element, MultiplicationBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1DVector, MultiplicationBroadcast1DVectorTest)
+
+// Batch Norm
+ARMNN_AUTO_TEST_CASE(BatchNorm, BatchNormTest)
+
+ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest)
+ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest)
+ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest)
+ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest)
+
+// Resize Bilinear
+ARMNN_AUTO_TEST_CASE(SimpleResizeBilinear, SimpleResizeBilinearTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearNop, ResizeBilinearNopTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearSqMin, ResizeBilinearSqMinTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearMin, ResizeBilinearMinTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearMag, ResizeBilinearMagTest)
+
+// Constant
+ARMNN_AUTO_TEST_CASE(Constant, ConstantTest)
+ARMNN_AUTO_TEST_CASE(ConstantUint8, ConstantTestUint8)
+
+// Concat
+ARMNN_AUTO_TEST_CASE(Concatenation1d, Concatenation1dTest)
+ARMNN_AUTO_TEST_CASE(Concatenation1dUint8, Concatenation1dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0, Concatenation2dDim0Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0Uint8, Concatenation2dDim0Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1, Concatenation2dDim1Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1Uint8, Concatenation2dDim1Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0DiffInputDims, Concatenation2dDim0DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0DiffInputDimsUint8, Concatenation2dDim0DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1DiffInputDims, Concatenation2dDim1DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1DiffInputDimsUint8, Concatenation2dDim1DiffInputDimsUint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0, Concatenation3dDim0Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0Uint8, Concatenation3dDim0Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1, Concatenation3dDim1Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1Uint8, Concatenation3dDim1Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2, Concatenation3dDim2Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2Uint8, Concatenation3dDim2Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0DiffInputDims, Concatenation3dDim0DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0DiffInputDimsUint8, Concatenation3dDim0DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1DiffInputDims, Concatenation3dDim1DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1DiffInputDimsUint8, Concatenation3dDim1DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDims, Concatenation3dDim2DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDimsUint8, Concatenation3dDim2DiffInputDimsUint8Test)
+
+// Floor
+ARMNN_AUTO_TEST_CASE(SimpleFloor, SimpleFloorTest)
+
+// Reshape
+ARMNN_AUTO_TEST_CASE(SimpleReshapeFloat32, SimpleReshapeFloat32Test)
+ARMNN_AUTO_TEST_CASE(SimpleReshapeUint8, SimpleReshapeUint8Test)
+
+// Permute
+ARMNN_AUTO_TEST_CASE(SimplePermuteFloat32, SimplePermuteFloat32Test)
+ARMNN_AUTO_TEST_CASE(SimplePermuteUint8, SimplePermuteUint8Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet1, PermuteFloat32ValueSet1Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet2, PermuteFloat32ValueSet2Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet3, PermuteFloat32ValueSet3Test)
+
+// Lstm
+ARMNN_AUTO_TEST_CASE(LstmLayerFloat32WithCifgWithPeepholeNoProjection,
+ LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest)
+ARMNN_AUTO_TEST_CASE(LstmLayerFloat32NoCifgNoPeepholeNoProjection,
+ LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest)
+ARMNN_AUTO_TEST_CASE(LstmLayerFloat32NoCifgWithPeepholeWithProjection,
+ LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest)
+
+// Convert from Float16 to Float32
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp16ToFp32, SimpleConvertFp16ToFp32Test)
+// Convert from Float32 to Float16
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp32ToFp16, SimpleConvertFp32ToFp16Test)
+
+// ============================================================================
+// COMPARE tests
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareConv2dWithReference, CompareConvolution2dTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareDepthwiseConv2dWithReferenceFloat32, CompareDepthwiseConvolution2dTest<float>)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareDepthwiseConv2dWithReferenceUint8, CompareDepthwiseConvolution2dTest<uint8_t>)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareNormalizationWithinWithReference, CompareNormalizationTest,
+ armnn::NormalizationAlgorithmChannel::Within,
+ armnn::NormalizationAlgorithmMethod::LocalBrightness)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareNormalizationAcrossWithReference, CompareNormalizationTest,
+ armnn::NormalizationAlgorithmChannel::Across,
+ armnn::NormalizationAlgorithmMethod::LocalBrightness)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxBeta1WithReference, CompareSoftmaxTest, 1.0f)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxBeta2WithReference, CompareSoftmaxTest, 2.0f)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxUint8, CompareSoftmaxUint8Test, 1.0f)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareMaxPooling2dWithRef, ComparePooling2dTest, armnn::PoolingAlgorithm::Max)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareAveragePooling2dWithRef, ComparePooling2dTest, armnn::PoolingAlgorithm::Average)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareAveragePooling2dWithRefUint8, ComparePooling2dUint8Test,
+ armnn::PoolingAlgorithm::Average)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareL2Pooling2dWithRef, ComparePooling2dTest, armnn::PoolingAlgorithm::L2)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareAddition, CompareAdditionTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareMultiplicationWithRef, CompareMultiplicationTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareBatchNorm, CompareBatchNormTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareReLu1, CompareBoundedReLuTest, 1.0f, -1.0f)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareReLu6, CompareBoundedReLuTest, 6.0f, 0.0f)
+
+// ============================================================================
+// FIXTURE tests
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSigmoidActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Sigmoid, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareTanhActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::TanH, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareLinearActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Linear, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::ReLu, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareBoundedReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::BoundedReLu, 5u)
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareBoundedReLuActivationWithReferenceUint8, ActivationFixture,
+ CompareActivationUint8Test, armnn::ActivationFunction::BoundedReLu)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSoftReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::SoftReLu, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareLeakyReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::LeakyReLu, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareAbsActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Abs, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSqrtActivationWithReference, PositiveActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Sqrt, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSquareActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Square, 5u)
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/ArmComputeNeon.cpp b/src/backends/test/ArmComputeNeon.cpp
new file mode 100644
index 0000000000..f1a2cf65bd
--- /dev/null
+++ b/src/backends/test/ArmComputeNeon.cpp
@@ -0,0 +1,463 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <boost/test/unit_test.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "LayerTests.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/NeonLayerSupport.hpp"
+#include "backends/NeonWorkloadFactory.hpp"
+#include "backends/RefWorkloadFactory.hpp"
+#include "backends/test/TensorCopyUtils.hpp"
+#include "ActivationFixture.hpp"
+
+#include "WorkloadTestUtils.hpp"
+
+#include "test/UnitTests.hpp"
+
+BOOST_AUTO_TEST_SUITE(Compute_ArmComputeNeon)
+using FactoryType = armnn::NeonWorkloadFactory;
+
+// ============================================================================
+// UNIT tests
+
+// Convolution
+ARMNN_AUTO_TEST_CASE(SimpleConvolution1d, Convolution1dTest, true)
+
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d, SimpleConvolution2d3x5Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2dSquare, SimpleConvolution2d3x3Test, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolution2d, SimpleConvolution2d3x5Test, false)
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolution2dSquare, SimpleConvolution2d3x3Test, false)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2dAsymmetricPadding, Convolution2dAsymmetricPaddingTest)
+
+namespace
+{
+
+armnn::Convolution2dDescriptor MakeConv2dDesc(uint32_t strideX, uint32_t strideY,
+ uint32_t padLeft = 0, uint32_t padRight = 0, uint32_t padTop = 0, uint32_t padBottom = 0)
+{
+ armnn::Convolution2dDescriptor result;
+ result.m_StrideX = strideX;
+ result.m_StrideY = strideY;
+ result.m_PadLeft = padLeft;
+ result.m_PadRight = padRight;
+ result.m_PadTop = padTop;
+ result.m_PadBottom = padBottom;
+ result.m_BiasEnabled = true;
+ return result;
+}
+
+}
+
+BOOST_AUTO_TEST_CASE(Conv2dUtils)
+{
+ // The only preferred Neon convolution is 1x1 with padding=0 and stride size {1,2,3}.
+ armnn::TensorShape shape1x1({ 1,1,1,1 });
+ armnn::TensorInfo info1x1(shape1x1, armnn::DataType::Float32);
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 1)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 2)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 3)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(2, 1)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(2, 2)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(2, 3)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(3, 1)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(3, 2)));
+ BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(3, 3)));
+
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(4, 1)));
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(4, 5)));
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(3, 6)));
+
+ // non zero padding is not preferred for direct convolution
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 1, 1, 0)));
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 1, 0, 1)));
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 1, 1, 1)));
+
+ // 2x2 filter not preferred for direct convolution
+ armnn::TensorShape shape2x2({ 1,1,2,2 });
+ armnn::TensorInfo info2x2(shape2x2, armnn::DataType::Float32);
+ BOOST_TEST(!armnn::IsNeonDirectConvolutionPreferred(info2x2, MakeConv2dDesc(1, 1)));
+}
+
+// Depthwise Convolution
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dDepthMul1, DepthwiseConvolution2dDepthMul1Test, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1, DepthwiseConvolution2dDepthMul1Test, false)
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dDepthMul1Uint8, DepthwiseConvolution2dDepthMul1Uint8Test, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1Uint8, DepthwiseConvolution2dDepthMul1Uint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, false)
+
+namespace
+{
+
+armnn::DepthwiseConvolution2dDescriptor MakeDepthwiseConv2dDesc(uint32_t strideX, uint32_t strideY,
+ uint32_t depthMultiplier = 1, uint32_t padLeft = 0, uint32_t padRight = 0,
+ uint32_t padTop = 0, uint32_t padBottom = 0)
+{
+ boost::ignore_unused(depthMultiplier);
+
+ armnn::DepthwiseConvolution2dDescriptor desc;
+
+ desc.m_PadLeft = padLeft;
+ desc.m_PadRight = padRight;
+
+ desc.m_PadTop = padTop;
+ desc.m_PadBottom = padBottom;
+ desc.m_StrideX = strideX;
+ desc.m_StrideY = strideY;
+ desc.m_BiasEnabled = false;
+
+ return desc;
+}
+
+armnn::TensorInfo CreateOutputTensorInfo(const armnn::TensorInfo& inputInfo,
+ const armnn::TensorInfo& weightsInfo,
+ const armnn::DepthwiseConvolution2dDescriptor& descriptor,
+ armnn::DataType dataType)
+{
+ const armnn::TensorShape& inputShape = inputInfo.GetShape();
+ const armnn::TensorShape& filterShape = weightsInfo.GetShape();
+
+ unsigned int inWidth = inputShape[3];
+ unsigned int inHeight = inputShape[2];
+ unsigned int inBatchSize = inputShape[0];
+
+ unsigned int filterWidth = filterShape[3];
+ unsigned int readWidth = (inWidth + descriptor.m_PadLeft + descriptor.m_PadRight) - (filterWidth);
+ unsigned int outWidth = 1u + (readWidth / descriptor.m_StrideX);
+
+ unsigned int filterHeight = filterShape[2];
+ unsigned int readHeight = (inHeight + descriptor.m_PadTop + descriptor.m_PadBottom) - (filterHeight);
+ unsigned int outHeight = 1u + (readHeight / descriptor.m_StrideY);
+ unsigned int depthMultiplier = filterShape[0];
+
+ unsigned int outChannels = filterShape[1] * depthMultiplier;
+ unsigned int outBatchSize = inBatchSize;
+
+ armnn::TensorShape outputShape({outBatchSize, outChannels, outHeight, outWidth});
+ return armnn::TensorInfo(outputShape, dataType);
+}
+}
+
+BOOST_AUTO_TEST_CASE(DepthwiseConv2dUtils)
+{
+ const armnn::DataType dataType = armnn::DataType::Float32;
+
+ armnn::TensorInfo inputInfo({1, 1, 10, 10 }, dataType);
+ armnn::TensorInfo outputInfo;
+ armnn::TensorInfo weightsInfo3x3({ 1, 1, 3, 3 }, dataType);
+ armnn::TensorInfo biasesInfo;
+
+ armnn::DepthwiseConvolution2dDescriptor descriptor;
+
+ // Strides supported: 1,2,3
+ descriptor = MakeDepthwiseConv2dDesc(1, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(1, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(1, 3);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(2, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(2, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(2, 3);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(3, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(3, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(3, 3);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ // Supported stride 4
+ descriptor = MakeDepthwiseConv2dDesc(4, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ // Supported weights shape 1x1
+ armnn::TensorInfo weightsInfo1x1({ 1, 1, 1, 1 }, armnn::DataType::Float32);
+ descriptor = MakeDepthwiseConv2dDesc(1, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo1x1, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo1x1, biasesInfo));
+
+ // Supported shape 2x2
+ armnn::TensorInfo weightsInfo2x2({ 1, 1, 2, 2 }, armnn::DataType::Float32);
+ descriptor = MakeDepthwiseConv2dDesc(1, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo2x2, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo2x2, biasesInfo));
+
+ // Asymmetric padding
+ descriptor = MakeDepthwiseConv2dDesc(1, 1, 1, 1, 2, 1, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+}
+
+// Pooling
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize3x3Stride2x4, SimpleMaxPooling2dSize3x3Stride2x4Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize3x3Stride2x4Uint8, SimpleMaxPooling2dSize3x3Stride2x4Uint8Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleAveragePooling2d, SimpleAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(SimpleAveragePooling2dUint8, SimpleAveragePooling2dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(LargeTensorsAveragePooling2d, LargeTensorsAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(LargeTensorsAveragePooling2dUint8, LargeTensorsAveragePooling2dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(SimpleL2Pooling2d, SimpleL2Pooling2dTest)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_SimpleL2Pooling2dUint8, SimpleL2Pooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize3Stride1, L2Pooling2dSize3Stride1Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize3Stride1Uint8, L2Pooling2dSize3Stride1Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize3Stride3, L2Pooling2dSize3Stride3Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize3Stride3Uint8, L2Pooling2dSize3Stride3Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize3Stride4, L2Pooling2dSize3Stride4Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize3Stride4Uint8, L2Pooling2dSize3Stride4Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize7, L2Pooling2dSize7Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize7Uint8, L2Pooling2dSize7Uint8Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize9, L2Pooling2dSize9Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_L2Pooling2dSize9Uint8, L2Pooling2dSize9Uint8Test)
+
+// Ignore padding values for pooling but count padding fields into the divisor
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleMaxPooling2d, IgnorePaddingSimpleMaxPooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleMaxPooling2dUint8, IgnorePaddingSimpleMaxPooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingMaxPooling2dSize3, IgnorePaddingMaxPooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingMaxPooling2dSize3Uint8, IgnorePaddingMaxPooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2d, IgnorePaddingSimpleAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dUint8, IgnorePaddingSimpleAveragePooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dNoPadding, IgnorePaddingSimpleAveragePooling2dNoPaddingTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dNoPaddingUint8,
+ IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3, IgnorePaddingAveragePooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3Uint8, IgnorePaddingAveragePooling2dSize3Uint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3x2Stride2x2,
+ IgnorePaddingAveragePooling2dSize3x2Stride2x2Test, false)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3x2Stride2x2NoPadding,
+ IgnorePaddingAveragePooling2dSize3x2Stride2x2Test,
+ true)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleL2Pooling2d, IgnorePaddingSimpleL2Pooling2dTest)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_IgnorePaddingSimpleL2Pooling2dUint8, IgnorePaddingSimpleL2Pooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingL2Pooling2dSize3, IgnorePaddingL2Pooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(UNSUPPORTED_IgnorePaddingL2Pooling2dSize3Uint8, IgnorePaddingL2Pooling2dSize3Uint8Test)
+
+// Activation
+ARMNN_AUTO_TEST_CASE(ConstantLinearActivation, ConstantLinearActivationTest)
+
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta1, SimpleSoftmaxTest, 1.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2, SimpleSoftmaxTest, 2.0f)
+
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta1Uint8, SimpleSoftmaxUint8Test, 1.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2Uint8, SimpleSoftmaxUint8Test, 2.0f)
+
+ARMNN_AUTO_TEST_CASE(ReLu1Uint8, BoundedReLuUint8UpperAndLowerBoundTest)
+ARMNN_AUTO_TEST_CASE(ReLu6Uint8, BoundedReLuUint8UpperBoundOnlyTest)
+
+// Softmax
+BOOST_AUTO_TEST_CASE(Softmax4dSupport)
+{
+ const unsigned int numDimensions = 4u;
+ std::array<unsigned int, numDimensions> dimensionSizes;
+ dimensionSizes.fill(1u);
+
+ const armnn::TensorInfo inputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+ const armnn::TensorInfo outputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+
+ // 4D Softmax should be reported as unsupported on the NEON backend
+ BOOST_TEST(!armnn::IsSoftmaxSupportedNeon(inputInfo, outputInfo, armnn::SoftmaxDescriptor()));
+}
+
+// Splitter
+ARMNN_AUTO_TEST_CASE(SimpleSplitter, SplitterTest)
+ARMNN_AUTO_TEST_CASE(SimpleSplitterUint8, SplitterUint8Test)
+
+ARMNN_AUTO_TEST_CASE(CopyViaSplitter, CopyViaSplitterTest)
+ARMNN_AUTO_TEST_CASE(CopyViaSplitterUint8, CopyViaSplitterUint8Test)
+
+// Merger
+ARMNN_AUTO_TEST_CASE(SimpleMerger, MergerTest)
+ARMNN_AUTO_TEST_CASE(MergerUint8, MergerUint8Test)
+
+// Fully Connected
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnected, FullyConnectedFloat32Test, false, false)
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnectedWithBias, FullyConnectedFloat32Test, true, false)
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnectedWithTranspose, FullyConnectedFloat32Test, false, true)
+ARMNN_AUTO_TEST_CASE(FullyConnectedLarge, FullyConnectedLargeTest, false)
+ARMNN_AUTO_TEST_CASE(FullyConnectedLargeTransposed, FullyConnectedLargeTest, true)
+
+// Add
+ARMNN_AUTO_TEST_CASE(SimpleAdd, AdditionTest)
+ARMNN_AUTO_TEST_CASE(AddBroadcast, AdditionBroadcastTest)
+ARMNN_AUTO_TEST_CASE(AddBroadcast1Element, AdditionBroadcast1ElementTest)
+
+// Sub
+ARMNN_AUTO_TEST_CASE(SimpleSub, SubtractionTest)
+
+// Mul
+ARMNN_AUTO_TEST_CASE(SimpleMultiplication, MultiplicationTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1Element, MultiplicationBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1DVector, MultiplicationBroadcast1DVectorTest)
+
+// Batch Norm
+ARMNN_AUTO_TEST_CASE(BatchNorm, BatchNormTest)
+
+// Constant
+ARMNN_AUTO_TEST_CASE(Constant, ConstantTest)
+ARMNN_AUTO_TEST_CASE(ConstantUint8, ConstantTestUint8)
+
+// Concatenation
+ARMNN_AUTO_TEST_CASE(Concatenation1d, Concatenation1dTest)
+ARMNN_AUTO_TEST_CASE(Concatenation1dUint8, Concatenation1dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0, Concatenation2dDim0Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0Uint8, Concatenation2dDim0Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1, Concatenation2dDim1Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1Uint8, Concatenation2dDim1Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0DiffInputDims, Concatenation2dDim0DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0DiffInputDimsUint8, Concatenation2dDim0DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1DiffInputDims, Concatenation2dDim1DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1DiffInputDimsUint8, Concatenation2dDim1DiffInputDimsUint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0, Concatenation3dDim0Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0Uint8, Concatenation3dDim0Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1, Concatenation3dDim1Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1Uint8, Concatenation3dDim1Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2, Concatenation3dDim2Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2Uint8, Concatenation3dDim2Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0DiffInputDims, Concatenation3dDim0DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0DiffInputDimsUint8, Concatenation3dDim0DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1DiffInputDims, Concatenation3dDim1DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1DiffInputDimsUint8, Concatenation3dDim1DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDims, Concatenation3dDim2DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDimsUint8, Concatenation3dDim2DiffInputDimsUint8Test)
+
+// L2 Normalization
+ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest);
+ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest);
+ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest);
+ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest);
+
+// Floor
+ARMNN_AUTO_TEST_CASE(SimpleFloor, SimpleFloorTest)
+
+// Reshape
+ARMNN_AUTO_TEST_CASE(SimpleReshapeFloat32, SimpleReshapeFloat32Test)
+ARMNN_AUTO_TEST_CASE(SimpleReshapeUint8, SimpleReshapeUint8Test)
+
+// Permute
+ARMNN_AUTO_TEST_CASE(SimplePermuteFloat32, SimplePermuteFloat32Test)
+ARMNN_AUTO_TEST_CASE(SimplePermuteUint8, SimplePermuteUint8Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet1, PermuteFloat32ValueSet1Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet2, PermuteFloat32ValueSet2Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet3, PermuteFloat32ValueSet3Test)
+
+// ============================================================================
+// COMPARE tests
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareConv2dWithReference, CompareConvolution2dTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareDepthwiseConv2dWithReferenceFloat32, CompareDepthwiseConvolution2dTest<float>)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareDepthwiseConv2dWithReferenceUint8, CompareDepthwiseConvolution2dTest<uint8_t>)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareNormalizationWithinWithReference, CompareNormalizationTest,
+ armnn::NormalizationAlgorithmChannel::Within,
+ armnn::NormalizationAlgorithmMethod::LocalBrightness)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareNormalizationAcrossWithReference, CompareNormalizationTest,
+ armnn::NormalizationAlgorithmChannel::Across,
+ armnn::NormalizationAlgorithmMethod::LocalBrightness)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareMaxPooling2dWithReference, ComparePooling2dTest, armnn::PoolingAlgorithm::Max)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareMaxPooling2dWithReferenceUint8, ComparePooling2dUint8Test,
+ armnn::PoolingAlgorithm::Max)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareAveragePooling2dWithReference, ComparePooling2dTest,
+ armnn::PoolingAlgorithm::Average)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareAveragePooling2dWithReferenceUint8, ComparePooling2dUint8Test,
+ armnn::PoolingAlgorithm::Average)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareL2Pooling2dWithReference, ComparePooling2dTest, armnn::PoolingAlgorithm::L2)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(UNSUPPORTED_CompareL2Pooling2dWithReferenceUint8, ComparePooling2dUint8Test,
+ armnn::PoolingAlgorithm::L2)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxBeta1WithReference, CompareSoftmaxTest, 1.0f)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxBeta2WithReference, CompareSoftmaxTest, 2.0f)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxUint8Beta1WithReference, CompareSoftmaxUint8Test, 1.0f)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareSoftmaxUint8Beta2WithReference, CompareSoftmaxUint8Test, 2.0f)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareAddition, CompareAdditionTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareMultiplicationWithReference, CompareMultiplicationTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(CompareBatchNorm, CompareBatchNormTest)
+
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(ReLu1, CompareBoundedReLuTest, 1.0f, -1.0f)
+ARMNN_COMPARE_REF_AUTO_TEST_CASE(ReLu6, CompareBoundedReLuTest, 6.0f, 0.0f)
+
+// ============================================================================
+// FIXTURE tests
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSigmoidActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Sigmoid, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareTanhActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::TanH, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareLinearActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Linear, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::ReLu, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareBoundedReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::BoundedReLu, 5u)
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareBoundedReLuActivationWithReferenceUint8, ActivationFixture,
+ CompareActivationUint8Test, armnn::ActivationFunction::BoundedReLu)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSoftReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::SoftReLu, 1u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareLeakyReLuActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::LeakyReLu, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareAbsActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Abs, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSqrtActivationWithReference, PositiveActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Sqrt, 5u)
+
+ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSquareActivationWithReference, ActivationFixture,
+ CompareActivationTest, armnn::ActivationFunction::Square, 5u)
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/BatchNormTestImpl.hpp b/src/backends/test/BatchNormTestImpl.hpp
new file mode 100644
index 0000000000..7126db9074
--- /dev/null
+++ b/src/backends/test/BatchNormTestImpl.hpp
@@ -0,0 +1,112 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+#include "backends/test/QuantizeHelper.hpp"
+
+
+template<typename T>
+LayerTestResult<T,4> BatchNormTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 3;
+ const unsigned int channels = 2;
+ const unsigned int num = 1;
+
+ armnn::TensorInfo inputTensorInfo({num, channels, height, width}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({num, channels, height, width}, armnn::GetDataType<T>());
+ armnn::TensorInfo tensorInfo({channels}, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ tensorInfo.SetQuantizationScale(qScale);
+ tensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset,
+ {
+ 1.f, 4.f,
+ 4.f, 2.f,
+ 1.f, 6.f,
+
+ 1.f, 1.f,
+ 4.f, 1.f,
+ -2.f, 4.f
+ }));
+ // These values are per-channel of the input.
+ auto mean = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, -2}));
+ auto variance = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {4, 9}));
+ auto beta = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, 2}));
+ auto gamma = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {2, 1}));
+ LayerTestResult<T,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::BatchNormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle meanTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle varianceTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle betaTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle gammaTensor(tensorInfo);
+
+ AllocateAndCopyDataToITensorHandle(&meanTensor, &mean[0]);
+ AllocateAndCopyDataToITensorHandle(&varianceTensor, &variance[0]);
+ AllocateAndCopyDataToITensorHandle(&betaTensor, &beta[0]);
+ AllocateAndCopyDataToITensorHandle(&gammaTensor, &gamma[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Mean = &meanTensor;
+ data.m_Variance = &varianceTensor;
+ data.m_Beta = &betaTensor;
+ data.m_Gamma = &gammaTensor;
+ data.m_Parameters.m_Eps = 0.0f;
+
+ // For each channel:
+ // substract mean, divide by standard deviation (with an epsilon to avoid div by 0),
+ // multiply by gamma and add beta
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset,
+ {
+ 1.f, 4.f,
+ 4.f, 2.f,
+ 1.f, 6.f,
+
+ 3.f, 3.f,
+ 4.f, 3.f,
+ 2.f, 4.f
+ }));
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateBatchNormalization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+} \ No newline at end of file
diff --git a/src/backends/test/ClContextControlFixture.hpp b/src/backends/test/ClContextControlFixture.hpp
new file mode 100644
index 0000000000..54c5a4f505
--- /dev/null
+++ b/src/backends/test/ClContextControlFixture.hpp
@@ -0,0 +1,21 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "backends/ClContextControl.hpp"
+
+template<bool ProfilingEnabled>
+struct ClContextControlFixtureBase
+{
+ // Initialising ClContextControl to ensure OpenCL is loaded correctly for each test case
+ ClContextControlFixtureBase() : m_ClContextControl(nullptr, ProfilingEnabled) {}
+ ~ClContextControlFixtureBase() {}
+
+ armnn::ClContextControl m_ClContextControl;
+};
+
+using ClContextControlFixture = ClContextControlFixtureBase<false>;
+using ClProfilingContextControlFixture = ClContextControlFixtureBase<true>;
diff --git a/src/backends/test/Conv2dTestImpl.hpp b/src/backends/test/Conv2dTestImpl.hpp
new file mode 100644
index 0000000000..eb7165bf09
--- /dev/null
+++ b/src/backends/test/Conv2dTestImpl.hpp
@@ -0,0 +1,921 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+// Mapping from input type to bias type for fully connected layers.
+// float => float, uint8_t => int32_t
+template<typename T>
+struct FullyConnectedBiasTypeForInputType;
+
+template<>
+struct FullyConnectedBiasTypeForInputType<float>
+{
+ using Type = float;
+};
+
+template<>
+struct FullyConnectedBiasTypeForInputType<uint8_t>
+{
+ using Type = int32_t;
+};
+
+// Modifies a std::vector in-place using a specified bias.
+template<typename T, typename B>
+void ApplyBias(std::vector<T>& v, float vScale, int32_t vOffset,
+ const std::vector<B>& bias, float bScale, int32_t bOffset, uint32_t w, uint32_t h)
+{
+ BOOST_ASSERT_MSG((armnn::IsQuantizedType<T>() && vScale != 0.0f) || (!armnn::IsQuantizedType<T>()),
+ "Invalid type and parameter combination.");
+ BOOST_ASSERT_MSG((armnn::IsQuantizedType<B>() && bScale != 0.0f) || (!armnn::IsQuantizedType<B>()),
+ "Invalid type and parameter combination.");
+
+ // Note we need to dequantize and re-quantize the image value and the bias.
+ for (uint32_t i = 0; i < bias.size(); ++i)
+ {
+ float dBias = SelectiveDequantize(bias[i], bScale, bOffset);
+ for (uint32_t y = 0; y < h; ++y)
+ {
+ for (uint32_t x = 0; x < w; ++x)
+ {
+ uint32_t offset = (i * h + y) * w + x;
+ BOOST_ASSERT(offset < v.size());
+ T& outRef = v[offset];
+ float dOutput = SelectiveDequantize(outRef, vScale, vOffset);
+ outRef = SelectiveQuantize<T>(dOutput + dBias, vScale, vOffset);
+ }
+ }
+ }
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& kernel,
+ const boost::multi_array<B, 1>& bias,
+ const boost::multi_array<T, 4>& outputExpected,
+ float qScale,
+ int32_t qOffset,
+ uint32_t padLeft = 0,
+ uint32_t padTop = 0,
+ uint32_t padRight = 0,
+ uint32_t padBottom = 0)
+{
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[2]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[3]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int inputNum = boost::numeric_cast<unsigned int>(input.shape()[0]);
+
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ unsigned int outputNum = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+
+ unsigned int kernelHeight = boost::numeric_cast<unsigned int>(kernel.shape()[2]);
+ unsigned int kernelWidth = boost::numeric_cast<unsigned int>(kernel.shape()[3]);
+ unsigned int kernelChannels = boost::numeric_cast<unsigned int>(kernel.shape()[1]);
+ unsigned int kernelDepthMul = boost::numeric_cast<unsigned int>(kernel.shape()[0]);
+
+ bool biasEnabled = bias.size() > 0;
+
+ // This function currently assumes 1 batch of input/output (and duplicates this into 2 batches).
+ BOOST_ASSERT(inputNum == 1);
+ BOOST_ASSERT(outputNum == 1);
+
+ // If a bias is used, its size must equal the number of output channels.
+ BOOST_ASSERT(!biasEnabled || bias.size() == outputChannels);
+
+
+ // Note these tensors will use two (identical) batches.
+ armnn::TensorInfo inputTensorInfo({2*inputNum, inputChannels, inputHeight, inputWidth}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({2*outputNum, outputChannels, outputHeight, outputWidth},
+ armnn::GetDataType<T>());
+ armnn::TensorInfo kernelDesc({kernelDepthMul, kernelChannels, kernelHeight, kernelWidth}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(bias.size())}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ // Construct input data - two batches of the same input image.
+ std::vector<T> inputImage;
+ inputImage.assign(input.data(), input.data() + 1*inputChannels*inputHeight*inputWidth);
+ std::vector<T> inputData;
+ inputData.insert(inputData.end(), inputImage.begin(), inputImage.end());
+ inputData.insert(inputData.end(), inputImage.begin(), inputImage.end());
+ auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ std::vector<T> outputImage;
+ outputImage.assign(outputExpected.data(), outputExpected.data() + outputChannels*outputHeight*outputWidth);
+
+ // Apply bias to output image if it is enabled.
+ if(biasEnabled)
+ {
+ std::vector<T> biasV;
+ biasV.assign(bias.data(), bias.data() + outputChannels);
+ ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ // Construct expected output data - two identical images.
+ std::vector<T> outputData;
+ outputData.insert(outputData.end(), outputImage.begin(), outputImage.end());
+ outputData.insert(outputData.end(), outputImage.begin(), outputImage.end());
+
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ // Todo: nontrivial padding and strides.
+ uint32_t strideX = 1;
+ uint32_t strideY = 1;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Convolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+
+ if(biasEnabled)
+ {
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+ }
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - can be a source of bugs.
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padLeft;
+ data.m_Parameters.m_PadRight = padRight;
+ data.m_Parameters.m_PadTop = padTop;
+ data.m_Parameters.m_PadBottom = padBottom;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &batchedInput[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& kernel,
+ const boost::multi_array<B, 1>& bias,
+ const boost::multi_array<T, 4>& outputExpected,
+ float qScale,
+ int32_t qOffset,
+ uint32_t padLeft = 0,
+ uint32_t padTop = 0,
+ uint32_t padRight = 0,
+ uint32_t padBottom = 0,
+ uint32_t strideX = 1,
+ uint32_t strideY = 1)
+{
+ unsigned int inputNum = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[2]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[3]);
+ unsigned int kernelChanMul = boost::numeric_cast<unsigned int>(kernel.shape()[0]);
+ unsigned int kernelChannels = boost::numeric_cast<unsigned int>(kernel.shape()[1]);
+ unsigned int kernelHeight = boost::numeric_cast<unsigned int>(kernel.shape()[2]);
+ unsigned int kernelWidth = boost::numeric_cast<unsigned int>(kernel.shape()[3]);
+ unsigned int outputNum = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
+
+ // If a bias is used, its size must equal the number of output channels.
+ bool biasEnabled = bias.size() > 0;
+ BOOST_ASSERT(!biasEnabled || bias.size() == outputChannels);
+
+ // Creates the tensors.
+ armnn::TensorInfo inputTensorInfo({inputNum, inputChannels, inputHeight, inputWidth}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({outputNum, outputChannels, outputHeight, outputWidth},
+ armnn::GetDataType<T>());
+ armnn::TensorInfo kernelDesc({kernelChanMul, kernelChannels, kernelHeight, kernelWidth}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(bias.size())}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ // Construct the input data.
+ std::vector<T> inputData;
+ inputData.assign(input.data(), input.data() + inputChannels*inputHeight*inputWidth);
+ auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ // Construct the output data, with bias applied, as appropriate.
+ std::vector<T> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + outputChannels*outputHeight*outputWidth);
+ if (biasEnabled)
+ {
+ std::vector<T> biasV;
+ biasV.assign(bias.data(), bias.data() + outputChannels);
+ ApplyBias(outputData, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+ if (biasEnabled)
+ {
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+ }
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - it can be a source of bugs.
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padLeft;
+ data.m_Parameters.m_PadRight = padRight;
+ data.m_Parameters.m_PadTop = padTop;
+ data.m_Parameters.m_PadBottom = padBottom;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &batchedInput[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dDepthMul1TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ unsigned int inputHeight = 3;
+ unsigned int inputWidth = 3;
+ unsigned int inputChannels = 2;
+ unsigned int inputNum = 1;
+
+ unsigned int kernelHeight = 3;
+ unsigned int kernelWidth = 3;
+ unsigned int kernelChannels = inputChannels;
+
+ unsigned int outputHeight = 1;
+ unsigned int outputWidth = 1;
+ unsigned int outputChannels = kernelChannels;
+ unsigned int outputNum = inputNum;
+
+ armnn::TensorInfo inputTensorInfo({ inputNum, inputChannels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ outputNum, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+ armnn::TensorInfo kernelDesc({ 1, outputChannels, kernelHeight, kernelWidth }, armnn::GetDataType<T>());
+ armnn::TensorInfo biasDesc({ outputChannels }, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 1.f, 2.f, 1.f,
+ 2.f, 1.f, 2.f,
+ 1.f, 2.f, 1.f,
+
+ 1.f, 2.f, 1.f,
+ 2.f, 1.f, 2.f,
+ 1.f, 2.f, 1.f,
+ })));
+
+ std::vector<B> biasV(QuantizedVector<B>(biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ {0, 2}));
+ auto bias = MakeTensor<B, 1>(biasDesc, biasV);
+
+ auto kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(kernelDesc.GetQuantizationScale(), kernelDesc.GetQuantizationOffset(), {
+ 1.f, 0.f, 1.f,
+ 0.f, 0.f, 0.f,
+ -1.f, 0.f, -1.f,
+
+ 1.f, 0.f, 1.f,
+ 0.f, 0.f, 0.f,
+ -1.f, 0.f, -1.f,
+ })));
+
+ // Manually calculated.
+ std::vector<T> outputImage(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(),
+ outputTensorInfo.GetQuantizationOffset(),
+ {0.f, 0.f})
+ );
+
+ // Optionally apply bias to output image.
+ if(biasEnabled)
+ {
+ ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputImage);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled.
+ data.m_Parameters.m_StrideX = 1;
+ data.m_Parameters.m_StrideY = 1;
+ data.m_Parameters.m_PadLeft = 0;
+ data.m_Parameters.m_PadRight = 0;
+ data.m_Parameters.m_PadTop = 0;
+ data.m_Parameters.m_PadBottom = 0;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ unsigned int depthMultiplier = 2;
+
+ unsigned int inputHeight = 8;
+ unsigned int inputWidth = 16;
+ unsigned int inputChannels = 2;
+ unsigned int inputBatchSize = 1;
+
+ unsigned int kernelHeight = 5;
+ unsigned int kernelWidth = 3;
+
+ unsigned int outputHeight = inputHeight - kernelHeight + 1 + 2;
+ unsigned int outputWidth = (inputWidth - kernelWidth + 1)/2;
+ unsigned int outputChannels = inputChannels * depthMultiplier;
+ unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({inputBatchSize, inputChannels, inputHeight, inputWidth},
+ armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({outputBatchSize, outputChannels, outputHeight, outputWidth},
+ armnn::GetDataType<T>());
+ armnn::TensorInfo kernelDesc({depthMultiplier, inputChannels, kernelHeight, kernelWidth}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasDesc({outputChannels}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ })));
+
+ std::vector<B> biasV(QuantizedVector<B>(biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ {0, 2, 1, -1}));
+ auto bias = MakeTensor<B, 1>(biasDesc, biasV);
+
+ auto kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(kernelDesc.GetQuantizationScale(), kernelDesc.GetQuantizationOffset(), {
+ 1, 1, 1,
+ 1, -1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+
+ 0, 0, 0,
+ 0, -1, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 1, 0,
+ 0, 0, 0,
+ 0, 0, 0
+ })));
+
+ // Manually calculated.
+ std::vector<T> outputImage = std::vector<T>(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
+ 3.5f, 3.5f, 3.5f, 3.5f, 3.5f, 3.5f, 3.5f,
+ 6.0f, 6.0f, 6.0f, 6.0f, 6.0f, 6.0f, 6.0f,
+ 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f,
+ 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f,
+ 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f,
+ 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f,
+
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+
+ 8.0f, 8.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 8.0f, 8.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
+ }));
+
+ // Optionally apply bias to output image.
+ if(biasEnabled)
+ {
+ ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputImage);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled.
+ data.m_Parameters.m_StrideX = 2;
+ data.m_Parameters.m_StrideY = 1;
+ data.m_Parameters.m_PadLeft = 0;
+ data.m_Parameters.m_PadRight = 0;
+ data.m_Parameters.m_PadTop = 1;
+ data.m_Parameters.m_PadBottom = 1;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T>
+LayerTestResult<T,4> Convolution1dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ using B = typename FullyConnectedBiasTypeForInputType<T>::Type;
+
+ // Until we have a specialist 1D convolution layer, we can fake one using
+ // 2D convolution with the final dimension set to 1.
+ // I don't anticipate this being particularly slow, given that convolution is implemented
+ // as a matrix multiplication, at which point dimension doesn't matter.
+
+ unsigned int batchSize = 1;
+ unsigned int inputChannels = 2;
+ unsigned int outputChannels = 3;
+ unsigned int inputSize = 5; // The 1D size (could view as 'width' or 'height').
+ unsigned int kernelSize = 3;
+ unsigned int padSize = 2;
+ unsigned int stride = 1;
+ unsigned int outputSize = 7; // (inputSize + 2 * padSize - kernelSize + 1) / stride.
+
+ armnn::TensorInfo inputInfo({batchSize, inputChannels, inputSize, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputInfo({batchSize, outputChannels, outputSize, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo kernelInfo({outputChannels, inputChannels, kernelSize, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasInfo({outputChannels}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputInfo.SetQuantizationScale(qScale);
+ inputInfo.SetQuantizationOffset(qOffset);
+ outputInfo.SetQuantizationScale(qScale);
+ outputInfo.SetQuantizationOffset(qOffset);
+ kernelInfo.SetQuantizationScale(qScale);
+ kernelInfo.SetQuantizationOffset(qOffset);
+ biasInfo.SetQuantizationScale(inputInfo.GetQuantizationScale()*kernelInfo.GetQuantizationScale());
+ biasInfo.SetQuantizationOffset(0);
+ }
+
+ std::vector<T> inputData(
+ QuantizedVector<T>(inputInfo.GetQuantizationScale(), inputInfo.GetQuantizationOffset(), {
+ 5.0f, -2.0f, 2.5f, 0.0f, 1.0f,
+ -3.0f, 3.2f, 5.0f, 2.0f, 3.0f,
+ }));
+
+ std::vector<T> kernelData(
+ QuantizedVector<T>(kernelInfo.GetQuantizationScale(), kernelInfo.GetQuantizationOffset(), {
+ 1.0f, 0.0f, 0.0f,
+ 0.0f, 2.0f, -1.5f,
+
+ 0.0f, 0.0f, 0.0f,
+ 0.2f, 0.2f, 0.2f,
+
+ 0.5f, 0.0f, 0.5f,
+ 0.0f, -1.0f, 0.0f
+ }));
+
+ std::vector<B> biasData(
+ QuantizedVector<B>(biasInfo.GetQuantizationScale(), biasInfo.GetQuantizationOffset(), {
+ 1.0f, 0.0f, 0.0f
+ }));
+
+ std::vector<T> outputData(
+ QuantizedVector<T>(outputInfo.GetQuantizationScale(), outputInfo.GetQuantizationOffset(), {
+ 4.5f, -10.8f, 5.0f + 6.4f - 7.5f, -2.0f + 10.0f -3.0f, 2.5f + 4.0f - 4.5f, 6.0f, 1.0f,
+ -0.6f, -0.6f + 0.64f, -0.6f + 0.64f + 1.0f, 0.64f + 1.0f + 0.4f, 1.0f + 0.4f + 0.6f, 0.4f + 0.6f, 0.6f,
+ 2.5f, -1.0f + 3.0f, 1.25f - 3.2f + 2.5f, -1.0f - 5.0f, 1.25f + 0.5f - 2.0f, -3.0f, 0.5f
+ }));
+
+ // Optionally apply bias to output image.
+ if(biasEnabled)
+ {
+ ApplyBias(outputData, outputInfo.GetQuantizationScale(), outputInfo.GetQuantizationOffset(),
+ biasData, biasInfo.GetQuantizationScale(), biasInfo.GetQuantizationOffset(),
+ 1, outputSize);
+ }
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputInfo);
+
+ armnn::Convolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelInfo);
+ armnn::ScopedCpuTensorHandle biasTensor(biasInfo);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, kernelData.data());
+ AllocateAndCopyDataToITensorHandle(&biasTensor, biasData.data());
+
+ AddInputToWorkload(data, info, inputInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_StrideX = 1;
+ data.m_Parameters.m_StrideY = stride;
+ data.m_Parameters.m_PadLeft = 0;
+ data.m_Parameters.m_PadRight = 0;
+ data.m_Parameters.m_PadTop = padSize;
+ data.m_Parameters.m_PadBottom = padSize;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), inputData.data());
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ // Output
+ LayerTestResult<T,4> ret(outputInfo);
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ ret.outputExpected = MakeTensor<T, 4>(outputInfo, outputData);
+ return ret;
+}
+
+
+
+template<typename T>
+LayerTestResult<T,4> CompareConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ unsigned int inputHeight = 8;
+ unsigned int inputWidth = 16;
+ unsigned int inputChannels = 3;
+ unsigned int inputNum = 5;
+
+ unsigned int kernelHeight = 3;
+ unsigned int kernelWidth = 3;
+
+ unsigned int strideX = 2;
+ unsigned int strideY = 3;
+ unsigned int padX = 1;
+ unsigned int padY = 1;
+
+ unsigned int outputNum = inputNum;
+ unsigned int outputChannels = 2;
+ unsigned int outputHeight = (inputHeight + 2 * padY - kernelHeight + strideY) / strideY;
+ unsigned int outputWidth = (inputWidth + 2 * padX - kernelWidth + strideX) / strideX;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo kernelDesc;
+ armnn::TensorInfo biasDesc;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+ unsigned int kernelShape[] = {outputChannels, inputChannels, kernelHeight, kernelWidth};
+ unsigned int biasShape[] = {outputChannels};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::GetDataType<T>());
+ kernelDesc = armnn::TensorInfo(4, kernelShape, armnn::GetDataType<T>());
+ biasDesc = armnn::TensorInfo(1, biasShape, armnn::GetDataType<T>());
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+
+ auto input = MakeRandomTensor<T, 4>(inputTensorInfo, 124908);
+ auto kernel = MakeRandomTensor<T, 4>(kernelDesc, 891234);
+ auto bias = MakeRandomTensor<T, 1>(biasDesc, 1028);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Convolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padX;
+ data.m_Parameters.m_PadRight = padX;
+ data.m_Parameters.m_PadTop = padY;
+ data.m_Parameters.m_PadBottom = padY;
+ data.m_Parameters.m_BiasEnabled = true;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ armnn::Convolution2dQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateConvolution2d(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+template<typename T>
+LayerTestResult<T, 4> CompareDepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ unsigned int inputHeight = 8;
+ unsigned int inputWidth = 16;
+ unsigned int inputChannels = 3;
+ unsigned int inputNum = 5;
+
+ unsigned int kernelHeight = 3;
+ unsigned int kernelWidth = 3;
+ unsigned int channelMultiplier = 1;
+
+ unsigned int strideX = 2;
+ unsigned int strideY = 3;
+ unsigned int padX = 1;
+ unsigned int padY = 1;
+
+ unsigned int outputNum = inputNum;
+ unsigned int outputChannels = inputChannels * channelMultiplier;
+ unsigned int outputHeight = (inputHeight + 2 * padY - kernelHeight + strideY) / strideY;
+ unsigned int outputWidth = (inputWidth + 2 * padX - kernelWidth + strideX) / strideX;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo kernelDesc;
+ armnn::TensorInfo biasDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+ unsigned int kernelShape[] = { channelMultiplier, inputChannels, kernelHeight, kernelWidth };
+ unsigned int biasShape[] = { outputChannels };
+
+ float inputsQScale = armnn::IsQuantizedType<T>() ? 1.0f : 0;
+ float outputQScale = armnn::IsQuantizedType<T>() ? 2.0f : 0;
+ int32_t qOffset = 0;
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>(), inputsQScale, qOffset);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::GetDataType<T>(), outputQScale, qOffset);
+ kernelDesc = armnn::TensorInfo(4, kernelShape, armnn::GetDataType<T>(), inputsQScale, qOffset);
+ biasDesc = armnn::TensorInfo(1, biasShape, armnn::GetBiasDataType(armnn::GetDataType<T>()), inputsQScale, qOffset);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ auto input = MakeRandomTensor<T, 4>(inputTensorInfo, 124908, 0.0f, 255.0f);
+ auto kernel = MakeRandomTensor<T, 4>(kernelDesc, 891234, 0.0f, 255.0f);
+ auto bias = MakeRandomTensor<typename FullyConnectedBiasTypeForInputType<T>::Type, 1>(biasDesc, 1028, 0.0f, 255.0f);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padX;
+ data.m_Parameters.m_PadRight = padX;
+ data.m_Parameters.m_PadTop = padY;
+ data.m_Parameters.m_PadBottom = padY;
+ data.m_Parameters.m_BiasEnabled = true;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateDepthwiseConvolution2d(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
diff --git a/src/backends/test/ConvertFp16ToFp32TestImpl.hpp b/src/backends/test/ConvertFp16ToFp32TestImpl.hpp
new file mode 100644
index 0000000000..b75879dea6
--- /dev/null
+++ b/src/backends/test/ConvertFp16ToFp32TestImpl.hpp
@@ -0,0 +1,55 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backends/WorkloadInfo.hpp>
+#include <backends/CpuTensorHandle.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <Half.hpp>
+
+LayerTestResult<float, 4> SimpleConvertFp16ToFp32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ using namespace half_float::literal;
+
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16);
+ const armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+
+ auto input = MakeTensor<armnn::Half, 4>(inputTensorInfo,
+ { -37.5_h, -15.2_h, -8.76_h, -2.0_h, -1.5_h, -1.3_h, -0.5_h, -0.4_h, 0.0_h,
+ 1.0_h, 0.4_h, 0.5_h, 1.3_h, 1.5_h, 2.0_h, 8.76_h, 15.2_h, 37.5_h });
+
+ LayerTestResult<float, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ConvertFp16ToFp32QueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvertFp16ToFp32(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
diff --git a/src/backends/test/ConvertFp32ToFp16TestImpl.hpp b/src/backends/test/ConvertFp32ToFp16TestImpl.hpp
new file mode 100644
index 0000000000..1325b4b054
--- /dev/null
+++ b/src/backends/test/ConvertFp32ToFp16TestImpl.hpp
@@ -0,0 +1,55 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backends/WorkloadInfo.hpp>
+#include <backends/CpuTensorHandle.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <Half.hpp>
+
+LayerTestResult<armnn::Half, 4> SimpleConvertFp32ToFp16Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ using namespace half_float::literal;
+
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ LayerTestResult<armnn::Half, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<armnn::Half, 4>(outputTensorInfo,
+ { -37.5_h, -15.2_h, -8.76_h, -2.0_h, -1.5_h, -1.3_h, -0.5_h, -0.4_h, 0.0_h,
+ 1.0_h, 0.4_h, 0.5_h, 1.3_h, 1.5_h, 2.0_h, 8.76_h, 15.2_h, 37.5_h });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ConvertFp32ToFp16QueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvertFp32ToFp16(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+} \ No newline at end of file
diff --git a/src/backends/test/CreateWorkloadCl.cpp b/src/backends/test/CreateWorkloadCl.cpp
new file mode 100644
index 0000000000..af3192cae2
--- /dev/null
+++ b/src/backends/test/CreateWorkloadCl.cpp
@@ -0,0 +1,564 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include "backends/ClWorkloadFactory.hpp"
+#include "backends/RefWorkloadFactory.hpp"
+#include "backends/MemCopyWorkload.hpp"
+#include "backends/ClWorkloads/ClWorkloadUtils.hpp"
+#include "backends/ClWorkloads.hpp"
+#include "backends/ClTensorHandle.hpp"
+#include "ClContextControlFixture.hpp"
+
+#include "test/CreateWorkloadClNeon.hpp"
+
+boost::test_tools::predicate_result CompareIClTensorHandleShape(IClTensorHandle* tensorHandle,
+ std::initializer_list<unsigned int> expectedDimensions)
+{
+ return CompareTensorHandleShape<IClTensorHandle>(tensorHandle, expectedDimensions);
+}
+
+BOOST_FIXTURE_TEST_SUITE(CreateWorkloadCl, ClContextControlFixture)
+
+template <typename ActivationWorkloadType, armnn::DataType DataType>
+static void ClCreateActivationWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>(factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest).
+ ActivationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {1}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {1}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateActivationFloatWorkload)
+{
+ ClCreateActivationWorkloadTest<ClActivationFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateActivationFloat16Workload)
+{
+ ClCreateActivationWorkloadTest<ClActivationFloatWorkload, armnn::DataType::Float16>();
+}
+
+template <typename WorkloadType,
+ typename DescriptorType,
+ typename LayerType,
+ armnn::DataType DataType>
+static void ClCreateArithmethicWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateArithmeticWorkloadTest<WorkloadType, DescriptorType, LayerType, DataType>(factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of CreateArithmeticWorkloadTest).
+ DescriptorType queueDescriptor = workload->GetData();
+ auto inputHandle1 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto inputHandle2 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[1]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle1, {2, 3}));
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle2, {2, 3}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 3}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateAdditionFloatWorkload)
+{
+ ClCreateArithmethicWorkloadTest<ClAdditionWorkload<armnn::DataType::Float16, armnn::DataType::Float32>,
+ AdditionQueueDescriptor,
+ AdditionLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateAdditionFloat16Workload)
+{
+ ClCreateArithmethicWorkloadTest<ClAdditionWorkload<armnn::DataType::Float16, armnn::DataType::Float32>,
+ AdditionQueueDescriptor,
+ AdditionLayer,
+ armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSubtractionFloatWorkload)
+{
+ ClCreateArithmethicWorkloadTest<ClSubtractionWorkload<armnn::DataType::Float16, armnn::DataType::Float32>,
+ SubtractionQueueDescriptor,
+ SubtractionLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSubtractionFloat16Workload)
+{
+ ClCreateArithmethicWorkloadTest<ClSubtractionWorkload<armnn::DataType::Float16, armnn::DataType::Float32>,
+ SubtractionQueueDescriptor,
+ SubtractionLayer,
+ armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloatWorkloadTest)
+{
+ ClCreateArithmethicWorkloadTest<ClMultiplicationFloatWorkload,
+ MultiplicationQueueDescriptor,
+ MultiplicationLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat16WorkloadTest)
+{
+ ClCreateArithmethicWorkloadTest<ClMultiplicationFloatWorkload,
+ MultiplicationQueueDescriptor,
+ MultiplicationLayer,
+ armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDivisionFloatWorkloadTest)
+{
+ ClCreateArithmethicWorkloadTest<ClDivisionFloatWorkload,
+ DivisionQueueDescriptor,
+ DivisionLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDivisionFloat16WorkloadTest)
+{
+ ClCreateArithmethicWorkloadTest<ClDivisionFloatWorkload,
+ DivisionQueueDescriptor,
+ DivisionLayer,
+ armnn::DataType::Float16>();
+}
+
+template <typename BatchNormalizationWorkloadType, armnn::DataType DataType>
+static void ClCreateBatchNormalizationWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateBatchNormalizationWorkloadTest<BatchNormalizationWorkloadType, DataType>
+ (factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
+ BatchNormalizationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {2, 3, 1, 1}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 3, 1, 1}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloatWorkload)
+{
+ ClCreateBatchNormalizationWorkloadTest<ClBatchNormalizationFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat16Workload)
+{
+ ClCreateBatchNormalizationWorkloadTest<ClBatchNormalizationFloatWorkload, armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp16ToFp32Workload)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateConvertFp16ToFp32WorkloadTest<ClConvertFp16ToFp32Workload>(factory, graph);
+
+ ConvertFp16ToFp32QueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 2, 3}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 2, 3}));
+ BOOST_TEST((inputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F16));
+ BOOST_TEST((outputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F32));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp32ToFp16Workload)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateConvertFp32ToFp16WorkloadTest<ClConvertFp32ToFp16Workload>(factory, graph);
+
+ ConvertFp32ToFp16QueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 2, 3}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 2, 3}));
+ BOOST_TEST((inputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F32));
+ BOOST_TEST((outputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F16));
+}
+
+template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
+static void ClConvolution2dWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateConvolution2dWorkloadTest<Convolution2dWorkloadType, DataType>
+ (factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
+ Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {2, 3, 8, 16}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 2, 2, 10}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloatWorkload)
+{
+ ClConvolution2dWorkloadTest<ClConvolution2dFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat16Workload)
+{
+ ClConvolution2dWorkloadTest<ClConvolution2dFloatWorkload, armnn::DataType::Float16>();
+}
+
+
+template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
+static void ClDirectConvolution2dWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateDirectConvolution2dWorkloadTest<Convolution2dWorkloadType, DataType>(
+ factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateDirectConvolution2dWorkloadTest).
+ Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {2, 3, 6, 6}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 2, 6, 6}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateDirectConvolution2dFloatWorkload)
+{
+ ClDirectConvolution2dWorkloadTest<ClConvolution2dFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDirectConvolution2dFloat16Workload)
+{
+ ClDirectConvolution2dWorkloadTest<ClConvolution2dFloatWorkload, armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDirectConvolution2dUint8Workload)
+{
+ ClDirectConvolution2dWorkloadTest<ClConvolution2dUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename FullyConnectedWorkloadType, typename armnn::DataType DataType>
+static void ClCreateFullyConnectedWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload =
+ CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
+ FullyConnectedQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 1, 4, 5}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 7}));
+}
+
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloatWorkloadTest)
+{
+ ClCreateFullyConnectedWorkloadTest<ClFullyConnectedWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat16WorkloadTest)
+{
+ ClCreateFullyConnectedWorkloadTest<ClFullyConnectedWorkload, armnn::DataType::Float16>();
+}
+
+template <typename NormalizationWorkloadType, typename armnn::DataType DataType>
+static void ClNormalizationWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateNormalizationWorkloadTest<NormalizationWorkloadType, DataType>
+ (factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
+ NormalizationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 5, 5, 1}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 5, 5, 1}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloatWorkload)
+{
+ ClNormalizationWorkloadTest<ClNormalizationFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloat16Workload)
+{
+ ClNormalizationWorkloadTest<ClNormalizationFloatWorkload, armnn::DataType::Float16>();
+}
+
+template <typename Pooling2dWorkloadType, typename armnn::DataType DataType>
+static void ClPooling2dWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>(factory, graph);
+
+ // Check that inputs/outputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
+ Pooling2dQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 2, 5, 5}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 2, 2, 4}));
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloatWorkload)
+{
+ ClPooling2dWorkloadTest<ClPooling2dFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat16Workload)
+{
+ ClPooling2dWorkloadTest<ClPooling2dFloatWorkload, armnn::DataType::Float16>();
+}
+
+template <typename ReshapeWorkloadType, typename armnn::DataType DataType>
+static void ClCreateReshapeWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
+ ReshapeQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {4, 1}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {4})); // Leading size 1 dimensions are collapsed by ACL.
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeFloatWorkload)
+{
+ ClCreateReshapeWorkloadTest<ClReshapeFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeFloat16Workload)
+{
+ ClCreateReshapeWorkloadTest<ClReshapeFloatWorkload, armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
+{
+ ClCreateReshapeWorkloadTest<ClReshapeUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename SoftmaxWorkloadType, typename armnn::DataType DataType>
+static void ClSoftmaxWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of ClSoftmaxFloatWorkload).
+ SoftmaxQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {4, 1}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {4, 1}));
+}
+
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloatWorkloadTest)
+{
+ ClSoftmaxWorkloadTest<ClSoftmaxFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat16WorkloadTest)
+{
+ ClSoftmaxWorkloadTest<ClSoftmaxFloatWorkload, armnn::DataType::Float16>();
+}
+
+template <typename SplitterWorkloadType, typename armnn::DataType DataType>
+static void ClSplitterWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateSplitterWorkloadTest<SplitterWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
+ SplitterQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {5, 7, 7}));
+
+ auto outputHandle1 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[1]);
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle1, {2, 7, 7}));
+
+ auto outputHandle2 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[2]);
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle2, {2, 7, 7}));
+
+ auto outputHandle0 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ // NOTE: At the moment the CL collapses the tensor to a 2 dim when dimension zero = 1
+ // we are raising this difference between the NEON and CL libs as an issue with the compute library team.
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle0, {7, 7}));
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterFloatWorkload)
+{
+ ClSplitterWorkloadTest<ClSplitterFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterFloat16Workload)
+{
+ ClSplitterWorkloadTest<ClSplitterFloatWorkload, armnn::DataType::Float16>();
+}
+
+template <typename SplitterWorkloadType, typename MergerWorkloadType, typename armnn::DataType DataType>
+static void ClSplitterMergerTest()
+{
+ // Tests that it is possible to decide which output of the splitter layer
+ // should be lined to which input of the merger layer.
+ // We test that is is possible to specify 0th output
+ // of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
+ // of the merger.
+
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workloads =
+ CreateSplitterMergerWorkloadTest<SplitterWorkloadType, MergerWorkloadType, DataType>
+ (factory, graph);
+
+ auto wlSplitter = std::move(workloads.first);
+ auto wlMerger = std::move(workloads.second);
+
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ armnn::ClSubTensorHandle* sOut0 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
+ armnn::ClSubTensorHandle* sOut1 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
+ armnn::ClSubTensorHandle* mIn0 = dynamic_cast<armnn::ClSubTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
+ armnn::ClSubTensorHandle* mIn1 = dynamic_cast<armnn::ClSubTensorHandle*>(wlMerger->GetData().m_Inputs[1]);
+
+ BOOST_TEST(sOut0);
+ BOOST_TEST(sOut1);
+ BOOST_TEST(mIn0);
+ BOOST_TEST(mIn1);
+
+ //Fliped order of inputs/outputs.
+ bool validDataPointers = (sOut0 == mIn1) && (sOut1 == mIn0);
+ BOOST_TEST(validDataPointers);
+
+
+ //Also make sure that the inputs are subtensors of one tensor and outputs are sub tensors of another tensor.
+ bool validSubTensorParents = (mIn0->GetTensor().parent() == mIn1->GetTensor().parent())
+ && (sOut0->GetTensor().parent() == sOut1->GetTensor().parent());
+
+ BOOST_TEST(validSubTensorParents);
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloatWorkload)
+{
+ ClSplitterMergerTest<ClSplitterFloatWorkload, ClMergerFloatWorkload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloat16Workload)
+{
+ ClSplitterMergerTest<ClSplitterFloatWorkload, ClMergerFloatWorkload, armnn::DataType::Float16>();
+}
+
+
+BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
+{
+ // Test that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
+ // We create a splitter with two outputs. That each of those outputs is used by two different activation layers.
+
+ Graph graph;
+ ClWorkloadFactory factory;
+ std::unique_ptr<ClSplitterFloatWorkload> wlSplitter;
+ std::unique_ptr<ClActivationFloatWorkload> wlActiv0_0;
+ std::unique_ptr<ClActivationFloatWorkload> wlActiv0_1;
+ std::unique_ptr<ClActivationFloatWorkload> wlActiv1_0;
+ std::unique_ptr<ClActivationFloatWorkload> wlActiv1_1;
+
+ CreateSplitterMultipleInputsOneOutputWorkloadTest<ClSplitterFloatWorkload,
+ ClActivationFloatWorkload, armnn::DataType::Float32>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1,
+ wlActiv1_0, wlActiv1_1);
+
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ armnn::ClSubTensorHandle* sOut0 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
+ armnn::ClSubTensorHandle* sOut1 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
+ armnn::ClSubTensorHandle* activ0_0Im = dynamic_cast<armnn::ClSubTensorHandle*>(wlActiv0_0->GetData().m_Inputs[0]);
+ armnn::ClSubTensorHandle* activ0_1Im = dynamic_cast<armnn::ClSubTensorHandle*>(wlActiv0_1->GetData().m_Inputs[0]);
+ armnn::ClSubTensorHandle* activ1_0Im = dynamic_cast<armnn::ClSubTensorHandle*>(wlActiv1_0->GetData().m_Inputs[0]);
+ armnn::ClSubTensorHandle* activ1_1Im = dynamic_cast<armnn::ClSubTensorHandle*>(wlActiv1_1->GetData().m_Inputs[0]);
+
+
+ BOOST_TEST(sOut0);
+ BOOST_TEST(sOut1);
+ BOOST_TEST(activ0_0Im);
+ BOOST_TEST(activ0_1Im);
+ BOOST_TEST(activ1_0Im);
+ BOOST_TEST(activ1_1Im);
+
+ bool validDataPointers = (sOut0 == activ0_0Im) && (sOut0 == activ0_1Im) &&
+ (sOut1 == activ1_0Im) && (sOut1 == activ1_1Im);
+
+ BOOST_TEST(validDataPointers);
+}
+
+BOOST_AUTO_TEST_CASE(CreateMemCopyWorkloadsCl)
+{
+ ClWorkloadFactory factory;
+ CreateMemCopyWorkloads<IClTensorHandle>(factory);
+}
+
+BOOST_AUTO_TEST_CASE(CreateL2NormalizationWorkload)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ auto workload = CreateL2NormalizationWorkloadTest<ClL2NormalizationFloatWorkload, armnn::DataType::Float32>
+ (factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
+ L2NormalizationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, { 5, 20, 50, 67 }));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, { 5, 20, 50, 67 }));
+}
+
+template <typename LstmWorkloadType>
+static void ClCreateLstmWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateLstmWorkloadTest<LstmWorkloadType>(factory, graph);
+
+ LstmQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[1]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, { 2, 2 }));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, { 2, 4 }));
+}
+
+BOOST_AUTO_TEST_CASE(CreateLSTMWorkloadFloatWorkload)
+{
+ ClCreateLstmWorkloadTest<ClLstmFloatWorkload>();
+}
+
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/CreateWorkloadNeon.cpp b/src/backends/test/CreateWorkloadNeon.cpp
new file mode 100644
index 0000000000..fbe064e1c4
--- /dev/null
+++ b/src/backends/test/CreateWorkloadNeon.cpp
@@ -0,0 +1,455 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include "backends/NeonWorkloadFactory.hpp"
+#include "backends/NeonWorkloadUtils.hpp"
+#include "backends/NeonWorkloads.hpp"
+#include "backends/MemCopyWorkload.hpp"
+#include "backends/NeonTensorHandle.hpp"
+
+#include "test/CreateWorkloadClNeon.hpp"
+
+BOOST_AUTO_TEST_SUITE(CreateWorkloadNeon)
+
+namespace
+{
+
+bool TestNeonTensorHandleInfo(armnn::INeonTensorHandle* handle, const armnn::TensorInfo& expectedInfo)
+{
+ using namespace armnn::armcomputetensorutils;
+
+ const arm_compute::ITensorInfo* handleInfo = handle->GetTensor().info();
+ const arm_compute::TensorInfo expectedAclInfo = BuildArmComputeTensorInfo(expectedInfo);
+
+ if (handleInfo->data_type() != expectedAclInfo.data_type())
+ {
+ return false;
+ }
+
+ if (handleInfo->num_dimensions() != expectedAclInfo.num_dimensions())
+ {
+ return false;
+ }
+
+ if (handleInfo->quantization_info() != expectedAclInfo.quantization_info())
+ {
+ return false;
+ }
+
+ for (std::size_t d = 0; d < expectedAclInfo.num_dimensions(); ++d)
+ {
+ if (handleInfo->dimension(d) != expectedAclInfo.dimension(d))
+ {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+} // namespace
+
+template <typename ActivationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateActivationWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>
+ (factory, graph);
+
+ // Checks that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest).
+ ActivationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({1, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 1}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateActivationFloat16Workload)
+{
+ NeonCreateActivationWorkloadTest<NeonActivationFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateActivationFloatWorkload)
+{
+ NeonCreateActivationWorkloadTest<NeonActivationFloatWorkload, DataType::Float32>();
+}
+
+template <typename WorkloadType,
+ typename DescriptorType,
+ typename LayerType,
+ armnn::DataType DataType>
+static void NeonCreateArithmethicWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateArithmeticWorkloadTest<WorkloadType, DescriptorType, LayerType, DataType>(factory, graph);
+
+ DescriptorType queueDescriptor = workload->GetData();
+ auto inputHandle1 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto inputHandle2 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[1]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle1, TensorInfo({2, 3}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle2, TensorInfo({2, 3}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateAdditionFloat16Workload)
+{
+ NeonCreateArithmethicWorkloadTest<NeonAdditionFloatWorkload,
+ AdditionQueueDescriptor,
+ AdditionLayer,
+ DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateAdditionFloatWorkload)
+{
+ NeonCreateArithmethicWorkloadTest<NeonAdditionFloatWorkload,
+ AdditionQueueDescriptor,
+ AdditionLayer,
+ DataType::Float32>();
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateSubtractionFloat16Workload)
+{
+ NeonCreateArithmethicWorkloadTest<NeonSubtractionFloatWorkload,
+ SubtractionQueueDescriptor,
+ SubtractionLayer,
+ DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateSubtractionFloatWorkload)
+{
+ NeonCreateArithmethicWorkloadTest<NeonSubtractionFloatWorkload,
+ SubtractionQueueDescriptor,
+ SubtractionLayer,
+ DataType::Float32>();
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat16Workload)
+{
+ NeonCreateArithmethicWorkloadTest<NeonMultiplicationFloatWorkload,
+ MultiplicationQueueDescriptor,
+ MultiplicationLayer,
+ DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloatWorkload)
+{
+ NeonCreateArithmethicWorkloadTest<NeonMultiplicationFloatWorkload,
+ MultiplicationQueueDescriptor,
+ MultiplicationLayer,
+ DataType::Float32>();
+}
+
+template <typename BatchNormalizationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateBatchNormalizationWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateBatchNormalizationWorkloadTest<BatchNormalizationWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
+ BatchNormalizationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 1, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3, 1, 1}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat16Workload)
+{
+ NeonCreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloatWorkload)
+{
+ NeonCreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloatWorkload, DataType::Float32>();
+}
+
+template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateConvolution2dWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateConvolution2dWorkloadTest<Convolution2dWorkloadType,
+ DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
+ Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 8, 16}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 2, 2, 10}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat16Workload)
+{
+ NeonCreateConvolution2dWorkloadTest<NeonConvolution2dFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloatWorkload)
+{
+ NeonCreateConvolution2dWorkloadTest<NeonConvolution2dFloatWorkload, DataType::Float32>();
+}
+
+template <typename FullyConnectedWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateFullyConnectedWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType,
+ DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
+ FullyConnectedQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 1, 4, 5}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 7}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat16Workload)
+{
+ NeonCreateFullyConnectedWorkloadTest<NeonFullyConnectedFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloatWorkload)
+{
+ NeonCreateFullyConnectedWorkloadTest<NeonFullyConnectedFloatWorkload, DataType::Float32>();
+}
+
+template <typename NormalizationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateNormalizationWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateNormalizationWorkloadTest<NormalizationWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
+ NormalizationQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 5, 5, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 5, 5, 1}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloat16Workload)
+{
+ NeonCreateNormalizationWorkloadTest<NeonNormalizationFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloatWorkload)
+{
+ NeonCreateNormalizationWorkloadTest<NeonNormalizationFloatWorkload, DataType::Float32>();
+}
+
+template <typename Pooling2dWorkloadType, typename armnn::DataType DataType>
+static void NeonCreatePooling2dWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>
+ (factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
+ Pooling2dQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 2, 5, 5}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 2, 2, 4}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat16Workload)
+{
+ NeonCreatePooling2dWorkloadTest<NeonPooling2dFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloatWorkload)
+{
+ NeonCreatePooling2dWorkloadTest<NeonPooling2dFloatWorkload, DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dUint8Workload)
+{
+ NeonCreatePooling2dWorkloadTest<NeonPooling2dUint8Workload, DataType::QuantisedAsymm8>();
+}
+
+template <typename ReshapeWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateReshapeWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
+ ReshapeQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 4}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateReshapeFloat16Workload)
+{
+ NeonCreateReshapeWorkloadTest<NeonReshapeFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateReshapeFloatWorkload)
+{
+ NeonCreateReshapeWorkloadTest<NeonReshapeFloatWorkload, DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
+{
+ NeonCreateReshapeWorkloadTest<NeonReshapeUint8Workload, DataType::QuantisedAsymm8>();
+}
+
+template <typename SoftmaxWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateSoftmaxWorkloadTest()
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest).
+ SoftmaxQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({4, 1}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat16Workload)
+{
+ NeonCreateSoftmaxWorkloadTest<NeonSoftmaxFloatWorkload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloatWorkload)
+{
+ NeonCreateSoftmaxWorkloadTest<NeonSoftmaxFloatWorkload, DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterWorkload)
+{
+ Graph graph;
+ NeonWorkloadFactory factory;
+ auto workload = CreateSplitterWorkloadTest<NeonSplitterFloatWorkload, DataType::Float32>(factory, graph);
+
+ // Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
+ SplitterQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({5, 7, 7}, DataType::Float32)));
+
+ auto outputHandle0 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle0, TensorInfo({1, 7, 7}, DataType::Float32)));
+
+ auto outputHandle1 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[1]);
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle1, TensorInfo({2, 7, 7}, DataType::Float32)));
+
+ auto outputHandle2 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[2]);
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle2, TensorInfo({2, 7, 7}, DataType::Float32)));
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
+{
+ // Tests that it is possible to decide which output of the splitter layer
+ // should be lined to which input of the merger layer.
+ // We tested that is is possible to specify 0th output
+ // of the splitter to be the 1st input to the merger, and the 1st output of the splitter to be 0th input
+ // of the merger.
+
+ Graph graph;
+ NeonWorkloadFactory factory;
+
+ auto workloads =
+ CreateSplitterMergerWorkloadTest<NeonSplitterFloatWorkload, NeonMergerFloatWorkload,
+ DataType::Float32>(factory, graph);
+
+ auto wlSplitter = std::move(workloads.first);
+ auto wlMerger = std::move(workloads.second);
+
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ armnn::INeonTensorHandle* sOut0 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
+ armnn::INeonTensorHandle* sOut1 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
+ armnn::INeonTensorHandle* mIn0 = dynamic_cast<armnn::INeonTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
+ armnn::INeonTensorHandle* mIn1 = dynamic_cast<armnn::INeonTensorHandle*>(wlMerger->GetData().m_Inputs[1]);
+
+ BOOST_TEST(sOut0);
+ BOOST_TEST(sOut1);
+ BOOST_TEST(mIn0);
+ BOOST_TEST(mIn1);
+
+ bool validDataPointers = (sOut0 == mIn1) && (sOut1 == mIn0);
+
+ BOOST_TEST(validDataPointers);
+}
+
+BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
+{
+ // Tests that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
+ // We created a splitter with two outputs. That each of those outputs is used by two different activation layers
+
+ Graph graph;
+ NeonWorkloadFactory factory;
+ std::unique_ptr<NeonSplitterFloatWorkload> wlSplitter;
+ std::unique_ptr<NeonActivationFloatWorkload> wlActiv0_0;
+ std::unique_ptr<NeonActivationFloatWorkload> wlActiv0_1;
+ std::unique_ptr<NeonActivationFloatWorkload> wlActiv1_0;
+ std::unique_ptr<NeonActivationFloatWorkload> wlActiv1_1;
+
+ CreateSplitterMultipleInputsOneOutputWorkloadTest<NeonSplitterFloatWorkload,
+ NeonActivationFloatWorkload, DataType::Float32>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1,
+ wlActiv1_0, wlActiv1_1);
+
+ armnn::INeonTensorHandle* sOut0 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
+ armnn::INeonTensorHandle* sOut1 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
+ armnn::INeonTensorHandle* activ0_0Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv0_0->GetData().m_Inputs[0]);
+ armnn::INeonTensorHandle* activ0_1Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv0_1->GetData().m_Inputs[0]);
+ armnn::INeonTensorHandle* activ1_0Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv1_0->GetData().m_Inputs[0]);
+ armnn::INeonTensorHandle* activ1_1Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv1_1->GetData().m_Inputs[0]);
+
+
+ BOOST_TEST(sOut0);
+ BOOST_TEST(sOut1);
+ BOOST_TEST(activ0_0Im);
+ BOOST_TEST(activ0_1Im);
+ BOOST_TEST(activ1_0Im);
+ BOOST_TEST(activ1_1Im);
+
+ bool validDataPointers = (sOut0 == activ0_0Im) && (sOut0 == activ0_1Im) &&
+ (sOut1 == activ1_0Im) && (sOut1 == activ1_1Im);
+
+ BOOST_TEST(validDataPointers);
+}
+
+BOOST_AUTO_TEST_CASE(CreateMemCopyWorkloadsNeon)
+{
+ NeonWorkloadFactory factory;
+ CreateMemCopyWorkloads<INeonTensorHandle>(factory);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/CreateWorkloadRef.cpp b/src/backends/test/CreateWorkloadRef.cpp
new file mode 100644
index 0000000000..41419dafd0
--- /dev/null
+++ b/src/backends/test/CreateWorkloadRef.cpp
@@ -0,0 +1,478 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include "backends/RefWorkloadFactory.hpp"
+#include "backends/RefWorkloads.hpp"
+#include "backends/CpuTensorHandle.hpp"
+
+#include "test/CreateWorkload.hpp"
+
+namespace
+{
+
+template<typename Workload>
+void CheckInputOutput(std::unique_ptr<Workload> workload, const TensorInfo& inputInfo, const TensorInfo& outputInfo)
+{
+ auto queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST((inputHandle->GetTensorInfo() == inputInfo));
+ BOOST_TEST((outputHandle->GetTensorInfo() == outputInfo));
+}
+
+template <typename Workload>
+void CheckInputsOutput(std::unique_ptr<Workload> workload,
+ const TensorInfo& inputInfo0,
+ const TensorInfo& inputInfo1,
+ const TensorInfo& outputInfo)
+{
+ auto queueDescriptor = workload->GetData();
+ auto inputHandle0 = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto inputHandle1 = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[1]);
+ auto outputHandle = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST((inputHandle0->GetTensorInfo() == inputInfo0));
+ BOOST_TEST((inputHandle1->GetTensorInfo() == inputInfo1));
+ BOOST_TEST((outputHandle->GetTensorInfo() == outputInfo));
+}
+}
+
+BOOST_AUTO_TEST_SUITE(CreateWorkloadRef)
+
+template <typename ActivationWorkloadType, armnn::DataType DataType>
+static void RefCreateActivationWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs are as we expect them (see definition of CreateActivationWorkloadTest).
+ CheckInputOutput(std::move(workload),
+ TensorInfo({ 1, 1 }, DataType),
+ TensorInfo({ 1, 1 }, DataType));
+}
+
+BOOST_AUTO_TEST_CASE(CreateActivationFloat32Workload)
+{
+ RefCreateActivationWorkloadTest<RefActivationFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateActivationUint8Workload)
+{
+ RefCreateActivationWorkloadTest<RefActivationUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename WorkloadType,
+ typename DescriptorType,
+ typename LayerType,
+ armnn::DataType DataType>
+static void RefCreateArithmethicWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateArithmeticWorkloadTest<WorkloadType, DescriptorType, LayerType, DataType>(factory, graph);
+
+ CheckInputsOutput(std::move(workload),
+ TensorInfo({ 2, 3 }, DataType),
+ TensorInfo({ 2, 3 }, DataType),
+ TensorInfo({ 2, 3 }, DataType));
+}
+
+BOOST_AUTO_TEST_CASE(CreateAdditionFloatWorkload)
+{
+ RefCreateArithmethicWorkloadTest<RefAdditionFloat32Workload,
+ AdditionQueueDescriptor,
+ AdditionLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateAdditionUint8Workload)
+{
+ RefCreateArithmethicWorkloadTest<RefAdditionUint8Workload,
+ AdditionQueueDescriptor,
+ AdditionLayer,
+ armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSubtractionFloatWorkload)
+{
+ RefCreateArithmethicWorkloadTest<RefSubtractionFloat32Workload,
+ SubtractionQueueDescriptor,
+ SubtractionLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSubtractionUint8Workload)
+{
+ RefCreateArithmethicWorkloadTest<RefSubtractionUint8Workload,
+ SubtractionQueueDescriptor,
+ SubtractionLayer,
+ armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloatWorkload)
+{
+ RefCreateArithmethicWorkloadTest<RefMultiplicationFloat32Workload,
+ MultiplicationQueueDescriptor,
+ MultiplicationLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationUint8Workload)
+{
+ RefCreateArithmethicWorkloadTest<RefMultiplicationUint8Workload,
+ MultiplicationQueueDescriptor,
+ MultiplicationLayer,
+ armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDivisionFloatWorkload)
+{
+ RefCreateArithmethicWorkloadTest<RefDivisionFloat32Workload,
+ DivisionQueueDescriptor,
+ DivisionLayer,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDivisionUint8Workload)
+{
+ RefCreateArithmethicWorkloadTest<RefDivisionUint8Workload,
+ DivisionQueueDescriptor,
+ DivisionLayer,
+ armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationWorkload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateBatchNormalizationWorkloadTest<RefBatchNormalizationFloat32Workload, armnn::DataType::Float32>
+ (factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
+ CheckInputOutput(
+ std::move(workload), TensorInfo({2, 3, 1, 1}, DataType::Float32), TensorInfo({2, 3, 1, 1}, DataType::Float32));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp16ToFp32Float32Workload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateConvertFp16ToFp32WorkloadTest<RefConvertFp16ToFp32Workload>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them
+ CheckInputOutput(
+ std::move(workload), TensorInfo({1, 3, 2, 3}, DataType::Float16), TensorInfo({1, 3, 2, 3}, DataType::Float32));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp32ToFp16Float16Workload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateConvertFp32ToFp16WorkloadTest<RefConvertFp32ToFp16Workload>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them
+ CheckInputOutput(
+ std::move(workload), TensorInfo({1, 3, 2, 3}, DataType::Float32), TensorInfo({1, 3, 2, 3}, DataType::Float16));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvolution2dWorkload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateConvolution2dWorkloadTest<RefConvolution2dFloat32Workload,
+ DataType::Float32>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
+ CheckInputOutput(std::move(workload),
+ TensorInfo({2, 3, 8, 16}, DataType::Float32),
+ TensorInfo({2, 2, 2, 10}, DataType::Float32));
+}
+
+BOOST_AUTO_TEST_CASE(CreateDepthwiseConvolution2dWorkload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload =
+ CreateDepthwiseConvolution2dWorkloadTest<RefDepthwiseConvolution2dFloat32Workload>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
+ CheckInputOutput(std::move(workload),
+ TensorInfo({2, 3, 8, 16}, DataType::Float32),
+ TensorInfo({2, 9, 2, 10}, DataType::Float32));
+}
+
+template <typename FullyConnectedWorkloadType, armnn::DataType DataType>
+static void RefCreateFullyConnectedWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
+ float inputsQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 1.0f : 0.0;
+ float outputQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 2.0f : 0.0;
+ CheckInputOutput(std::move(workload),
+ TensorInfo({ 3, 1, 4, 5 }, DataType, inputsQScale),
+ TensorInfo({ 3, 7 }, DataType, outputQScale));
+}
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat32Workload)
+{
+ RefCreateFullyConnectedWorkloadTest<RefFullyConnectedFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedUint8Workload)
+{
+ RefCreateFullyConnectedWorkloadTest<RefFullyConnectedUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateNormalizationWorkload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateNormalizationWorkloadTest<RefNormalizationFloat32Workload,
+ armnn::DataType::Float32>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
+ CheckInputOutput(std::move(workload),
+ TensorInfo({3, 5, 5, 1}, DataType::Float32),
+ TensorInfo({3, 5, 5, 1}, DataType::Float32));
+}
+
+template <typename Pooling2dWorkloadType, armnn::DataType DataType>
+static void RefCreatePooling2dWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
+ CheckInputOutput(
+ std::move(workload),
+ TensorInfo({3, 2, 5, 5}, DataType),
+ TensorInfo({3, 2, 2, 4}, DataType));
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat32Workload)
+{
+ RefCreatePooling2dWorkloadTest<RefPooling2dFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dUint8Workload)
+{
+ RefCreatePooling2dWorkloadTest<RefPooling2dUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename SoftmaxWorkloadType, armnn::DataType DataType>
+static void RefCreateSoftmaxWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest).
+ CheckInputOutput(
+ std::move(workload),
+ TensorInfo({4, 1}, DataType),
+ TensorInfo({4, 1}, DataType));
+}
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat32Workload)
+{
+ RefCreateSoftmaxWorkloadTest<RefSoftmaxFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxUint8Workload)
+{
+ RefCreateSoftmaxWorkloadTest<RefSoftmaxUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename SplitterWorkloadType, armnn::DataType DataType>
+static void RefCreateSplitterWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateSplitterWorkloadTest<SplitterWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
+ SplitterQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ BOOST_TEST((inputHandle->GetTensorInfo() == TensorInfo({ 5, 7, 7 }, DataType)));
+
+ auto outputHandle0 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ BOOST_TEST((outputHandle0->GetTensorInfo() == TensorInfo({ 1, 7, 7 }, DataType)));
+
+ auto outputHandle1 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[1]);
+ BOOST_TEST((outputHandle1->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, DataType)));
+
+ auto outputHandle2 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[2]);
+ BOOST_TEST((outputHandle2->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, DataType)));
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterFloat32Workload)
+{
+ RefCreateSplitterWorkloadTest<RefSplitterFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterUint8Workload)
+{
+ RefCreateSplitterWorkloadTest<RefSplitterUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename SplitterWorkloadType, typename MergerWorkloadType, armnn::DataType DataType>
+static void RefCreateSplitterMergerWorkloadTest()
+{
+ // Tests that it is possible to decide which output of the splitter layer
+ // should be lined to which input of the merger layer.
+ // We tested that is is possible to specify 0th output
+ // of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
+ // of the merger.
+
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workloads = CreateSplitterMergerWorkloadTest<SplitterWorkloadType, MergerWorkloadType, DataType>
+ (factory, graph);
+
+ auto wlSplitter = std::move(workloads.first);
+ auto wlMerger = std::move(workloads.second);
+
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ armnn::CpuTensorHandle* sOut0 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
+ armnn::CpuTensorHandle* sOut1 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
+ armnn::CpuTensorHandle* mIn0 = dynamic_cast<armnn::CpuTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
+ armnn::CpuTensorHandle* mIn1 = dynamic_cast<armnn::CpuTensorHandle*>(wlMerger->GetData().m_Inputs[1]);
+
+ BOOST_TEST(sOut0);
+ BOOST_TEST(sOut1);
+ BOOST_TEST(mIn0);
+ BOOST_TEST(mIn1);
+
+ bool validDataPointers = (sOut0 == mIn1) && (sOut1 == mIn0);
+
+ BOOST_TEST(validDataPointers);
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloat32)
+{
+ RefCreateSplitterMergerWorkloadTest<RefSplitterFloat32Workload, RefMergerFloat32Workload, DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterMergerUint8)
+{
+ RefCreateSplitterMergerWorkloadTest<RefSplitterUint8Workload, RefMergerUint8Workload, DataType::QuantisedAsymm8>();
+}
+
+template <typename SplitterWorkloadType, typename ActivationWorkloadType, armnn::DataType DataType>
+static void RefCreateSingleOutputMultipleInputsTest()
+{
+ // Tests that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
+ // We created a splitter with two outputs. That each of those outputs is used by two different activation layers.
+
+ Graph graph;
+ RefWorkloadFactory factory;
+ std::unique_ptr<SplitterWorkloadType> wlSplitter;
+ std::unique_ptr<ActivationWorkloadType> wlActiv0_0;
+ std::unique_ptr<ActivationWorkloadType> wlActiv0_1;
+ std::unique_ptr<ActivationWorkloadType> wlActiv1_0;
+ std::unique_ptr<ActivationWorkloadType> wlActiv1_1;
+
+ CreateSplitterMultipleInputsOneOutputWorkloadTest<SplitterWorkloadType,
+ ActivationWorkloadType, DataType>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1, wlActiv1_0, wlActiv1_1);
+
+ armnn::CpuTensorHandle* sOut0 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
+ armnn::CpuTensorHandle* sOut1 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
+ armnn::CpuTensorHandle* activ0_0Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv0_0->GetData().m_Inputs[0]);
+ armnn::CpuTensorHandle* activ0_1Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv0_1->GetData().m_Inputs[0]);
+ armnn::CpuTensorHandle* activ1_0Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv1_0->GetData().m_Inputs[0]);
+ armnn::CpuTensorHandle* activ1_1Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv1_1->GetData().m_Inputs[0]);
+
+
+ BOOST_TEST(sOut0);
+ BOOST_TEST(sOut1);
+ BOOST_TEST(activ0_0Im);
+ BOOST_TEST(activ0_1Im);
+ BOOST_TEST(activ1_0Im);
+ BOOST_TEST(activ1_1Im);
+
+ bool validDataPointers = (sOut0 == activ0_0Im) && (sOut0 == activ0_1Im) &&
+ (sOut1 == activ1_0Im) && (sOut1 == activ1_1Im);
+
+ BOOST_TEST(validDataPointers);
+}
+
+BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputsFloat32)
+{
+ RefCreateSingleOutputMultipleInputsTest<RefSplitterFloat32Workload, RefActivationFloat32Workload,
+ armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputsUint8)
+{
+ RefCreateSingleOutputMultipleInputsTest<RefSplitterUint8Workload, RefActivationUint8Workload,
+ armnn::DataType::QuantisedAsymm8>();
+}
+
+template <typename ResizeBilinearWorkloadType, armnn::DataType DataType>
+static void RefCreateResizeBilinearTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateResizeBilinearWorkloadTest<ResizeBilinearWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateResizeBilinearWorkloadTest).
+ CheckInputOutput(
+ std::move(workload),
+ TensorInfo({ 2, 3, 4, 4 }, DataType),
+ TensorInfo({ 2, 3, 2, 2 }, DataType));
+}
+
+BOOST_AUTO_TEST_CASE(CreateResizeBilinearFloat32)
+{
+ RefCreateResizeBilinearTest<RefResizeBilinearFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateResizeBilinearUint8)
+{
+ RefCreateResizeBilinearTest<RefResizeBilinearUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateL2NormalizationFloat32)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateL2NormalizationWorkloadTest<RefL2NormalizationFloat32Workload, armnn::DataType::Float32>
+ (factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateL2NormalizationWorkloadTest).
+ CheckInputOutput(
+ std::move(workload),
+ TensorInfo({ 5, 20, 50, 67 }, armnn::DataType::Float32),
+ TensorInfo({ 5, 20, 50, 67 }, armnn::DataType::Float32));
+}
+
+template <typename ReshapeWorkloadType, armnn::DataType DataType>
+static void RefCreateReshapeWorkloadTest()
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
+ CheckInputOutput(
+ std::move(workload),
+ TensorInfo({ 4, 1 }, DataType),
+ TensorInfo({ 1, 4 }, DataType));
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeFloat32Workload)
+{
+ RefCreateReshapeWorkloadTest<RefReshapeFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
+{
+ RefCreateReshapeWorkloadTest<RefReshapeUint8Workload, armnn::DataType::QuantisedAsymm8>();
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/FullyConnectedTestImpl.hpp b/src/backends/test/FullyConnectedTestImpl.hpp
new file mode 100644
index 0000000000..125b7e62b1
--- /dev/null
+++ b/src/backends/test/FullyConnectedTestImpl.hpp
@@ -0,0 +1,287 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+template<typename T, typename B>
+LayerTestResult<T, 2> SimpleFullyConnectedTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::TensorInfo inputTensorInfo,
+ armnn::TensorInfo outputTensorInfo,
+ armnn::TensorInfo weightsDesc,
+ armnn::TensorInfo biasesDesc,
+ boost::multi_array<T, 2>& weights,
+ boost::multi_array<B, 1>& bias,
+ boost::multi_array<T, 4>& input,
+ bool biasEnabled,
+ bool transposeWeights)
+{
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::FullyConnectedQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(weightsDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasesDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &weights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_TransposeWeightMatrix = transposeWeights;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateFullyConnected(data, info);
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0], outputHandle.get());
+
+ return result;
+}
+
+LayerTestResult<float, 2> FullyConnectedFloat32Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled,
+ bool transposeWeights)
+{
+ unsigned int inputWidth = 1;
+ unsigned int inputHeight = 1;
+ unsigned int inputChannels = 5;
+ unsigned int inputNum = 2;
+
+ unsigned int outputChannels = 3;
+ unsigned int outputNum = 2;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo weightsDesc;
+ armnn::TensorInfo biasesDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels };
+ unsigned int weightsShape[] = { inputChannels, outputChannels };
+ if (transposeWeights)
+ {
+ std::swap(weightsShape[0], weightsShape[1]);
+ }
+ unsigned int biasShape[] = { outputChannels };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(2, outputShape, armnn::DataType::Float32);
+ weightsDesc = armnn::TensorInfo(2, weightsShape, armnn::DataType::Float32);
+ biasesDesc = armnn::TensorInfo(1, biasShape, armnn::DataType::Float32);
+
+ LayerTestResult<float, 2> result(outputTensorInfo);
+
+ boost::multi_array<float, 4> input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+
+ 5.0f, 4.0f, 3.0f, 2.0f, 1.0f
+ })
+ );
+
+ boost::multi_array<float, 2> weights = MakeTensor<float, 2>(weightsDesc, std::vector<float>(
+ {
+ .5f, 2.f, .5f,
+ .5f, 2.f, 1.f,
+ .5f, 2.f, 2.f,
+ .5f, 2.f, 3.f,
+ .5f, 2.f, 4.f
+ }));
+
+ if (transposeWeights)
+ {
+ weights = MakeTensor<float, 2>(weightsDesc, std::vector<float>(
+ {
+ .5f, .5f, .5f, .5f, .5f,
+ 2.f, 2.f, 2.f, 2.f, 2.f,
+ .5f, 1.f, 2.f, 3.f, 4.f
+ }));
+ }
+
+
+ std::vector<float> biasValues({0.f, 0.f, 0.f});
+ if (biasEnabled)
+ {
+ biasValues = std::vector<float>({10.f, 20.f, 30.f});
+ }
+ boost::multi_array<float, 1> bias = MakeTensor<float, 1>(biasesDesc, biasValues);
+
+ result = SimpleFullyConnectedTestImpl<float>(
+ workloadFactory,
+ inputTensorInfo, outputTensorInfo,
+ weightsDesc, biasesDesc,
+ weights, bias, input,
+ biasEnabled, transposeWeights
+ );
+
+ result.outputExpected = MakeTensor<float, 2>(outputTensorInfo, std::vector<float>(
+ {
+ 0.5f + 1.0f + 1.5f + 2.0f + 2.5f + biasValues[0],
+ 2.0f + 4.0f + 6.0f + 8.0f + 10.f + biasValues[1],
+ 0.5f + 2.0f + 6.0f + 12.f + 20.f + biasValues[2],
+
+ 2.5f + 2.0f + 1.5f + 1.0f + 0.5f + biasValues[0],
+ 10.0f + 8.0f + 6.0f + 4.0f + 2.f + biasValues[1],
+ 2.5f + 4.0f + 6.0f + 6.f + 4.f + biasValues[2]
+ })
+ );
+
+ return result;
+}
+
+LayerTestResult<uint8_t, 2> FullyConnectedUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled)
+{
+ constexpr static unsigned int inputWidth = 3u;
+ constexpr static unsigned int inputHeight = 2u;
+ constexpr static unsigned int inputChannels = 1u;
+
+ constexpr static unsigned int inputSize = inputWidth * inputHeight * inputChannels;
+
+ constexpr static unsigned int outputChannels = 2u;
+
+ armnn::TensorInfo inputTensorInfo({ 1, inputChannels, inputHeight, inputWidth }, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(0.1f);
+ inputTensorInfo.SetQuantizationOffset(63);
+
+ armnn::TensorInfo outputTensorInfo({ 1, outputChannels }, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(5.f);
+ outputTensorInfo.SetQuantizationOffset(biasEnabled ? -50 : 10);
+
+ armnn::TensorInfo weightsDesc({ outputChannels, inputSize }, armnn::DataType::QuantisedAsymm8);
+ weightsDesc.SetQuantizationScale(0.2f);
+ weightsDesc.SetQuantizationOffset(93);
+
+ armnn::TensorInfo biasesDesc({ outputChannels }, armnn::DataType::Signed32);
+ biasesDesc.SetQuantizationScale(inputTensorInfo.GetQuantizationScale() * weightsDesc.GetQuantizationScale());
+ biasesDesc.SetQuantizationOffset(0);
+
+ LayerTestResult<uint8_t, 2> result(outputTensorInfo);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>{51, 124, 28,
+ 251, 8, 92});
+
+ auto weights = MakeTensor<uint8_t, 2>(weightsDesc, std::vector<uint8_t>{51, 193, 42, 53, 175, 34,
+ 210, 145, 23, 74, 34, 150});
+
+ // scale = 0.02
+ // offset = 0
+ auto bias = MakeTensor<int32_t, 1>(biasesDesc, std::vector<int32_t>{9250, 67500});
+
+ result = SimpleFullyConnectedTestImpl<uint8_t>(
+ workloadFactory,
+ inputTensorInfo, outputTensorInfo,
+ weightsDesc, biasesDesc,
+ weights, bias, input,
+ biasEnabled, true
+ );
+
+ // Manually calculated.
+ // Note one of these values has been clamped to 0.
+ if (biasEnabled)
+ {
+ result.outputExpected = MakeTensor<uint8_t, 2>(outputTensorInfo, std::vector<uint8_t>{0, 242});
+ }
+ else
+ {
+ result.outputExpected = MakeTensor<uint8_t, 2>(outputTensorInfo, std::vector<uint8_t>{0, 32});
+ }
+
+ return result;
+}
+
+
+
+//
+// ArmNN variant of the AndroidNN fully_connected_float_large test.
+//
+// Tests the fully connected layer with large values, optionally transposing weights.
+// Note this is templated for consistency, but the nature of this tests makes it unlikely to be useful in Uint8 mode.
+//
+template<typename T>
+LayerTestResult<T, 2> FullyConnectedLargeTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ bool transposeWeights,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int inputWidth = 1;
+ unsigned int inputHeight = 1;
+ unsigned int inputChannels = 5;
+ unsigned int inputNum = 1;
+
+ unsigned int outputChannels = 1;
+ unsigned int outputNum = 1;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo weightsDesc;
+ armnn::TensorInfo biasesDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels };
+ unsigned int weightsShape[] = { inputChannels, outputChannels };
+ if (transposeWeights)
+ {
+ std::swap(weightsShape[0], weightsShape[1]);
+ }
+
+ unsigned int biasShape[] = { outputChannels };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(2, outputShape, armnn::GetDataType<T>());
+ weightsDesc = armnn::TensorInfo(2, weightsShape, armnn::GetDataType<T>());
+ biasesDesc = armnn::TensorInfo(1, biasShape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 10.0f, 100.0f, 1000.0f, 10000.0f,
+ })
+ );
+
+ boost::multi_array<T, 2> weights = MakeTensor<T, 2>(weightsDesc,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 3.0f, 4.0f, 5.0f, 6.0f
+ })
+ );
+
+ std::vector<T> biasValues({900000.f});
+ boost::multi_array<T, 1> bias = MakeTensor<T, 1>(biasesDesc, biasValues);
+
+ result = SimpleFullyConnectedTestImpl<T>(
+ workloadFactory,
+ inputTensorInfo, outputTensorInfo,
+ weightsDesc, biasesDesc,
+ weights, bias, input,
+ true, transposeWeights
+ );
+
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 965432.0f,
+ })
+ );
+
+ return result;
+}
diff --git a/src/backends/test/IsLayerSupportedTest.cpp b/src/backends/test/IsLayerSupportedTest.cpp
new file mode 100644
index 0000000000..97d3de5e38
--- /dev/null
+++ b/src/backends/test/IsLayerSupportedTest.cpp
@@ -0,0 +1,239 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <boost/test/unit_test.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "LayerTests.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/RefWorkloadFactory.hpp"
+
+#include <string>
+#include <iostream>
+#include <backends/ClWorkloadFactory.hpp>
+#include <backends/NeonWorkloadFactory.hpp>
+
+#include "IsLayerSupportedTestImpl.hpp"
+#include "ClContextControlFixture.hpp"
+
+#include "layers/ConvertFp16ToFp32Layer.hpp"
+#include "layers/ConvertFp32ToFp16Layer.hpp"
+
+BOOST_AUTO_TEST_SUITE(IsLayerSupported)
+
+BOOST_AUTO_TEST_CASE(IsLayerSupportedLayerTypeMatches)
+{
+ LayerTypeMatchesTest();
+}
+
+BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat16Reference)
+{
+ armnn::RefWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::RefWorkloadFactory, armnn::DataType::Float16>(&factory);
+}
+
+BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat32Reference)
+{
+ armnn::RefWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::RefWorkloadFactory, armnn::DataType::Float32>(&factory);
+}
+
+BOOST_AUTO_TEST_CASE(IsLayerSupportedUint8Reference)
+{
+ armnn::RefWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::RefWorkloadFactory, armnn::DataType::QuantisedAsymm8>(&factory);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedFp32InputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float32 data type input");
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedFp16OutputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float16 data type output");
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedFp16InputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float16 data type input");
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedFp32OutputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float32 data type output");
+}
+
+#ifdef ARMCOMPUTENEON_ENABLED
+BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat16Neon)
+{
+ armnn::NeonWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::DataType::Float16>(&factory);
+}
+
+BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat32Neon)
+{
+ armnn::NeonWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::DataType::Float32>(&factory);
+}
+
+BOOST_AUTO_TEST_CASE(IsLayerSupportedUint8Neon)
+{
+ armnn::NeonWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::DataType::QuantisedAsymm8>(&factory);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedNeon)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedNeon)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+#endif //#ifdef ARMCOMPUTENEON_ENABLED.
+
+
+#ifdef ARMCOMPUTECL_ENABLED
+
+BOOST_FIXTURE_TEST_CASE(IsLayerSupportedFloat16Cl, ClContextControlFixture)
+{
+ armnn::ClWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::ClWorkloadFactory, armnn::DataType::Float16>(&factory);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsLayerSupportedFloat32Cl, ClContextControlFixture)
+{
+ armnn::ClWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::ClWorkloadFactory, armnn::DataType::Float32>(&factory);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsLayerSupportedUint8Cl, ClContextControlFixture)
+{
+ armnn::ClWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::ClWorkloadFactory, armnn::DataType::QuantisedAsymm8>(&factory);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp16ToFp32SupportedCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp16ToFp32SupportedFp32InputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Input should be Float16");
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp16ToFp32SupportedFp16OutputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Output should be Float32");
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp32ToFp16SupportedCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp32ToFp16SupportedFp16InputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Input should be Float32");
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp32ToFp16SupportedFp32OutputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Output should be Float16");
+}
+#endif //#ifdef ARMCOMPUTECL_ENABLED.
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/IsLayerSupportedTestImpl.hpp b/src/backends/test/IsLayerSupportedTestImpl.hpp
new file mode 100644
index 0000000000..c5389df06e
--- /dev/null
+++ b/src/backends/test/IsLayerSupportedTestImpl.hpp
@@ -0,0 +1,565 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "Graph.hpp"
+
+#include <boost/core/ignore_unused.hpp>
+
+namespace
+{
+armnn::Graph dummyGraph;
+
+// Make a dummy TensorInfo object.
+template<armnn::DataType DataType>
+armnn::TensorInfo MakeDummyTensorInfo()
+{
+ return armnn::TensorInfo({2,2,2,2}, DataType);
+}
+
+
+// Make a dummy WorkloadInfo using a dummy TensorInfo.
+template<armnn::DataType DataType>
+armnn::WorkloadInfo MakeDummyWorkloadInfo(unsigned int numInputs, unsigned int numOutputs)
+{
+ armnn::WorkloadInfo info;
+ for (unsigned int i=0; i < numInputs; i++)
+ {
+ info.m_InputTensorInfos.push_back(MakeDummyTensorInfo<DataType>());
+ }
+ for (unsigned int o=0; o < numOutputs; o++)
+ {
+ info.m_OutputTensorInfos.push_back(MakeDummyTensorInfo<DataType>());
+ }
+ return info;
+}
+
+// Template class to create a dummy layer (2 parameters).
+template<typename LayerType, typename DescType = typename LayerType::DescriptorType>
+struct DummyLayer
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<LayerType>(DescType(), "");
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ LayerType* m_Layer;
+};
+
+// Template class to create a dummy layer (1 parameter).
+template<typename LayerType>
+struct DummyLayer<LayerType, void>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<LayerType>("");
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ LayerType* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::BatchNormalizationLayer>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::BatchNormalizationLayer>(armnn::BatchNormalizationDescriptor(), "");
+ m_Layer->m_Mean = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Variance = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Beta = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Gamma = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::BatchNormalizationLayer* m_Layer;
+
+};
+
+template<>
+struct DummyLayer<armnn::ConstantLayer, void>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::ConstantLayer>("");
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::ConstantLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::InputLayer, armnn::LayerBindingId>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::InputLayer>(armnn::LayerBindingId(), "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::InputLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::MergerLayer>
+{
+ DummyLayer()
+ {
+ armnn::OriginsDescriptor desc(2);
+ m_Layer = dummyGraph.AddLayer<armnn::MergerLayer>(desc, "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::MergerLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::OutputLayer, armnn::LayerBindingId>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::OutputLayer>(armnn::LayerBindingId(), "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::OutputLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::SplitterLayer>
+{
+ DummyLayer()
+ {
+ armnn::ViewsDescriptor desc(1);
+ m_Layer = dummyGraph.AddLayer<armnn::SplitterLayer>(desc, "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::SplitterLayer* m_Layer;
+};
+
+template <typename ConvolutionLayerType>
+struct DummyConvolutionLayer
+{
+ DummyConvolutionLayer()
+ {
+ typename ConvolutionLayerType::DescriptorType desc;
+ m_Layer = dummyGraph.AddLayer<ConvolutionLayerType>(desc, "");
+ m_Layer->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Bias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyConvolutionLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ ConvolutionLayerType* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::Convolution2dLayer>
+ : public DummyConvolutionLayer<armnn::Convolution2dLayer>
+{
+};
+
+template<>
+struct DummyLayer<armnn::DepthwiseConvolution2dLayer>
+ : public DummyConvolutionLayer<armnn::DepthwiseConvolution2dLayer>
+{
+};
+
+template <typename LstmLayerType>
+struct DummyLstmLayer
+{
+ DummyLstmLayer()
+ {
+ typename LstmLayerType::DescriptorType desc;
+ desc.m_CifgEnabled = false;
+
+ m_Layer = dummyGraph.AddLayer<LstmLayerType>(armnn::LstmDescriptor(), "");
+ m_Layer->m_BasicParameters.m_InputToForgetWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_InputToCellWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_InputToOutputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToForgetWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToCellWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToOutputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_ForgetGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_CellBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_OutputGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+
+ m_Layer->m_CifgParameters.m_InputToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_RecurrentToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_CellToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_InputGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLstmLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::LstmLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::LstmLayer>
+ : public DummyLstmLayer<armnn::LstmLayer>
+{
+};
+
+template<>
+struct DummyLayer<armnn::FullyConnectedLayer>
+{
+ DummyLayer()
+ {
+ armnn::FullyConnectedLayer::DescriptorType desc;
+ m_Layer = dummyGraph.AddLayer<armnn::FullyConnectedLayer>(desc, "");
+ m_Layer->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::FullyConnectedLayer* m_Layer;
+};
+
+// Tag for giving LayerType entries a unique strong type each.
+template<armnn::LayerType>
+struct Tag{};
+
+#define DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, descType) \
+template<armnn::DataType DataType> \
+struct LayerTypePolicy<armnn::LayerType::name, DataType> \
+{ \
+ using Type = armnn::name##Layer; \
+ using Desc = descType; \
+ using QueueDesc = armnn::name##QueueDescriptor; \
+ constexpr static const char* NameStr = #name; \
+ \
+ static std::unique_ptr<armnn::IWorkload> MakeDummyWorkload(armnn::IWorkloadFactory *factory, \
+ unsigned int nIn, unsigned int nOut) \
+ { \
+ QueueDesc desc; \
+ armnn::WorkloadInfo info = MakeDummyWorkloadInfo<DataType>(nIn, nOut); \
+ return factory->Create##name(desc, info); \
+ } \
+};
+
+// Define a layer policy specialization for use with the IsLayerSupported tests.
+// Use this version for layers whose constructor takes 1 parameter(name).
+#define DECLARE_LAYER_POLICY_1_PARAM(name) DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, void)
+
+// Define a layer policy specialization for use with the IsLayerSupported tests.
+// Use this version for layers whose constructor takes 2 parameters(descriptor and name).
+#define DECLARE_LAYER_POLICY_2_PARAM(name) DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, armnn::name##Descriptor)
+
+// Layer policy template.
+template<armnn::LayerType Type, armnn::DataType DataType>
+struct LayerTypePolicy;
+
+// Every entry in the armnn::LayerType enum must be accounted for below.
+DECLARE_LAYER_POLICY_2_PARAM(Activation)
+
+DECLARE_LAYER_POLICY_1_PARAM(Addition)
+
+DECLARE_LAYER_POLICY_2_PARAM(BatchNormalization)
+
+DECLARE_LAYER_POLICY_1_PARAM(Constant)
+
+DECLARE_LAYER_POLICY_1_PARAM(ConvertFp16ToFp32)
+
+DECLARE_LAYER_POLICY_1_PARAM(ConvertFp32ToFp16)
+
+DECLARE_LAYER_POLICY_2_PARAM(Convolution2d)
+
+DECLARE_LAYER_POLICY_1_PARAM(MemCopy)
+
+DECLARE_LAYER_POLICY_2_PARAM(DepthwiseConvolution2d)
+
+DECLARE_LAYER_POLICY_2_PARAM(FakeQuantization)
+
+DECLARE_LAYER_POLICY_1_PARAM(Floor)
+
+DECLARE_LAYER_POLICY_2_PARAM(FullyConnected)
+
+DECLARE_LAYER_POLICY_CUSTOM_PARAM(Input, armnn::LayerBindingId)
+
+DECLARE_LAYER_POLICY_1_PARAM(L2Normalization)
+
+DECLARE_LAYER_POLICY_2_PARAM(Lstm)
+
+DECLARE_LAYER_POLICY_2_PARAM(Mean)
+
+DECLARE_LAYER_POLICY_2_PARAM(Merger)
+
+DECLARE_LAYER_POLICY_1_PARAM(Multiplication)
+
+DECLARE_LAYER_POLICY_2_PARAM(Normalization)
+
+DECLARE_LAYER_POLICY_CUSTOM_PARAM(Output, armnn::LayerBindingId)
+
+DECLARE_LAYER_POLICY_2_PARAM(Permute)
+
+DECLARE_LAYER_POLICY_2_PARAM(Pooling2d)
+
+DECLARE_LAYER_POLICY_1_PARAM(Division)
+
+DECLARE_LAYER_POLICY_2_PARAM(ResizeBilinear)
+
+DECLARE_LAYER_POLICY_2_PARAM(Reshape)
+
+DECLARE_LAYER_POLICY_2_PARAM(Softmax)
+
+DECLARE_LAYER_POLICY_2_PARAM(Splitter)
+
+DECLARE_LAYER_POLICY_1_PARAM(Subtraction)
+
+
+// Generic implementation to get the number of input slots for a given layer type;
+template<armnn::LayerType Type>
+unsigned int GetNumInputs(const armnn::Layer& layer)
+{
+ return layer.GetNumInputSlots();
+}
+
+// Generic implementation to get the number of output slots for a given layer type;
+template<armnn::LayerType Type>
+unsigned int GetNumOutputs(const armnn::Layer& layer)
+{
+ return layer.GetNumOutputSlots();
+}
+
+template<>
+unsigned int GetNumInputs<armnn::LayerType::Merger>(const armnn::Layer& layer)
+{
+ boost::ignore_unused(layer);
+ return 2;
+}
+
+// Tests that the IsLayerSupported() function returns the correct value.
+// We determined the correct value by *trying* to create the relevant workload and seeing if it matches what we expect.
+// Returns true if expectations are met, otherwise returns false.
+template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
+bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
+{
+ using LayerPolicy = LayerTypePolicy<Type, DataType>;
+ using LayerType = typename LayerPolicy::Type;
+ using LayerDesc = typename LayerPolicy::Desc;
+ DummyLayer<LayerType, LayerDesc> layer;
+
+ unsigned int numIn = GetNumInputs<Type>(*layer.m_Layer);
+ unsigned int numOut = GetNumOutputs<Type>(*layer.m_Layer);
+
+ // Make another dummy layer just to make IsLayerSupported have valid inputs.
+ DummyLayer<armnn::ConstantLayer, void> previousLayer;
+ // Set output of the previous layer to a dummy tensor.
+ armnn::TensorInfo output = MakeDummyTensorInfo<DataType>();
+ previousLayer.m_Layer->GetOutputSlot(0).SetTensorInfo(output);
+ // Connect all outputs of the previous layer to inputs of tested layer.
+ for (unsigned int i = 0; i < numIn; i++)
+ {
+ armnn::IOutputSlot& previousLayerOutputSlot = previousLayer.m_Layer->GetOutputSlot(0);
+ armnn::IInputSlot& layerInputSlot = layer.m_Layer->GetInputSlot(i);
+ previousLayerOutputSlot.Connect(layerInputSlot);
+ }
+ // Set outputs of tested layer to a dummy tensor.
+ for (unsigned int i = 0; i < numOut; i++)
+ {
+ layer.m_Layer->GetOutputSlot(0).SetTensorInfo(output);
+ }
+
+ std::string layerName = LayerPolicy::NameStr;
+ std::string reasonIfUnsupported;
+ if (FactoryType::IsLayerSupported(*layer.m_Layer, DataType, reasonIfUnsupported))
+ {
+ std::string errorMsg = " layer expected support but found none.";
+ try
+ {
+ bool retVal = LayerPolicy::MakeDummyWorkload(factory, numIn, numOut).get() != nullptr;
+ // hacky way (it has to be replaced): for Lstm, we only support F32 right now
+// BOOST_CHECK_MESSAGE(retVal, layerName << errorMsg);
+ return retVal;
+ }
+ catch(const armnn::InvalidArgumentException& e)
+ {
+ boost::ignore_unused(e);
+ // This is ok since we throw InvalidArgumentException when creating the dummy workload.
+ return true;
+ }
+ catch(const std::exception& e)
+ {
+ errorMsg = e.what();
+ BOOST_TEST_ERROR(layerName << ": " << errorMsg);
+ return false;
+ }
+ catch(...)
+ {
+ errorMsg = "Unexpected error while testing support for ";
+ BOOST_TEST_ERROR(errorMsg << layerName);
+ return false;
+ }
+ }
+ else
+ {
+ std::string errorMsg = "layer expected no support (giving reason: " + reasonIfUnsupported + ") but found some.";
+ try
+ {
+ bool retVal = LayerPolicy::MakeDummyWorkload(factory, numIn, numOut).get() == nullptr;
+ BOOST_CHECK_MESSAGE(retVal, layerName << errorMsg);
+ return retVal;
+ }
+ // These two exceptions are ok: For workloads that are partially supported, attempting to instantiate them
+ // using parameters that make IsLayerSupported() return false should throw an
+ // InvalidArgumentException or UnimplementedException.
+ catch(const armnn::InvalidArgumentException& e)
+ {
+ boost::ignore_unused(e);
+ return true;
+ }
+ catch(const armnn::UnimplementedException& e)
+ {
+ boost::ignore_unused(e);
+ return true;
+ }
+ catch(const std::exception& e)
+ {
+ errorMsg = e.what();
+ BOOST_TEST_ERROR(layerName << ": " << errorMsg);
+ return false;
+ }
+ catch(...)
+ {
+ errorMsg = "Unexpected error while testing support for ";
+ BOOST_TEST_ERROR(errorMsg << layerName);
+ return false;
+ }
+ }
+}
+
+// Helper function to compute the next type in the LayerType enum.
+constexpr armnn::LayerType NextType(armnn::LayerType type)
+{
+ return static_cast<armnn::LayerType>(static_cast<int>(type)+1);
+}
+
+// Termination function for determining the end of the LayerType enumeration.
+template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
+bool IsLayerSupportedTestsImpl(FactoryType *factory, Tag<armnn::LayerType::LastLayer>)
+{
+ return IsLayerSupportedTest<FactoryType, DataType, Type>(factory, Tag<Type>());
+};
+
+// Recursive function to test and enter in the LayerType enum and then iterate on the next entry.
+template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
+bool IsLayerSupportedTestsImpl(FactoryType *factory, Tag<Type>)
+{
+ bool v = IsLayerSupportedTest<FactoryType, DataType, Type>(factory, Tag<Type>());
+
+ return v &&
+ IsLayerSupportedTestsImpl<FactoryType, DataType, NextType(Type)>
+ (factory, Tag<NextType(Type)>());
+};
+
+// Helper function to pass through to the test framework.
+template<typename FactoryType, armnn::DataType DataType>
+bool IsLayerSupportedTests(FactoryType *factory)
+{
+ return IsLayerSupportedTestsImpl<FactoryType, DataType>(factory, Tag<armnn::LayerType::FirstLayer>());
+};
+
+template<armnn::LayerType Type>
+bool TestLayerTypeMatches()
+{
+ using LayerPolicy = LayerTypePolicy<Type, armnn::DataType::Float32>;
+ using LayerType = typename LayerPolicy::Type;
+ using LayerDesc = typename LayerPolicy::Desc;
+ DummyLayer<LayerType, LayerDesc> layer;
+
+ std::stringstream ss;
+ ss << LayerPolicy::NameStr << " layer type mismatches expected layer type value.";
+ bool v = Type == layer.m_Layer->GetType();
+ BOOST_CHECK_MESSAGE(v, ss.str());
+ return v;
+};
+
+template<armnn::LayerType Type>
+bool LayerTypeMatchesTestImpl(Tag<armnn::LayerType::LastLayer>)
+{
+ return TestLayerTypeMatches<Type>();
+};
+
+template<armnn::LayerType Type>
+bool LayerTypeMatchesTestImpl(Tag<Type>)
+{
+ return TestLayerTypeMatches<Type>() &&
+ LayerTypeMatchesTestImpl<NextType(Type)>(Tag<NextType(Type)>());
+};
+
+bool LayerTypeMatchesTest()
+{
+ return LayerTypeMatchesTestImpl<armnn::LayerType::FirstLayer>(Tag<armnn::LayerType::FirstLayer>());
+};
+
+template<typename FactoryType, typename LayerType, armnn::DataType InputDataType , armnn::DataType OutputDataType>
+bool IsConvertLayerSupportedTests(std::string& reasonIfUnsupported)
+{
+ armnn::Graph graph;
+ LayerType* const layer = graph.AddLayer<LayerType>("LayerName");
+
+ armnn::Layer* const input = graph.AddLayer<armnn::InputLayer>(0, "input");
+ armnn::Layer* const output = graph.AddLayer<armnn::OutputLayer>(0, "output");
+
+ armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, InputDataType);
+ armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, OutputDataType);
+
+ input->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ input->GetOutputHandler(0).SetTensorInfo(inputTensorInfo);
+ layer->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+ layer->GetOutputHandler(0).SetTensorInfo(outputTensorInfo);
+
+ bool result = FactoryType::IsLayerSupported(*layer, InputDataType, reasonIfUnsupported);
+
+ return result;
+};
+
+} //namespace
diff --git a/src/backends/test/LayerReleaseConstantDataTest.cpp b/src/backends/test/LayerReleaseConstantDataTest.cpp
new file mode 100644
index 0000000000..7566c72352
--- /dev/null
+++ b/src/backends/test/LayerReleaseConstantDataTest.cpp
@@ -0,0 +1,212 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <boost/test/unit_test.hpp>
+#include <boost/cast.hpp>
+
+#include "backends/WorkloadData.hpp"
+#include "Graph.hpp"
+
+#include <utility>
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/ClWorkloadFactory.hpp"
+
+using namespace armnn;
+using namespace std;
+
+// connects two layers
+void Connect(Layer* from, Layer* to, const TensorInfo& tensorInfo, unsigned int fromIndex = 0, unsigned int toIndex = 0)
+{
+ from->GetOutputSlot(fromIndex).Connect(to->GetInputSlot(toIndex));
+ from->GetOutputHandler(fromIndex).SetTensorInfo(tensorInfo);
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////////
+// The following test are created specifically to test ReleaseConstantData() method in the Layer
+// They build very simple graphs including the layer will be checked.
+// Checks weights and biases before the method called and after.
+/////////////////////////////////////////////////////////////////////////////////////////////
+
+BOOST_AUTO_TEST_SUITE(LayerReleaseConstantDataTest)
+
+BOOST_AUTO_TEST_CASE(ReleaseBatchNormalizationLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ BatchNormalizationDescriptor layerDesc;
+ layerDesc.m_Eps = 0.05f;
+ BatchNormalizationLayer* const layer = graph.AddLayer<BatchNormalizationLayer>(layerDesc, "layer");
+
+ armnn::TensorInfo weightInfo({3}, armnn::DataType::Float32);
+ layer->m_Mean = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Variance = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Beta = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Gamma = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Mean->Allocate();
+ layer->m_Variance->Allocate();
+ layer->m_Beta->Allocate();
+ layer->m_Gamma->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ armnn::TensorInfo tensorInfo({2, 3, 1, 1}, armnn::DataType::Float32);
+ Connect(input, layer, tensorInfo);
+ Connect(layer, output, tensorInfo);
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Mean != nullptr);
+ BOOST_CHECK(layer->m_Variance != nullptr);
+ BOOST_CHECK(layer->m_Beta != nullptr);
+ BOOST_CHECK(layer->m_Gamma != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Mean == nullptr);
+ BOOST_CHECK(layer->m_Variance == nullptr);
+ BOOST_CHECK(layer->m_Beta == nullptr);
+ BOOST_CHECK(layer->m_Gamma == nullptr);
+
+ }
+
+
+ BOOST_AUTO_TEST_CASE(ReleaseConvolution2dLayerConstantDataTest)
+ {
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ Convolution2dDescriptor layerDesc;
+ layerDesc.m_PadLeft = 3;
+ layerDesc.m_PadRight = 3;
+ layerDesc.m_PadTop = 1;
+ layerDesc.m_PadBottom = 1;
+ layerDesc.m_StrideX = 2;
+ layerDesc.m_StrideY = 4;
+ layerDesc.m_BiasEnabled = true;
+
+ Convolution2dLayer* const layer = graph.AddLayer<Convolution2dLayer>(layerDesc, "layer");
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({2, 3, 5, 3},
+ armnn::DataType::Float32));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>
+ (TensorInfo({2}, GetBiasDataType(armnn::DataType::Float32)));
+
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({2, 3, 8, 16}, armnn::DataType::Float32));
+ Connect(layer, output, TensorInfo({2, 2, 2, 10}, armnn::DataType::Float32));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_CASE(ReleaseDepthwiseConvolution2dLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ DepthwiseConvolution2dDescriptor layerDesc;
+ layerDesc.m_PadLeft = 3;
+ layerDesc.m_PadRight = 3;
+ layerDesc.m_PadTop = 1;
+ layerDesc.m_PadBottom = 1;
+ layerDesc.m_StrideX = 2;
+ layerDesc.m_StrideY = 4;
+ layerDesc.m_BiasEnabled = true;
+
+ DepthwiseConvolution2dLayer* const layer = graph.AddLayer<DepthwiseConvolution2dLayer>(layerDesc, "layer");
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({3, 3, 5, 3}, DataType::Float32));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({9}, DataType::Float32));
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({2, 3, 8, 16}, armnn::DataType::Float32));
+ Connect(layer, output, TensorInfo({2, 9, 2, 10}, armnn::DataType::Float32));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_CASE(ReleaseFullyConnectedLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ FullyConnectedDescriptor layerDesc;
+ layerDesc.m_BiasEnabled = true;
+ layerDesc.m_TransposeWeightMatrix = true;
+
+ FullyConnectedLayer* const layer = graph.AddLayer<FullyConnectedLayer>(layerDesc, "layer");
+
+ float inputsQScale = 1.0f;
+ float outputQScale = 2.0f;
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({7, 20},
+ DataType::QuantisedAsymm8, inputsQScale, 0));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({7},
+ GetBiasDataType(DataType::QuantisedAsymm8), inputsQScale));
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({3, 1, 4, 5}, DataType::QuantisedAsymm8, inputsQScale));
+ Connect(layer, output, TensorInfo({3, 7}, DataType::QuantisedAsymm8, outputQScale));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
+
diff --git a/src/backends/test/LayerTests.cpp b/src/backends/test/LayerTests.cpp
new file mode 100644
index 0000000000..4dcc36fdb2
--- /dev/null
+++ b/src/backends/test/LayerTests.cpp
@@ -0,0 +1,4750 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include "LayerTests.hpp"
+
+#include "test/TensorHelpers.hpp"
+#include "TensorCopyUtils.hpp"
+#include "Permute.hpp"
+
+#include <boost/test/unit_test.hpp>
+#include <boost/assert.hpp>
+
+#include "armnn/LayerSupport.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+#ifdef ARMCOMPUTECL_ENABLED
+#include "backends/ClTensorHandle.hpp"
+#include "backends/ArmComputeTensorUtils.hpp"
+#endif
+
+#include <algorithm>
+#include <boost/cast.hpp>
+
+#include "WorkloadTestUtils.hpp"
+#include "Conv2dTestImpl.hpp"
+#include "BatchNormTestImpl.hpp"
+#include "ActivationTestImpl.hpp"
+#include "Pooling2dTestImpl.hpp"
+#include "ReshapeTestImpl.hpp"
+#include "FullyConnectedTestImpl.hpp"
+#include "SplitterTestImpl.hpp"
+#include "SoftmaxTestImpl.hpp"
+#include "NormTestImpl.hpp"
+#include "PermuteTestImpl.hpp"
+#include "LstmTestImpl.hpp"
+#include "ConvertFp16ToFp32TestImpl.hpp"
+#include "ConvertFp32ToFp16TestImpl.hpp"
+
+// 3-channel 16x8 image used as common input data for a number of Conv2d tests.
+static std::vector<float> ConvInput3x8x16({
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
+});
+
+// 2-channel bias used by a number of Conv2d tests.
+static std::vector<float> Bias2({0, 2});
+
+// Helper function that returns either Bias2 or an empty vector depending on whether bias is enabled.
+template<typename T>
+boost::multi_array<T, 1> GetBias2(bool biasEnabled, float qScale, int32_t qOffset)
+{
+ if(biasEnabled)
+ {
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(Bias2.size())}, armnn::GetDataType<T>());
+ boost::multi_array<T, 1> bias = MakeTensor<T, 1>(biasDesc, QuantizedVector<T>(qScale, qOffset, Bias2));
+ return bias;
+ }
+ else
+ {
+ return boost::multi_array<T, 1>();
+ }
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2d3x5TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ // Use common single-batch 3-channel 16x8 image.
+ armnn::TensorInfo inputDesc({1, 3, 8, 16}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, QuantizedVector<T>(qScale, qOffset, ConvInput3x8x16));
+
+ // Use a 2-element batch with 3-channel 3x5 kernels.
+ armnn::TensorInfo kernelDesc({2, 3, 5, 3}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1, 1, 1,
+ 1, -1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0
+ })));
+
+ // Expected output is 2 batch elements of a 1-channel 14x4 image.
+ armnn::TensorInfo outputDesc({1, 2, 4, 14}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24,
+ -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25,
+ -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f,
+ -23.5f, -23.5f, -23.5f,
+ -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f,
+ -23.5f, -23.5f, -23.5f,
+
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2d3x3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ // Use a 3x3 kernel, which exercises ArmCompute's direct convolution path.
+
+ // Use common single-batch 3-channel 16x8 image.
+ armnn::TensorInfo inputDesc({1, 3, 8, 16}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, QuantizedVector<T>(qScale, qOffset, ConvInput3x8x16));
+
+ // Use a 2-element batch of 3-channel 3x3 kernels.
+ armnn::TensorInfo kernelDesc({2, 3, 3, 3}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1, 1, 1,
+ 1, -1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0
+ })));
+
+ // Expected output is 1 batch of a 2-channel 14x6 image.
+ armnn::TensorInfo outputDesc({1, 2, 6, 14}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15,
+ -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset);
+}
+
+LayerTestResult<float, 4> SimpleConvolution2d3x5Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return SimpleConvolution2d3x5TestCommon<float>(workloadFactory, 0.f, 0, biasEnabled);
+}
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x5Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return SimpleConvolution2d3x5TestCommon<uint8_t>(workloadFactory, 0.5f, 50, biasEnabled);
+}
+
+LayerTestResult<float, 4> SimpleConvolution2d3x3Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return SimpleConvolution2d3x3TestCommon<float>(workloadFactory, 0.f, 0, biasEnabled);
+}
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x3Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return SimpleConvolution2d3x3TestCommon<uint8_t>(workloadFactory, 0.5f, 50, biasEnabled);
+}
+
+template<typename T>
+LayerTestResult<T, 4> Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTestCommon(
+ armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ // Use a single-batch 1-channel 3x3 image as input.
+ armnn::TensorInfo inputDesc({1, 1, 3, 3}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 11,21,31,
+ 12,22,32,
+ 13,23,33
+ })));
+
+ // Use 1 batch of a 1-channel 2x2 kernel.
+ armnn::TensorInfo kernelDesc({1, 1, 2, 2}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -11,-21,
+ -12,-22,
+ })));
+
+// Expected output is 1 batch of a 1-channel 6x8 image.
+// Manually calculated like this:
+//[-11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ..]
+//[-11*0 -21*0 -12*0 -22*11 ; -11*0 -21*0 -12*11 -22*21 ; -11*0 -21*0 -12*21 -22*31 ; -11*0 -21*0 -12*31 -22*0 ..]
+//[-11*0 -21*11 -12*0 -22*12 ; -11*11 -21*21 -12*12 -22*22 ; -11*21 -21*31 -12*22 -22*32 ; -11*31 -21*0 -12*32 -22*0 ..]
+//[-11*0 -21*12 -12*0 -22*13 ; -11*12 -21*22 -12*13 -22*23 ; -11*22 -21*32 -12*23 -22*33 ; -11*32 -21*0 -12*33 -22*0 ..]
+//[-11*0 -21*13 -12*0 -22*0 ; -11*13 -21*23 -12*0 -22*0 ; -11*23 -21*33 -12*0 -22*0 ; -11*33 -21*0 -12*0 -22*0 ..]
+//[-11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ..]
+//[..... ..... ..... ..... ; ..... ..... ..... ..... ; ..... ..... ..... ..... ; ..... ..... ..... ..... ..]
+ armnn::TensorInfo outputDesc({1, 1, 8, 6}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 0, 0, 0, 0, 0, 0,
+ -242, -594, -934, -372, 0, 0,
+ -495, -1190, -1850, -725, 0, 0,
+ -538, -1256, -1916, -748, 0, 0,
+ -273, -626, -946, -363, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(false, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ 1, // Padding left.
+ 2, // Padding top.
+ 3, // Padding right.
+ 4); // Padding bottom.
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2dAsymmetricPaddingTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ // Use a single-batch 1-channel 5x5 image as input.
+ armnn::TensorInfo inputDesc({ 1, 1, 5, 5 }, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 11,21,31,41,51,
+ 12,22,32,42,52,
+ 13,23,33,43,53,
+ 14,24,34,44,54,
+ 15,25,35,45,55,
+ })));
+
+ // Use 1 batch of a 1-channel 4x4 kernel.
+ armnn::TensorInfo kernelDesc({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -11,-21,-31,-41,
+ -12,-22,-32,-42,
+ -13,-23,-33,-43,
+ -14,-24,-34,-44,
+ })));
+
+ // Expected output is 1 batch of a 1-channel 5x5 image.
+ armnn::TensorInfo outputDesc({ 1, 1, 5, 5 }, armnn::GetDataType<T>());
+ std::vector<T> myVec(outputDesc.GetNumElements(), 0);
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -7140, -10580, -13940, -9300, -5230,
+ -9590, -14120, -18520, -12290, -6860,
+ -9980, -14560, -18960, -12560, -7000,
+ -7518, -10904, -14144, -9318, -5152,
+ -5032, -7256, -9376, -6142, -3368,
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(false, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2); // Padding bottom.
+}
+
+template<typename T>
+LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ // Use a single-batch 2-channel 5x5 image as input.
+ armnn::TensorInfo inputTensorInfo({ 1, 2, 5, 5 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24,
+
+ 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34,
+ 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44,
+ 45, 46, 47, 48, 49
+ })));
+
+ // Use a depth multiplier of 1 on a 2-channel 4x4 kernel.
+ armnn::TensorInfo kernelTensorInfo({ 1, 2, 4, 4 }, armnn::GetDataType<T>());
+ auto kernel = MakeTensor<T, 4>(kernelTensorInfo, std::vector<T>(
+ QuantizedVector<T>(kernelTensorInfo.GetQuantizationScale(), kernelTensorInfo.GetQuantizationOffset(), {
+ 32, 31, 30, 29,
+ 28, 27, 26, 25,
+ 24, 23, 22, 21,
+ 20, 19, 18, 17,
+
+ 16, 15, 14, 13,
+ 12, 11, 10, 9,
+ 8, 7, 6, 5,
+ 4, 3, 2, 1
+ })));
+
+ // Expected output is 1 batch of a 2-channel 5x5 image.
+ // Calculated using the python tensorflow library with strideX=1, strideY=1.
+ armnn::TensorInfo outputTensorInfo({ 1, 2, 5, 5 }, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
+ 1062, 1580, 1850, 1530, 1117,
+ 2140, 3108, 3500, 2842, 2042,
+ 3580, 5068, 5460, 4342, 3062,
+ 3618, 5072, 5390, 4248, 2971,
+ 3074, 4282, 4510, 3533, 2457,
+ 1550, 2284, 2362, 1955, 1428,
+ 2910, 4206, 4342, 3528, 2536,
+ 3390, 4886, 5022, 4068, 2916,
+ 3566, 5056, 5182, 4133, 2922,
+ 3100, 4352, 4452, 3517, 2465
+ })));
+
+ return DepthwiseConvolution2dAsymmetricTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2, // Padding bottom.
+ 1, // strideX
+ 1); // strideY
+}
+
+LayerTestResult<float, 4>
+Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> Convolution2dAsymmetricPaddingTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleConvolution2dAsymmetricPaddingTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return DepthwiseConvolution2dTestImpl<float, float>(workloadFactory, 0.0f, 0, biasEnabled);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dDepthMul1Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return DepthwiseConvolution2dDepthMul1TestImpl<float, float>(workloadFactory, 0.0f, 0, biasEnabled);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dAsymmetricTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return DepthwiseConvolution2dAsymmetricTestCommon<float>(workloadFactory, 0.0f, 0, biasEnabled);
+}
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return DepthwiseConvolution2dTestImpl<uint8_t, int32_t>(workloadFactory, 0.5f, 50, biasEnabled);
+}
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dDepthMul1Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return DepthwiseConvolution2dDepthMul1TestImpl<uint8_t, int32_t>(workloadFactory, 0.5f, 50, biasEnabled);
+}
+
+LayerTestResult<float, 4> Convolution1dTest(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled)
+{
+ return Convolution1dTestImpl<float>(workloadFactory, 0.0f, 0, biasEnabled);
+}
+
+LayerTestResult<uint8_t, 4> Convolution1dUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled)
+{
+ return Convolution1dTestImpl<uint8_t>(workloadFactory, 0.1f, 128, biasEnabled);
+}
+
+LayerTestResult<float,4> CompareConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ return CompareConvolution2dTestImpl<float>(workloadFactory, refWorkloadFactory);
+}
+
+template<typename T>
+LayerTestResult<T,4> CompareDepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ return CompareDepthwiseConvolution2dTestImpl<T>(workloadFactory, refWorkloadFactory);
+}
+
+template LayerTestResult<float, 4> CompareDepthwiseConvolution2dTest<float>(
+ armnn::IWorkloadFactory&, armnn::IWorkloadFactory&);
+template LayerTestResult<uint8_t, 4> CompareDepthwiseConvolution2dTest<uint8_t>(
+ armnn::IWorkloadFactory&, armnn::IWorkloadFactory&);
+
+LayerTestResult<float,4> SimpleNormalizationAcrossTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ auto normChannel = armnn::NormalizationAlgorithmChannel::Across;
+ return SimpleNormalizationTestImpl(workloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,4> SimpleNormalizationWithinTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ auto normChannel = armnn::NormalizationAlgorithmChannel::Within;
+ return SimpleNormalizationTestImpl(workloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,2> SimpleSoftmaxTest(armnn::IWorkloadFactory& workloadFactory, float beta)
+{
+ return SimpleSoftmaxTestImpl<float>(workloadFactory, beta);
+}
+
+LayerTestResult<uint8_t,2> SimpleSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory, float beta)
+{
+ return SimpleSoftmaxTestImpl<uint8_t>(workloadFactory, beta);
+}
+
+LayerTestResult<float,4> CompareNormalizationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ return CompareNormalizationTestImpl(workloadFactory, refWorkloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,2> CompareSoftmaxTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta)
+{
+ return CompareSoftmaxTestImpl<float>(workloadFactory, refWorkloadFactory, beta);
+}
+
+LayerTestResult<uint8_t,2> CompareSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta)
+{
+ return CompareSoftmaxTestImpl<uint8_t>(workloadFactory, refWorkloadFactory, beta);
+}
+
+std::vector<LayerTestResult<float,3>> SplitterTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SplitterTestCommon<float>(workloadFactory);
+}
+
+std::vector<LayerTestResult<uint8_t,3>> SplitterUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SplitterTestCommon<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<float, 3> CopyViaSplitterTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return CopyViaSplitterTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 3> CopyViaSplitterUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return CopyViaSplitterTestImpl<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({ 2, 2 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ { 2., 3., 3., 4. }));
+
+ armnn::TensorInfo outputDesc({ 2, 4 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {-0.36444446f, -0.00352185f, 0.12886585f, -0.05163646f,
+ -0.42734814f, -0.00478661f, 0.13455015f, -0.03560682f}));
+ return LstmLayerWithCifgWithPeepholeNoProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({ 2, 5 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ {0.787926f, 0.151646f, 0.071352f, 0.118426f, 0.458058f,
+ 0.295743f, 0.544053f, 0.690064f, 0.858138f, 0.497181f}));
+
+ armnn::TensorInfo outputDesc({ 2, 16 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {-0.00396806f, 0.029352f, -0.00279226f, 0.0159977f, -0.00835576f,
+ -0.0211779f, 0.0283512f, -0.0114597f, 0.00907307f, -0.0244004f,
+ -0.0152191f, -0.0259063f, 0.00914318f, 0.00415118f, 0.017147f,
+ 0.0134203f, -0.013869f, 0.0287268f, -0.00334693f, 0.00733398f, -0.0287926f,
+ -0.0186926f, 0.0193662f, -0.0115437f, 0.00422612f, -0.0345232f,
+ 0.00223253f, -0.00957321f, 0.0210624f, 0.013331f, 0.0150954f,
+ 0.02168f}));
+ return LstmLayerFloat32NoCifgWithPeepholeWithProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({2, 2}, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ {2., 3., 3., 4.}));
+
+
+ armnn::TensorInfo outputDesc({2, 4}, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {{-0.02973187f, 0.1229473f, 0.20885126f, -0.15358765f,
+ -0.0185422f, 0.11281417f, 0.24466537f, -0.1826292f}}));
+
+ return LstmNoCifgNoPeepholeNoProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float,3> MergerTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int outputWidth = 3;
+ unsigned int outputHeight = 6;
+ unsigned int outputChannels = 3;
+
+ unsigned int inputWidth1 = 3;
+ unsigned int inputHeight1 = 6;
+ unsigned int inputChannels1 = 2;
+
+ unsigned int inputWidth2 = 3;
+ unsigned int inputHeight2 = 6;
+ unsigned int inputChannels2 = 1;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo outputTensorInfo({ outputChannels, outputHeight, outputWidth }, armnn::DataType::Float32);
+ armnn::TensorInfo inputTensorInfo1({ inputChannels1, inputHeight1, inputWidth1 }, armnn::DataType::Float32);
+ armnn::TensorInfo inputTensorInfo2({ inputChannels2, inputHeight2, inputWidth2 }, armnn::DataType::Float32);
+
+ LayerTestResult<float,3> ret(outputTensorInfo);
+
+ ret.outputExpected = MakeTensor<float, 3>(outputTensorInfo, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 4.0f, 5.0f, 6.0f,
+ 7.0f, 8.0f, 9.0f,
+ 10.0f, 11.0f, 12.0f,
+ 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f,
+
+ 19.0f, 20.0f, 21.0f,
+ 22.0f, 23.0f, 24.0f,
+ 25.0f, 26.0f, 27.0f,
+ 28.0f, 29.0f, 30.0f,
+ 31.0f, 32.0f, 33.0f,
+ 34.0f, 35.0f, 36.0f,
+
+ 37.0f, 38.0f, 39.0f,
+ 40.0f, 41.0f, 42.0f,
+ 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f,
+ 49.0f, 50.0f, 51.0f,
+ 52.0f, 53.0f, 54.0f,
+ })
+ );
+
+ auto input1 = MakeTensor<float, 3>(inputTensorInfo1, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 4.0f, 5.0f, 6.0f,
+ 7.0f, 8.0f, 9.0f,
+ 10.0f, 11.0f, 12.0f,
+ 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f,
+
+ 19.0f, 20.0f, 21.0f,
+ 22.0f, 23.0f, 24.0f,
+ 25.0f, 26.0f, 27.0f,
+ 28.0f, 29.0f, 30.0f,
+ 31.0f, 32.0f, 33.0f,
+ 34.0f, 35.0f, 36.0f,
+ })
+ );
+
+ auto input2 = MakeTensor<float, 3>(inputTensorInfo2, std::vector<float>(
+ {
+ 37.0f, 38.0f, 39.0f,
+ 40.0f, 41.0f, 42.0f,
+ 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f,
+ 49.0f, 50.0f, 51.0f,
+ 52.0f, 53.0f, 54.0f,
+ })
+ );
+
+ std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //Extent of the window is defined by size of input[0].
+ armnn::MergerQueueDescriptor::ViewOrigin window1(wOrigin1);
+
+ std::vector<unsigned int> wOrigin2 = {2, 0, 0}; //Extent of the window is defined by size of input[1].
+ armnn::MergerQueueDescriptor::ViewOrigin window2(wOrigin2);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo1.GetShape(), wOrigin1.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo1);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo2.GetShape(), wOrigin2.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo2);
+
+ armnn::MergerQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_ViewOrigins.push_back(window1);
+ data.m_ViewOrigins.push_back(window2);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMerger(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float,4> AdditionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int batchSize = 2;
+ unsigned int channels = 2;
+ unsigned int height = 2;
+ unsigned int width = 3;
+
+ armnn::TensorInfo inputTensorInfo1, inputTensorInfo2;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, channels, height, width};
+
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ inputTensorInfo2 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+
+ auto input1 = MakeTensor<float, 4>(inputTensorInfo1, std::vector<float>(
+ {
+ 0.0f, 2.0f, 1.0f,
+ 0.2f, 1.0f, 2.0f,
+
+ 1.0f, 2.0f, 1.0f,
+ 0.2f, 1.0f, 2.0f,
+
+ 0.0f, 2.0f, 1.0f,
+ 4.2f, 1.0f, 2.0f,
+
+ 0.0f, 0.0f, 1.0f,
+ 0.2f, 1.0f, 2.0f,
+ }));
+
+ auto input2 = MakeTensor<float, 4>(inputTensorInfo2, std::vector<float>(
+ {
+ 1.0f, 2.0f, 1.0f,
+ 0.0f, 1.0f, 2.0f,
+
+ 1.0f, 2.0f, -2.0f,
+ 0.2f, 1.0f, 2.0f,
+
+ 0.0f, 2.0f, 1.0f,
+ 4.2f, 0.0f, -3.0f,
+
+ 0.0f, 0.0f, 1.0f,
+ 0.7f, 1.0f, 5.0f,
+ }));
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, std::vector<float>(
+ {
+ 1.0f, 4.0f, 2.0f,
+ 0.2f, 2.0f, 4.0f,
+
+ 2.0f, 4.0f, -1.0f,
+ 0.4f, 2.0f, 4.0f,
+
+ 0.0f, 4.0f, 2.0f,
+ 8.4f, 1.0f, -1.0f,
+
+ 0.0f, 0.0f, 2.0f,
+ 0.9f, 2.0f, 7.0f,
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template <typename T>
+LayerTestResult<T, 4> AdditionBroadcastTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo1 = armnn::TensorInfo({1, 3, 2, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo inputTensorInfo2 = armnn::TensorInfo({1, 1, 2, 3}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo = armnn::TensorInfo({1, 3, 2, 3}, armnn::GetDataType<T>());
+
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo1.SetQuantizationScale(qScale);
+ inputTensorInfo1.SetQuantizationOffset(qOffset);
+ inputTensorInfo2.SetQuantizationScale(qScale);
+ inputTensorInfo2.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.0f,
+ 1.0f,
+
+ 2.0f,
+ 3.0f,
+
+ 4.0f,
+ 5.0f,
+ }));
+
+ auto input2 = MakeTensor<T, 4>(inputTensorInfo2, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f, 1.5f, 2.5f,
+ 3.5f, 4.5f, 5.5f,
+ }));
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f, 1.5f, 2.5f,
+ 4.5f, 5.5f, 6.5f,
+
+ 2.5f, 3.5f, 4.5f,
+ 6.5f, 7.5f, 8.5f,
+
+ 4.5f, 5.5f, 6.5f,
+ 8.5f, 9.5f, 10.5f,
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template <typename T>
+LayerTestResult<T, 4> AdditionBroadcast1ElementTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo1 = armnn::TensorInfo({1, 3, 2, 3}, armnn::GetDataType<T>());
+ armnn::TensorInfo inputTensorInfo2 = armnn::TensorInfo({1, 1, 1, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo = armnn::TensorInfo({1, 3, 2, 3}, armnn::GetDataType<T>());
+
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo1.SetQuantizationScale(qScale);
+ inputTensorInfo1.SetQuantizationOffset(qOffset);
+ inputTensorInfo2.SetQuantizationScale(qScale);
+ inputTensorInfo2.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.0f, 1.0f, 2.0f,
+ 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f,
+ 9.0f, 10.0f, 11.0f,
+ 12.0f, 13.0f, 14.0f,
+ 15.0f, 16.0f, 17.0f,
+ }));
+
+ auto input2 = MakeTensor<T, 4>(inputTensorInfo2, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f,
+ }));
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f, 1.5f, 2.5f,
+ 3.5f, 4.5f, 5.5f,
+ 6.5f, 7.5f, 8.5f,
+ 9.5f, 10.5f, 11.5f,
+ 12.5f, 13.5f, 14.5f,
+ 15.5f, 16.5f, 17.5f,
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float, 4> AdditionBroadcastTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcastTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> AdditionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcastTestImpl<uint8_t>(workloadFactory, 2.f, 0);
+}
+
+LayerTestResult<float, 4> AdditionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcast1ElementTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> AdditionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcast1ElementTestImpl<uint8_t>(workloadFactory, 0.1333333f, 128);
+}
+
+LayerTestResult<float,4> CompareAdditionTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ unsigned int batchSize = 4;
+ unsigned int channels = 1;
+ unsigned int height = 2;
+ unsigned int width = 3;
+
+ armnn::TensorInfo inputTensorInfo1, inputTensorInfo2;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, channels, height, width};
+
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ inputTensorInfo2 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+ auto input1 = MakeRandomTensor<float, 4>(inputTensorInfo1, 1232);
+ auto input2 = MakeRandomTensor<float, 4>(inputTensorInfo2, 456);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::AdditionQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo1, inputHandle1Ref.get());
+ SetWorkloadInput(refData, refInfo, 1, inputTensorInfo2, inputHandle2Ref.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateAddition(refData, refInfo);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+ inputHandle1Ref->Allocate();
+ inputHandle2Ref->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1Ref.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2Ref.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+namespace {
+template <typename T>
+LayerTestResult<T, 4> DivisionTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<T>& values0,
+ float scale0,
+ int32_t offset0,
+ const unsigned int shape1[4],
+ const std::vector<T> & values1,
+ float scale1,
+ int32_t offset1,
+ const unsigned int outShape[4],
+ const std::vector<T> & outValues,
+ float outScale,
+ int32_t outOffset)
+{
+ auto dataType = (std::is_same<T, uint8_t>::value ?
+ armnn::DataType::QuantisedAsymm8 :
+ armnn::DataType::Float32);
+
+ armnn::TensorInfo inputTensorInfo0(4, shape0, dataType);
+ armnn::TensorInfo inputTensorInfo1(4, shape1, dataType);
+ armnn::TensorInfo outputTensorInfo(4, outShape, dataType);
+
+ inputTensorInfo0.SetQuantizationScale(scale0);
+ inputTensorInfo0.SetQuantizationOffset(offset0);
+
+ inputTensorInfo1.SetQuantizationScale(scale1);
+ inputTensorInfo1.SetQuantizationOffset(offset1);
+
+ outputTensorInfo.SetQuantizationScale(outScale);
+ outputTensorInfo.SetQuantizationOffset(outOffset);
+
+ auto input0 = MakeTensor<T, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outValues);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DivisionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDivision(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+} // anonymous namespace
+
+LayerTestResult<float,4> DivisionByZeroTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<float> input0({
+ 1.f, 1.f, 1.f, 1.f, 0.f, 0.f, 0.f, 0.f,
+ -1.f, -1.f, -1.f, -1.f, 5.f, 5.f, 5.f, 5.f });
+
+ std::vector<float> input1({
+ 0.f, 0.f, -0.f, -0.f, 0.f, 0.f, -0.f, -0.f,
+ 0.f, 0.f, -0.f, -0.f, 5.f, 5.f, 5.f, 5.f });
+
+ std::vector<float> output({
+ INFINITY, INFINITY, -INFINITY, -INFINITY, NAN, NAN, -NAN, -NAN,
+ -INFINITY, -INFINITY, INFINITY, INFINITY, 1, 1, 1, 1 });
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape, input0, 1.0f, 0,
+ shape, input1, 1.0f, 0,
+ shape, output, 1.0f, 0);
+}
+
+LayerTestResult<float,4> DivisionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<float> input0({
+ 2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5 });
+
+ std::vector<float> input1({
+ 1, 1, 1, 1, 2, 2, 2, 2,
+ 4, 4, 4, 4, 4, 4, 4, 4 });
+
+ std::vector<float> output({
+ 2, 2, 2, 2, 1.5, 1.5, 1.5, 1.5,
+ 1, 1, 1, 1, 1.25, 1.25, 1.25, 1.25 });
+
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape, input0, 1.0f, 0,
+ shape, input1, 1.0f, 0,
+ shape, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> DivisionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 2, 2, 2 };
+ std::vector<float> input0({ 2, 4, 6, 8, 10, 12, 14, 16});
+
+ unsigned int shape1[] = { 1, 1, 1, 1 };
+ std::vector<float> input1({ 2 });
+
+ std::vector<float> output({ 1, 2, 3, 4, 5, 6, 7, 8});
+
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> DivisionBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 3, 3, 2 };
+ std::vector<float> input0({
+ 1, 4, 3, 8, 5, 12,
+ 7, 16, 9, 20, 11, 24,
+ 13, 28, 15, 32, 17, 36});
+
+ unsigned int shape1[] = { 1, 1, 1, 2 };
+ std::vector<float> input1({ 1, 2 });
+
+ std::vector<float> output({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18});
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+
+LayerTestResult<uint8_t,4> DivisionUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<uint8_t> input0({2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5 });
+
+ std::vector<uint8_t> input1({1, 1, 1, 1, 2, 2, 2, 2,
+ 4, 4, 4, 4, 4, 4, 4, 4 });
+
+ std::vector<uint8_t> output({8, 8, 8, 8, 6, 6, 6, 6,
+ 4, 4, 4, 4, 5, 5, 5, 5});
+
+
+ return DivisionTestHelper<uint8_t>(workloadFactory,
+ shape, input0, 1.0f, 0,
+ shape, input1, 1.0f, 0,
+ shape, output, 0.25f, 0);
+}
+
+LayerTestResult<uint8_t, 4> DivisionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 2, 2, 2 };
+ std::vector<uint8_t> input0({ 2, 4, 6, 8, 10, 12, 14, 16});
+
+ unsigned int shape1[] = { 1, 1, 1, 1 };
+ std::vector<uint8_t> input1({ 2 });
+
+ std::vector<uint8_t> output({ 1, 2, 3, 4, 5, 6, 7, 8});
+
+ return DivisionTestHelper<uint8_t>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> DivisionBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 3, 3, 2 };
+ std::vector<uint8_t> input0({1, 4, 3, 8, 5, 12,
+ 7, 16, 9, 20, 11, 24,
+ 13, 28, 15, 32, 17, 36});
+
+ unsigned int shape1[] = { 1, 1, 1, 2 };
+ std::vector<uint8_t> input1({ 1, 2 });
+
+ std::vector<uint8_t> output({1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18});
+
+ return DivisionTestHelper<uint8_t>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+namespace {
+LayerTestResult<float,4> MultiplicationTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<float> & values0,
+ const unsigned int shape1[4],
+ const std::vector<float> & values1,
+ const unsigned int outShape[4],
+ const std::vector<float> & outValues)
+{
+ const size_t dimensionCount = 4;
+ armnn::TensorInfo inputTensorInfo0{dimensionCount, shape0, armnn::DataType::Float32};
+ armnn::TensorInfo inputTensorInfo1{dimensionCount, shape1, armnn::DataType::Float32};
+ armnn::TensorInfo outputTensorInfo{dimensionCount, outShape, armnn::DataType::Float32};
+
+ auto input0 = MakeTensor<float, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<float, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MultiplicationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMultiplication(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outValues);
+ return ret;
+}
+} // anonymous namespace
+
+
+LayerTestResult<float,4> MultiplicationTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<float> input0({
+ 1, 1, 1, 1, 2, 2, 2, 2,
+ 3, 3, 3, 3, 4, 4, 4, 4 });
+
+ std::vector<float> input1({
+ 2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5 });
+
+ std::vector<float> output({
+ 2, 2, 2, 2, 6, 6, 6, 6,
+ 12, 12, 12, 12, 20, 20, 20, 20 });
+
+ return MultiplicationTestHelper(workloadFactory,
+ shape,
+ input0,
+ shape,
+ input1,
+ shape,
+ output);
+}
+
+LayerTestResult<float, 4> MultiplicationBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 2, 2, 2 };
+ std::vector<float> input0({ 1, 2, 3, 4, 5, 6, 7, 8});
+
+ unsigned int shape1[] = { 1, 1, 1, 1 };
+ std::vector<float> input1({ 2 });
+
+ std::vector<float> output({ 2, 4, 6, 8, 10, 12, 14, 16});
+
+ return MultiplicationTestHelper(workloadFactory,
+ shape0,
+ input0,
+ shape1,
+ input1,
+ shape0,
+ output);
+}
+
+LayerTestResult<float, 4> MultiplicationBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 3, 3, 2 };
+ std::vector<float> input0({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18});
+
+ unsigned int shape1[] = { 1, 1, 1, 2 };
+ std::vector<float> input1({ 1, 2 });
+
+ std::vector<float> output({
+ 1, 4, 3, 8, 5, 12,
+ 7, 16, 9, 20, 11, 24,
+ 13, 28, 15, 32, 17, 36});
+
+ return MultiplicationTestHelper(workloadFactory,
+ shape0,
+ input0,
+ shape1,
+ input1,
+ shape0,
+ output);
+}
+
+LayerTestResult<float,4> CompareMultiplicationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ const unsigned int width = 16;
+ const unsigned int height = 32;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 5;
+
+ armnn::TensorInfo inputTensorInfo0;
+ armnn::TensorInfo inputTensorInfo1;
+ armnn::TensorInfo outputTensorInfo;
+
+ constexpr unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ inputTensorInfo0 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> comparisonResult(outputTensorInfo);
+
+ auto input0 = MakeRandomTensor<float, 4>(inputTensorInfo0, 803506992);
+ auto input1 = MakeRandomTensor<float, 4>(inputTensorInfo1, 54902257);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MultiplicationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::MultiplicationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo0, inputHandle0Ref.get());
+ SetWorkloadInput(refData, refInfo, 1, inputTensorInfo1, inputHandle1Ref.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMultiplication(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateMultiplication(refData, refInfo);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+ inputHandle0Ref->Allocate();
+ inputHandle1Ref->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle0Ref.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1Ref.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&comparisonResult.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&comparisonResult.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return comparisonResult;
+}
+
+LayerTestResult<float,4> CompareBatchNormTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 3;
+ const unsigned int channels = 5;
+ const unsigned int batchSize = 3;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo tensorInfo;
+
+ constexpr unsigned int shape[] = {batchSize, channels, height, width};
+ constexpr unsigned int tensorShape[] = {channels};
+
+ inputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ tensorInfo = armnn::TensorInfo(1, tensorShape, armnn::DataType::Float32);
+
+ auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 21312);
+
+ auto mean = MakeRandomTensor<float, 1>(tensorInfo, 123);
+ auto variance = MakeRandomTensor<float, 1>(tensorInfo, 234, 0.0f);
+ auto beta = MakeRandomTensor<float, 1>(tensorInfo, 123);
+ auto gamma = MakeRandomTensor<float, 1>(tensorInfo, 345);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::BatchNormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle meanTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle varianceTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle betaTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle gammaTensor(tensorInfo);
+
+ AllocateAndCopyDataToITensorHandle(&meanTensor, &mean[0]);
+ AllocateAndCopyDataToITensorHandle(&varianceTensor, &variance[0]);
+ AllocateAndCopyDataToITensorHandle(&betaTensor, &beta[0]);
+ AllocateAndCopyDataToITensorHandle(&gammaTensor, &gamma[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Mean = &meanTensor;
+ data.m_Variance = &varianceTensor;
+ data.m_Beta = &betaTensor;
+ data.m_Gamma = &gammaTensor;
+ data.m_Parameters.m_Eps = 0.01f;
+
+ armnn::BatchNormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateBatchNormalization(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateBatchNormalization(refData, refInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ inputHandleRef->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+template<typename T>
+void PermuteTensorData(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::PermutationVector& mappings,
+ armnn::TensorInfo & inputTensorInfo,
+ const T * inputData,
+ std::vector<T>& outputData)
+{
+ BOOST_ASSERT_MSG(inputData != nullptr, "inputData must not be null");
+ if (inputData == nullptr)
+ {
+ // Nullptr is an error in the test. By returning without doing the concatenation
+ // I expect the caller to fail the test. It still makes sense to report this as
+ // an assert for Debug builds.
+ return;
+ }
+
+ armnn::TensorInfo outputTensorInfo = armnnUtils::Permuted(inputTensorInfo, mappings);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PermuteQueueDescriptor queueDescriptor;
+ queueDescriptor.m_Parameters = armnn::PermuteDescriptor{mappings};
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(queueDescriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(queueDescriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePermute(queueDescriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), inputData);
+
+ workload->Execute();
+
+ outputData.resize(outputTensorInfo.GetNumElements());
+ CopyDataFromITensorHandle(&outputData[0], outputHandle.get());
+ inputTensorInfo = outputTensorInfo;
+}
+
+armnn::OriginsDescriptor CreateMergerDescriptorForConcatenation(
+ const std::vector<armnn::TensorInfo> & inputTensorInfos,
+ unsigned int concatDim)
+{
+ std::vector<armnn::TensorShape> shapes;
+ shapes.reserve(inputTensorInfos.size());
+ for (const armnn::TensorInfo& it: inputTensorInfos)
+ {
+ shapes.push_back(it.GetShape());
+ }
+
+ return armnn::CreateMergerDescriptorForConcatenation(shapes.begin(),
+ shapes.end(),
+ concatDim);
+}
+
+//
+// Concatenation is only supported for N and C dimensions for NCHW. In case of
+// <4 dimensions we need to make sure that the concat dimensions are at least
+// the 3rd slowest iterating one.
+//
+
+bool NeedPermuteForConcat(
+ const std::vector<armnn::TensorInfo> & inputTensorInfos,
+ unsigned int concatDim)
+{
+ // See note above. Additionally we expect the input shapes to have the
+ // same number of dimensions.
+ unsigned int nDimensions = 0;
+
+ // Determine the number of dimensions as well as sanity check them
+ // agains test implementation issues.
+ for (auto && tensorInfo : inputTensorInfos)
+ {
+ if (!nDimensions)
+ {
+ nDimensions = tensorInfo.GetShape().GetNumDimensions();
+ }
+ else
+ {
+ BOOST_ASSERT_MSG(nDimensions == tensorInfo.GetShape().GetNumDimensions(),
+ "Input shapes must have the same number of dimensions");
+ }
+ }
+
+ return (nDimensions-concatDim) < 3;
+}
+
+armnn::TensorShape ExpandTensorShapeTo3dForPermute(const armnn::TensorShape & inputShape)
+{
+ unsigned int numDims = inputShape.GetNumDimensions();
+ if (numDims >= 3)
+ {
+ // Nothing to do if the inputShape has at least 3 dimensions.
+ return inputShape;
+ }
+
+ std::vector<unsigned int> newDims(size_t(3), 1u);
+ unsigned int expandedBy = 3 - numDims;
+ for (unsigned int i=0; i<numDims; ++i)
+ {
+ newDims[expandedBy+i] = inputShape[i];
+ }
+ return armnn::TensorShape(3u, &newDims[0]);
+}
+
+void Generate3dPermuteVectorForConcat(
+ unsigned int numDimensions,
+ unsigned int & concatDim,
+ std::pair<armnn::PermutationVector, armnn::PermutationVector> & permutations)
+{
+ BOOST_ASSERT_MSG(numDimensions <= 3,
+ "Only dimensions 1,2 and 3 are supported by this helper");
+
+ unsigned int expandedBy = 3 - numDimensions;
+ unsigned int expandedConcatAxis = concatDim + expandedBy;
+
+ if (expandedConcatAxis == 2)
+ {
+ concatDim = 0;
+ armnn::PermutationVector forwardPermutation({1, 2, 0});
+ armnn::PermutationVector reversePermutation({2, 0, 1});
+ permutations = std::make_pair(forwardPermutation, reversePermutation);
+ }
+ else if (expandedConcatAxis == 1)
+ {
+ concatDim = 0;
+ armnn::PermutationVector forwardPermutation({2, 0, 1});
+ armnn::PermutationVector reversePermutation({1, 2, 0});
+ permutations = std::make_pair(forwardPermutation, reversePermutation);
+ }
+ else
+ {
+ BOOST_ASSERT(expandedConcatAxis == 0);
+ concatDim = 0;
+ }
+}
+
+//
+// Permute the input tensors so we can do a supported concatenation.
+// Also treat lower than 3d tensors as 3d by adding dummy 1 dimensions
+// at the front. Finally this function tells what the output shape
+// of the permuted concatenated tensor is going to be.
+//
+template <typename T>
+void PermuteInputsForConcat(
+ armnn::IWorkloadFactory& workloadFactory,
+ std::vector<armnn::TensorInfo> & inputTensorInfos,
+ std::vector<T *> & inputData,
+ std::vector<std::vector<T>> & inputDataStorage,
+ armnn::PermutationVector & permuteVector,
+ unsigned int & concatDim,
+ armnn::TensorInfo & outputTensorInfo)
+{
+ BOOST_ASSERT_MSG(inputTensorInfos.size() > 1,
+ "Expecting more than one tensor to be concatenated here");
+
+ unsigned int numDims = 0;
+ unsigned int nthInput = 0;
+ const armnn::PermutationVector identity({0, 1, 2});
+
+ std::pair<armnn::PermutationVector, armnn::PermutationVector> permutations =
+ std::make_pair(identity, identity);
+
+ inputDataStorage.resize(inputData.size());
+
+ for (auto && tensorInfo : inputTensorInfos)
+ {
+ if (numDims == 0)
+ {
+ numDims = tensorInfo.GetShape().GetNumDimensions();
+ Generate3dPermuteVectorForConcat(numDims, concatDim, permutations);
+ // Store the reverese permutation.
+ permuteVector = permutations.second;
+ BOOST_ASSERT_MSG(!permuteVector.IsEqual(identity),
+ "Test logic error, we don't need permutation, so we shouldn't arrive here");
+ }
+ else
+ {
+ BOOST_ASSERT_MSG(numDims == tensorInfo.GetShape().GetNumDimensions(),
+ "All inputs must have the same number of dimensions");
+ }
+
+ armnn::TensorInfo newTensorInfo = tensorInfo;
+ newTensorInfo.SetShape(ExpandTensorShapeTo3dForPermute(tensorInfo.GetShape()));
+
+ PermuteTensorData<T>(workloadFactory,
+ permutations.first,
+ newTensorInfo,
+ inputData[nthInput],
+ inputDataStorage[nthInput]);
+
+ inputData[nthInput] = inputDataStorage[nthInput].data();
+ inputTensorInfos[nthInput] = newTensorInfo;
+
+ ++nthInput;
+ }
+
+ outputTensorInfo.SetShape(
+ armnnUtils::Permuted(
+ ExpandTensorShapeTo3dForPermute(outputTensorInfo.GetShape()),
+ permutations.first));
+}
+
+
+//
+// This is the pair of PermuteInputsForConcat(...) which permutes back
+// the output of the concatenation so we can check it against an expected
+// output.
+//
+template <typename T>
+void PermuteOutputForConcat(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorInfo & tensorInfo,
+ const armnn::PermutationVector & permuteVector,
+ std::unique_ptr<armnn::ITensorHandle> && inputDataHandle,
+ T * data)
+{
+ BOOST_ASSERT_MSG(data != nullptr, "data must not be null");
+ if (data == nullptr)
+ {
+ // Nullptr is an error in the test. By returning without doing the permutation
+ // I expect the caller to fail the test. It still makes sense to report this as
+ // an assert for Debug builds.
+ return;
+ }
+
+ armnn::TensorInfo resultTensorInfo = tensorInfo;
+ std::vector<T> inputData(tensorInfo.GetNumElements());
+ std::vector<T> outputData;
+
+ CopyDataFromITensorHandle(&inputData[0], inputDataHandle.get());
+
+ PermuteTensorData<T>(workloadFactory,
+ permuteVector,
+ resultTensorInfo,
+ &inputData[0],
+ outputData);
+
+ ::memcpy(data, &outputData[0], sizeof(T)*outputData.size());
+}
+
+template <typename T>
+void Concatenate(armnn::IWorkloadFactory& workloadFactory,
+ std::initializer_list<const armnn::TensorInfo> inputTensorInfosOrig,
+ std::initializer_list<T *> inputsOrig,
+ const armnn::TensorInfo& outputTensorInfoOrig,
+ T * output,
+ unsigned int concatDim)
+{
+ BOOST_ASSERT_MSG(output != nullptr, "output must not be null");
+ if (output == nullptr)
+ {
+ // Nullptr is an error in the test. By returning without doing the permutation
+ // I expect the caller to fail the test. It still makes sense to report this as
+ // an assert for Debug builds.
+ return;
+ }
+
+ armnn::MergerQueueDescriptor queueDescriptor;
+
+ // Saves a copy of the parameters which we might need to change.
+ std::vector<armnn::TensorInfo> inputTensorInfos(inputTensorInfosOrig.begin(), inputTensorInfosOrig.end());
+ std::vector<T *> inputs = inputsOrig;
+ armnn::TensorInfo outputTensorInfo = outputTensorInfoOrig;
+
+ armnn::PermutationVector permuteVector{0, 1, 2};
+
+ // Holds and automatically releases memory for the reshaped input data.
+ std::vector<std::vector<T>> tmpInputDataStorage;
+
+ const size_t inputCount = inputTensorInfos.size();
+
+ bool needPermuteForConcat = NeedPermuteForConcat(inputTensorInfos, concatDim);
+
+ if (needPermuteForConcat)
+ {
+ //
+ // We need to permute the inputs, because concatenation along
+ // the requested axis is not supported.
+ //
+ PermuteInputsForConcat<T>(workloadFactory,
+ inputTensorInfos,
+ inputs,
+ tmpInputDataStorage,
+ permuteVector,
+ concatDim,
+ outputTensorInfo);
+ }
+
+ armnn::OriginsDescriptor viewsDescriptor = CreateMergerDescriptorForConcatenation(inputTensorInfos, concatDim);
+
+ queueDescriptor.m_ViewOrigins.reserve(viewsDescriptor.GetNumViews());
+ for (unsigned int i = 0; i < viewsDescriptor.GetNumViews(); ++i)
+ {
+ queueDescriptor.m_ViewOrigins.emplace_back(std::vector<unsigned int>(viewsDescriptor.GetViewOrigin(i),
+ viewsDescriptor.GetViewOrigin(i) + viewsDescriptor.GetNumDimensions()));
+ }
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::vector<std::unique_ptr<armnn::ITensorHandle>> inputHandles;
+ inputHandles.reserve(inputCount);
+
+ const bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+ for (unsigned int i = 0; i < inputCount; ++i)
+ {
+ const armnn::TensorInfo& inputTensorInfo = inputTensorInfos[i];
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo.GetShape(),
+ queueDescriptor.m_ViewOrigins[i].m_Origin.data())
+ : workloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ inputHandles.emplace_back(std::move(inputHandle));
+ }
+
+ armnn::WorkloadInfo workloadInfo;
+
+ for (unsigned int i = 0; i < inputCount; ++i)
+ {
+ AddInputToWorkload(queueDescriptor, workloadInfo, inputTensorInfos[i], inputHandles[i].get());
+ }
+
+ AddOutputToWorkload(queueDescriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMerger(queueDescriptor, workloadInfo);
+
+ for (auto& inputHandle : inputHandles)
+ {
+ inputHandle->Allocate();
+ }
+
+ outputHandle->Allocate();
+
+ unsigned int nextInputId = 0;
+ for (auto& inputHandle : inputHandles)
+ {
+ CopyDataToITensorHandle(inputHandle.get(), inputs[nextInputId]);
+ ++nextInputId;
+ }
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ if (needPermuteForConcat)
+ {
+ PermuteOutputForConcat<T>(workloadFactory,
+ outputTensorInfo,
+ permuteVector,
+ std::move(outputHandle),
+ output);
+ }
+ else
+ {
+ CopyDataFromITensorHandle(output, outputHandle.get());
+ }
+}
+
+template <typename T>
+LayerTestResult<T, 1> Concatenation1dTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo({ 3 }, armnn::GetDataType<T>());
+
+ auto input0 = MakeTensor<T, 1>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, { 1.0f, 2.0f, 3.0f }));
+ auto input1 = MakeTensor<T, 1>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, { 4.0f, 5.0f, 6.0f }));
+ auto input2 = MakeTensor<T, 1>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, { 7.0f, 8.0f, 9.0f }));
+
+ armnn::TensorInfo outputTensorInfo({ 9 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 1> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { inputTensorInfo, inputTensorInfo, inputTensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 0);
+
+ result.output = MakeTensor<T, 1>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 1>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 1> Concatenation1dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation1dTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorInfo& outputTensorInfo,
+ unsigned int dimension,
+ const float qScale,
+ const int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo({ 2, 3 }, armnn::GetDataType<T>());
+
+ auto input0 = MakeTensor<T, 2>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+ }));
+
+ auto input1 = MakeTensor<T, 2>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 1
+ 13.0f, 14.0f, 15.0f,
+ }));
+
+ auto input2 = MakeTensor<T, 2>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 7.0f, 8.0f, 9.0f,
+
+ // Batch 1
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { inputTensorInfo, inputTensorInfo, inputTensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ dimension);
+
+ result.output = MakeTensor<T, 2>(outputTensorInfo, output);
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim0TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 6, 3 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 2> result = Concatenation2dTestImpl<T>(workloadFactory, outputTensorInfo, 0, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+
+ // Batch 2
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 3
+ 13.0f, 14.0f, 15.0f,
+
+ // Batch 4
+ 7.0f, 8.0f, 9.0f,
+
+ // Batch 5
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim0Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim1TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 2, 9 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 2> result = Concatenation2dTestImpl<T>(workloadFactory, outputTensorInfo, 1, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim0DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 2>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 3, 3 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 2>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 1
+ 13.0f, 14.0f, 15.0f,
+
+ // Batch 0
+ 7.0f, 8.0f, 9.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 1, 3 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 2>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 1
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 6, 3 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 0);
+
+ result.output = MakeTensor<T, 2>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+
+ // Batch 2
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 3
+ 13.0f, 14.0f, 15.0f,
+
+ // Batch 4
+ 7.0f, 8.0f, 9.0f,
+
+ // Batch 5
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim1DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 2>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 2, 5 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 2>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 4.0f, 5.0f, 6.0f, 7.0f, 8.0f,
+
+ // Batch 1
+ 13.0f, 14.0f, 15.0f, 16.0f, 17.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 2, 1 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 2>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 9.0f,
+
+ // Batch 1
+ 18.0f
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 2, 9 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 1);
+
+ result.output = MakeTensor<T, 2>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorInfo& outputTensorInfo,
+ unsigned int dimension,
+ float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+
+ auto input0 = MakeTensor<T, 3>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ auto input1 = MakeTensor<T, 3>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 1, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 1, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 2
+ 29.0f, 30.0f
+ }));
+
+ auto input2 = MakeTensor<T, 3>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 0, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 0, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 1, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 1, Channel 2
+ 35.0f, 36.0f
+ }));
+
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { inputTensorInfo, inputTensorInfo, inputTensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ dimension);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim0TestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 6, 3, 2 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 3> result = Concatenation3dTestImpl<T>(workloadFactory, outputTensorInfo, 0,
+ qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 2, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 2, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 2, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 3, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 3, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 3, Channel 2
+ 29.0f, 30.0f,
+
+ // Batch 4, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 4, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 4, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 5, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 5, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 5, Channel 2
+ 35.0f, 36.0f
+ }));
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim0Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim1TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 2, 9, 2 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 3> result = Concatenation3dTestImpl<T>(workloadFactory, outputTensorInfo, 1, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 0, Channel 3
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 4
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 5
+ 11.0f, 12.0f,
+
+ // Batch 0, Channel 6
+ 13.0f, 14.0f,
+
+ // Batch 0, Channel 7
+ 15.0f, 16.0f,
+
+ // Batch 0, Channel 8
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 1, Channel 3
+ 25.0f, 26.0f,
+
+ // Batch 1, Channel 4
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 5
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 6
+ 31.0f, 32.0f,
+
+ // Batch 1, Channel 7
+ 33.0f, 34.0f,
+
+ // Batch 1, Channel 8
+ 35.0f, 36.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim2TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 2, 3, 6 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 3> result = Concatenation3dTestImpl<T>(workloadFactory, outputTensorInfo, 2, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f, 7.0f, 8.0f, 13.0f, 14.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f, 9.0f, 10.0f, 15.0f, 16.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f, 11.0f, 12.0f, 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f, 25.0f, 26.0f, 31.0f, 32.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f, 27.0f, 28.0f, 33.0f, 34.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f, 29.0f, 30.0f, 35.0f, 36.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim2Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim0DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 3>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 1, 3, 2 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 3>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 2
+ 11.0f, 12.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 3, 3, 2 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 3>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 0, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 0, Channel 2
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 1, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 1, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 2, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 2, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 2, Channel 2
+ 35.0f, 36.0f
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 6, 3, 2 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 0);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 2, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 2, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 2, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 3, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 3, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 3, Channel 2
+ 29.0f, 30.0f,
+
+ // Batch 4, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 4, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 4, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 5, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 5, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 5, Channel 2
+ 35.0f, 36.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim1DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 3>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 2, 4, 2 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 3>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 0, Channel 3
+ 25.0f, 26.0f,
+
+ // Batch 1, Channel 0
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 1
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 2
+ 13.0f, 14.0f,
+
+ // Batch 1, Channel 3
+ 15.0f, 16.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 2, 1, 2 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 3>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 31.0f, 32.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 2, 8, 2 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 1);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 0, Channel 3
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 4
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 5
+ 11.0f, 12.0f,
+
+ // Batch 0, Channel 6
+ 25.0f, 26.0f,
+
+ // Batch 0, Channel 7
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 1, Channel 3
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 4
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 5
+ 13.0f, 14.0f,
+
+ // Batch 1, Channel 6
+ 15.0f, 16.0f,
+
+ // Batch 1, Channel 7
+ 31.0f, 32.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim2DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 3>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 2, 3, 1 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 3>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f,
+
+ // Batch 0, Channel 1
+ 9.0f,
+
+ // Batch 0, Channel 2
+ 11.0f,
+
+ // Batch 1, Channel 0
+ 25.0f,
+
+ // Batch 1, Channel 1
+ 27.0f,
+
+ // Batch 1, Channel 2
+ 29.0f
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 2, 3, 3 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 3>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 13.0f, 14.0f, 50.0f,
+
+ // Batch 0, Channel 1
+ 15.0f, 16.0f, 51.0f,
+
+ // Batch 0, Channel 2
+ 17.0f, 18.0f, 52.0f,
+
+ // Batch 1, Channel 0
+ 31.0f, 32.0f, 53.0f,
+
+ // Batch 1, Channel 1
+ 33.0f, 34.0f, 54.0f,
+
+ // Batch 1, Channel 2
+ 35.0f, 36.0f, 55.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 2, 3, 6 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 2);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f, 7.0f, 13.0f, 14.0f, 50.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f, 9.0f, 15.0f, 16.0f, 51.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f, 11.0f, 17.0f, 18.0f, 52.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f, 25.0f, 31.0f, 32.0f, 53.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f, 27.0f, 33.0f, 34.0f, 54.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f, 29.0f, 35.0f, 36.0f, 55.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim2DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> ResizeBilinearNopTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 4;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 5.0f,
+ 3.0f, 4.0f, 5.0f, 6.0f,
+ 4.0f, 5.0f, 6.0f, 7.0f
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = input;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> SimpleResizeBilinearTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 2;
+ constexpr unsigned int inputHeight = 2;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth / 2;
+ constexpr unsigned int outputHeight = inputHeight / 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 255.0f,
+ 200.0f, 250.f,
+ }));
+
+ // The 'resize bilinear' operation projects the top-left corner of output texels into the input image,
+ // then figures out the interpolants and weights. Note this is different to projecting the centre of the
+ // output texel - and thus we'll expect the output 1x1 matrix to contain, as its single element, the value
+ // that was at position (0,0) of the input matrix (rather than an average, which we would expect if projecting
+ // the centre).
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, std::vector<float>({
+ 1.0f
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ResizeBilinearSqMinTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 4;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth / 2;
+ constexpr unsigned int outputHeight = inputHeight / 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 5.0f,
+ 3.0f, 4.0f, 5.0f, 6.0f,
+ 4.0f, 5.0f, 6.0f, 7.0f
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, std::vector<float>({
+ 1.f, 3.f,
+ 3.f, 5.f
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ResizeBilinearMinTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 5;
+ constexpr unsigned int inputHeight = 3;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = 3;
+ constexpr unsigned int outputHeight = 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 2.0f, 3.0f, 5.0f, 8.0f,
+ 13.0f, 21.0f, 34.0f, 55.0f, 89.0f,
+ 144.0f, 233.0f, 377.0f, 610.0f, 987.0f
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, std::vector<float>({
+ 1.0f, 2.6666f, 6.0f,
+ 78.5f, 179.3333f, 401.f
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ResizeBilinearMagTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 2;
+ constexpr unsigned int inputHeight = 3;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = 5;
+ constexpr unsigned int outputHeight = 3;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 2.0f,
+ 13.0f, 21.0f,
+ 144.0f, 233.0f
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, std::vector<float>({
+ 1.0f, 1.4f, 1.8f, 2.f, 2.f,
+ 13.f, 16.2f, 19.4f, 21.f, 21.f,
+ 144.f, 179.6f, 215.2f, 233.f, 233.f
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 2> FakeQuantizationTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int width = 2;
+ constexpr unsigned int height = 3;
+
+ const armnn::TensorInfo tensorInfo({height, width },
+ armnn::DataType::Float32);
+ auto input = MakeTensor<float, 2>(tensorInfo, std::vector<float>({
+ -10.0f, -5.0f,
+ 0.0f, 5.0f,
+ 10.0f, 10.0f
+ }));
+
+ LayerTestResult<float, 2> ret(tensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(tensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(tensorInfo);
+
+ armnn::FakeQuantizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, tensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, tensorInfo, outputHandle.get());
+ float min = -10.f;
+ float max = 10.f;
+
+ data.m_Parameters.m_Min = min;
+ data.m_Parameters.m_Max = max;
+
+ armnn::PassthroughCpuTensorHandle refHandle(tensorInfo, &ret.outputExpected[0][0]);
+ armnn::FakeQuantizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadOutput(refData, refInfo, 0, tensorInfo, &refHandle);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateFakeQuantization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ ret.outputExpected = MakeTensor<float, 2>(tensorInfo, std::vector<float>({
+ 0.0f, 63.0f,
+ 128.0f, 191.0f,
+ 255.0f, 255.0f
+ }));
+ return ret;
+}
+
+LayerTestResult<float, 4> L2Normalization1dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 1;
+ constexpr unsigned int inputHeight = 1;
+ constexpr unsigned int inputChannels = 10;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f
+ }));
+
+ const float approxInvL2Norm = 0.050964719f;
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f * approxInvL2Norm,
+ 2.0f * approxInvL2Norm,
+ 3.0f * approxInvL2Norm,
+ 4.0f * approxInvL2Norm,
+ 5.0f * approxInvL2Norm,
+ 6.0f * approxInvL2Norm,
+ 7.0f * approxInvL2Norm,
+ 8.0f * approxInvL2Norm,
+ 9.0f * approxInvL2Norm,
+ 10.0f * approxInvL2Norm
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::L2NormalizationQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateL2Normalization(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+namespace
+{
+
+float CalcInvL2Norm(std::initializer_list<float> elements)
+{
+ const float reduction = std::accumulate(elements.begin(), elements.end(), 0.0f,
+ [](float acc, float element) { return acc + element * element; });
+ return 1.0f / sqrtf(reduction);
+}
+
+}
+
+LayerTestResult<float, 4> L2Normalization2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 5;
+ constexpr unsigned int inputHeight = 1;
+ constexpr unsigned int inputChannels = 2;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f, 3.0f, 5.0f, 7.0f, 9.0f,
+ 2.0f, 4.0f, 6.0f, 8.0f, 10.0f
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 1.0f * CalcInvL2Norm({ 1.0f, 2.0f }),
+ 3.0f * CalcInvL2Norm({ 3.0f, 4.0f }),
+ 5.0f * CalcInvL2Norm({ 5.0f, 6.0f }),
+ 7.0f * CalcInvL2Norm({ 7.0f, 8.0f }),
+ 9.0f * CalcInvL2Norm({ 9.0f, 10.0f }),
+
+ 2.0f * CalcInvL2Norm({ 1.0f, 2.0f }),
+ 4.0f * CalcInvL2Norm({ 3.0f, 4.0f }),
+ 6.0f * CalcInvL2Norm({ 5.0f, 6.0f }),
+ 8.0f * CalcInvL2Norm({ 7.0f, 8.0f }),
+ 10.0f * CalcInvL2Norm({ 9.0f, 10.0f })
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::L2NormalizationQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateL2Normalization(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 3;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 2;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ // Channel 0
+ 119.0f, 21.0f, 150.0f,
+ 149.0f, 32.0f, 179.0f,
+ 15.0f, 227.0f, 141.0f,
+ 147.0f, 199.0f, 220.0f,
+
+ // Channel 1
+ 110.0f, 140.0f, 73.0f,
+ 211.0f, 212.0f, 89.0f,
+ 24.0f, 138.0f, 188.0f,
+ 162.0f, 12.0f, 161.0f,
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ 119.0f * CalcInvL2Norm({ 119.0f, 110.0f }),
+ 21.0f * CalcInvL2Norm({ 21.0f, 140.0f }),
+ 150.0f * CalcInvL2Norm({ 150.0f, 73.0f }),
+ 149.0f * CalcInvL2Norm({ 149.0f, 211.0f }),
+ 32.0f * CalcInvL2Norm({ 32.0f, 212.0f }),
+ 179.0f * CalcInvL2Norm({ 179.0f, 89.0f }),
+ 15.0f * CalcInvL2Norm({ 15.0f, 24.0f }),
+ 227.0f * CalcInvL2Norm({ 227.0f, 138.0f }),
+ 141.0f * CalcInvL2Norm({ 141.0f, 188.0f }),
+ 147.0f * CalcInvL2Norm({ 147.0f, 162.0f }),
+ 199.0f * CalcInvL2Norm({ 199.0f, 12.0f }),
+ 220.0f * CalcInvL2Norm({ 220.0f, 161.0f }),
+
+ 110.0f * CalcInvL2Norm({ 119.0f, 110.0f }),
+ 140.0f * CalcInvL2Norm({ 21.0f, 140.0f }),
+ 73.0f * CalcInvL2Norm({ 150.0f, 73.0f }),
+ 211.0f * CalcInvL2Norm({ 149.0f, 211.0f }),
+ 212.0f * CalcInvL2Norm({ 32.0f, 212.0f }),
+ 89.0f * CalcInvL2Norm({ 179.0f, 89.0f }),
+ 24.0f * CalcInvL2Norm({ 15.0f, 24.0f }),
+ 138.0f * CalcInvL2Norm({ 227.0f, 138.0f }),
+ 188.0f * CalcInvL2Norm({ 141.0f, 188.0f }),
+ 162.0f * CalcInvL2Norm({ 147.0f, 162.0f }),
+ 12.0f * CalcInvL2Norm({ 199.0f, 12.0f }),
+ 161.0f * CalcInvL2Norm({ 220.0f, 161.0f }),
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::L2NormalizationQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateL2Normalization(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> L2Normalization4dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 3;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputBatchSize = 2;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ // Batch 0, Channel 0
+ 235.0f, 46.0f, 178.0f,
+ 100.0f, 123.0f, 19.0f,
+ 172.0f, 74.0f, 250.0f,
+ 6.0f, 195.0f, 80.0f,
+
+ // Batch 0, Channel 1
+ 113.0f, 95.0f, 202.0f,
+ 77.0f, 114.0f, 71.0f,
+ 122.0f, 246.0f, 166.0f,
+ 82.0f, 28.0f, 37.0f,
+
+ // Batch 0, Channel 2
+ 56.0f, 170.0f, 162.0f,
+ 194.0f, 89.0f, 254.0f,
+ 12.0f, 209.0f, 200.0f,
+ 1.0f, 64.0f, 54.0f,
+
+ // Batch 1, Channel 0
+ 67.0f, 90.0f, 49.0f,
+ 7.0f, 163.0f, 18.0f,
+ 25.0f, 117.0f, 103.0f,
+ 247.0f, 59.0f, 189.0f,
+
+ // Batch 1, Channel 1
+ 239.0f, 104.0f, 199.0f,
+ 17.0f, 124.0f, 153.0f,
+ 222.0f, 217.0f, 75.0f,
+ 32.0f, 126.0f, 21.0f,
+
+ // Batch 1, Channel 2
+ 97.0f, 145.0f, 215.0f,
+ 115.0f, 116.0f, 238.0f,
+ 226.0f, 16.0f, 132.0f,
+ 92.0f, 125.0f, 88.0f,
+ }));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+
+ // Batch 0, Channel 0
+ 235.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 46.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 178.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 100.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 123.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 19.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 172.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 74.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 250.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 6.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 195.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 80.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 0, Channel 1
+ 113.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 95.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 202.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 77.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 114.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 71.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 122.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 246.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 166.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 82.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 28.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 37.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 0, Channel 2
+ 56.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 170.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 162.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 194.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 89.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 254.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 12.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 209.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 200.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 1.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 64.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 54.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 1, Channel 0
+ 67.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 90.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 49.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 7.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 163.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 18.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 25.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 117.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 103.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 247.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 59.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 189.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+
+ // Batch 1, Channel 1
+ 239.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 104.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 199.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 17.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 124.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 153.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 222.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 217.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 75.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 32.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 126.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 21.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+
+ // Batch 1, Channel 2
+ 97.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 145.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 215.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 115.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 116.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 238.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 226.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 16.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 132.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 92.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 125.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 88.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::L2NormalizationQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateL2Normalization(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 4> ConstantTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ constexpr unsigned int inputWidth = 3;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputBatchSize = 2;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 235.0f, 46.0f, 178.0f,
+ 100.0f, 123.0f, 19.0f,
+ 172.0f, 74.0f, 250.0f,
+ 6.0f, 195.0f, 80.0f,
+
+ // Batch 0, Channel 1
+ 113.0f, 95.0f, 202.0f,
+ 77.0f, 114.0f, 71.0f,
+ 122.0f, 246.0f, 166.0f,
+ 82.0f, 28.0f, 37.0f,
+
+ // Batch 0, Channel 2
+ 56.0f, 170.0f, 162.0f,
+ 194.0f, 89.0f, 254.0f,
+ 12.0f, 209.0f, 200.0f,
+ 1.0f, 64.0f, 54.0f,
+
+ // Batch 1, Channel 0
+ 67.0f, 90.0f, 49.0f,
+ 7.0f, 163.0f, 18.0f,
+ 25.0f, 117.0f, 103.0f,
+ 247.0f, 59.0f, 189.0f,
+
+ // Batch 1, Channel 1
+ 239.0f, 104.0f, 199.0f,
+ 17.0f, 124.0f, 153.0f,
+ 222.0f, 217.0f, 75.0f,
+ 32.0f, 126.0f, 21.0f,
+
+ // Batch 1, Channel 2
+ 97.0f, 145.0f, 215.0f,
+ 115.0f, 116.0f, 238.0f,
+ 226.0f, 16.0f, 132.0f,
+ 92.0f, 125.0f, 88.0f,
+ })));
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = input;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle constantTensor(inputTensorInfo);
+ AllocateAndCopyDataToITensorHandle(&constantTensor, &input[0][0][0][0]);
+
+ armnn::ConstantQueueDescriptor descriptor;
+ descriptor.m_LayerOutput = &constantTensor;
+
+ armnn::WorkloadInfo info;
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConstant(descriptor, info);
+
+ outputHandle->Allocate();
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ConstantTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> ConstantTestUint8(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantTestImpl<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 3> MergerUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int outputWidth = 3;
+ unsigned int outputHeight = 6;
+ unsigned int outputChannels = 3;
+
+ unsigned int inputWidth1 = 3;
+ unsigned int inputHeight1 = 6;
+ unsigned int inputChannels1 = 2;
+
+ unsigned int inputWidth2 = 3;
+ unsigned int inputHeight2 = 6;
+ unsigned int inputChannels2 = 1;
+
+ // Defines the tensor descriptors.
+ armnn::TensorInfo outputTensorInfo({ outputChannels, outputHeight, outputWidth }, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo inputTensorInfo1({ inputChannels1, inputHeight1, inputWidth1 }, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo inputTensorInfo2({ inputChannels2, inputHeight2, inputWidth2 }, armnn::DataType::QuantisedAsymm8);
+
+ // Arbitrary scale and offsets. They don't really matter as the merger operator doesn't dequantize/quantize them.
+ const float scale = 0.13497836f;
+ const int32_t offset = -7;
+
+ outputTensorInfo.SetQuantizationScale(scale);
+ outputTensorInfo.SetQuantizationOffset(offset);
+ inputTensorInfo1.SetQuantizationScale(scale);
+ inputTensorInfo1.SetQuantizationOffset(offset);
+ inputTensorInfo2.SetQuantizationScale(scale);
+ inputTensorInfo2.SetQuantizationOffset(offset);
+
+ LayerTestResult<uint8_t, 3> ret(outputTensorInfo);
+
+ ret.outputExpected = MakeTensor<uint8_t, 3>(outputTensorInfo, std::vector<uint8_t>(
+ {
+ 1, 2, 3,
+ 4, 5, 6,
+ 7, 8, 9,
+ 10, 11, 12,
+ 13, 14, 15,
+ 16, 17, 18,
+
+ 19, 20, 21,
+ 22, 23, 24,
+ 25, 26, 27,
+ 28, 29, 30,
+ 31, 32, 33,
+ 34, 35, 36,
+
+ 37, 38, 39,
+ 40, 41, 42,
+ 43, 44, 45,
+ 46, 47, 48,
+ 49, 50, 51,
+ 52, 53, 54,
+ })
+ );
+
+ auto input1 = MakeTensor<uint8_t, 3>(inputTensorInfo1, std::vector<uint8_t>(
+ {
+ 1, 2, 3,
+ 4, 5, 6,
+ 7, 8, 9,
+ 10, 11, 12,
+ 13, 14, 15,
+ 16, 17, 18,
+
+ 19, 20, 21,
+ 22, 23, 24,
+ 25, 26, 27,
+ 28, 29, 30,
+ 31, 32, 33,
+ 34, 35, 36,
+ })
+ );
+
+ auto input2 = MakeTensor<uint8_t, 3>(inputTensorInfo2, std::vector<uint8_t>(
+ {
+ 37, 38, 39,
+ 40, 41, 42,
+ 43, 44, 45,
+ 46, 47, 48,
+ 49, 50, 51,
+ 52, 53, 54,
+ })
+ );
+
+ std::vector<unsigned int> wOrigin1 = { 0, 0, 0 }; //Extent of the window is defined by size of input[0].
+ armnn::MergerQueueDescriptor::ViewOrigin window1(wOrigin1);
+
+ std::vector<unsigned int> wOrigin2 = { 2, 0, 0 }; //Extent of the window is defined by size of input[1].
+ armnn::MergerQueueDescriptor::ViewOrigin window2(wOrigin2);
+
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo1.GetShape(), wOrigin1.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo1);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo2.GetShape(), wOrigin2.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo2);
+
+
+ armnn::MergerQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_ViewOrigins.push_back(window1);
+ data.m_ViewOrigins.push_back(window2);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMerger(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<uint8_t, 4> AdditionUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int batchSize = 1;
+ unsigned int channels = 2;
+ unsigned int height = 2;
+ unsigned int width = 3;
+
+ const float scale = 7.0f;
+ const int32_t offset = 3;
+
+ armnn::TensorInfo inputTensorInfo1, inputTensorInfo2;
+ armnn::TensorInfo outputTensorInfo;
+
+ const unsigned int shape[] = { batchSize, channels, height, width };
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo1.SetQuantizationScale(scale);
+ inputTensorInfo1.SetQuantizationOffset(offset);
+
+ inputTensorInfo2 = armnn::TensorInfo(4, shape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo2.SetQuantizationScale(scale);
+ inputTensorInfo2.SetQuantizationOffset(offset);
+
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(scale);
+ outputTensorInfo.SetQuantizationOffset(offset);
+
+ // See dequantized values to the right.
+ auto input1 = MakeTensor<uint8_t, 4>(inputTensorInfo1, std::vector<uint8_t>(
+ {
+ 63, 35, 77, 70, 56, 112, // 420, 224, 518, 469, 371, 763
+ 203, 28, 252, 168, 245, 91 // 1400, 175, 1743, 1155, 1694, 616
+ }));
+
+ // See dequantized values to the right.
+ auto input2 = MakeTensor<uint8_t, 4>(inputTensorInfo1, std::vector<uint8_t>(
+ {
+ 21, 7, 175, 231, 175, 210, // 126, 28, 1204, 1596, 1204, 1449
+ 126, 161, 63, 21, 105, 126 // 861, 1106, 420, 126, 714, 861
+ }));
+
+ // See dequantized values to the right.
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>(
+ {
+ 81, 39, 249, 255, 228, 255, // 546, 252, 1722, 2065(clamped), 1575, 2212(clamped)
+ 255, 186, 255, 186, 255, 214, // 2261(clamped), 1281, 2163(clamped), 1281, 2408(clamped), 1477
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+
+namespace
+{
+LayerTestResult<uint8_t, 4> MultiplicationUint8TestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<uint8_t> & values0,
+ float scale0,
+ int32_t offset0,
+ const unsigned int shape1[4],
+ const std::vector<uint8_t> & values1,
+ float scale1,
+ int32_t offset1,
+ const unsigned int outShape[4],
+ const std::vector<uint8_t> & outValues,
+ float outScale,
+ int32_t outOffset)
+{
+ armnn::TensorInfo inputTensorInfo0(4, shape0, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo inputTensorInfo1(4, shape1, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo outputTensorInfo(4, outShape, armnn::DataType::QuantisedAsymm8);
+
+ inputTensorInfo0.SetQuantizationScale(scale0);
+ inputTensorInfo0.SetQuantizationOffset(offset0);
+
+ inputTensorInfo1.SetQuantizationScale(scale1);
+ inputTensorInfo1.SetQuantizationOffset(offset1);
+
+ outputTensorInfo.SetQuantizationScale(outScale);
+ outputTensorInfo.SetQuantizationOffset(outOffset);
+
+ auto input0 = MakeTensor<uint8_t, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<uint8_t, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, outValues);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MultiplicationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMultiplication(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+} // anonymous namespace
+
+LayerTestResult<uint8_t, 4> MultiplicationUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int batchSize = 1;
+ unsigned int channels = 2;
+ unsigned int height = 2;
+ unsigned int width = 3;
+ const unsigned int shape[] = { batchSize, channels, height, width };
+
+ // See dequantized values to the right.
+ std::vector<uint8_t> input0({
+ 62, 37, 3, 172, 13, 111, // 244, 144, 8, 684, 48, 440,
+ 188, 20, 73, 31, 23, 31 // 748, 76, 288, 120, 88, 120
+ });
+
+ // See dequantized values to the right.
+ std::vector<uint8_t> input1({
+ 126, 240, 252, 183, 121, 247, // 384, 726, 762, 555, 369, 747,
+ 48, 115, 151, 79, 78, 97 // 150, 351, 459, 243, 240, 297
+ });
+
+ // See dequantized values to the right.
+ std::vector<uint8_t> output(
+ {
+ 64, 72, 0, 255, 8, 236, // 93696, 104544, 6096(clamped), 379620(clamped), 17712, 328680,
+ 77, 15, 92, 16, 10, 21, // 112200, 26676, 132192, 29160, 21120, 35640
+ });
+
+ return MultiplicationUint8TestHelper(workloadFactory,
+ shape,
+ input0,
+ 4.0f,
+ 1,
+ shape,
+ input1,
+ 3.0f,
+ -2,
+ shape,
+ output,
+ 1366.255f, // Scale/offset chosen to have output values out of range.
+ -5);
+}
+
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 2, 2, 3 };
+ const unsigned int shape1[] = { 1, 1, 1, 1 };
+
+ std::vector<uint8_t> input0({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12
+ });
+
+ std::vector<uint8_t> input1({2});
+
+ std::vector<uint8_t> output({
+ 2, 4, 6, 8, 10, 12,
+ 14, 16, 18, 20, 22, 24
+ });
+
+ return MultiplicationUint8TestHelper(workloadFactory,
+ shape0,
+ input0,
+ 1.0f,
+ 0,
+ shape1,
+ input1,
+ 1.0f,
+ 0,
+ shape0,
+ output,
+ 1.0f,
+ 0);
+}
+
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 2, 2, 3 };
+ const unsigned int shape1[] = { 1, 1, 1, 3 };
+
+ std::vector<uint8_t> input0({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12
+ });
+
+ std::vector<uint8_t> input1({1, 2, 3});
+
+ std::vector<uint8_t> output({
+ 1, 4, 9, 4, 10, 18,
+ 7, 16, 27, 10, 22, 36
+ });
+
+ return MultiplicationUint8TestHelper(workloadFactory,
+ shape0,
+ input0,
+ 1.0f,
+ 0,
+ shape1,
+ input1,
+ 1.0f,
+ 0,
+ shape0,
+ output,
+ 1.0f,
+ 0);
+}
+
+namespace
+{
+template <typename T>
+LayerTestResult<T, 4> SubtractionTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<T>& values0,
+ float scale0,
+ int32_t offset0,
+ const unsigned int shape1[4],
+ const std::vector<T> & values1,
+ float scale1,
+ int32_t offset1,
+ const unsigned int outShape[4],
+ const std::vector<T> & outValues,
+ float outScale,
+ int32_t outOffset)
+{
+ auto dataType = (std::is_same<T, uint8_t>::value ?
+ armnn::DataType::QuantisedAsymm8 :
+ armnn::DataType::Float32);
+
+ armnn::TensorInfo inputTensorInfo0(4, shape0, dataType);
+ armnn::TensorInfo inputTensorInfo1(4, shape1, dataType);
+ armnn::TensorInfo outputTensorInfo(4, outShape, dataType);
+
+ inputTensorInfo0.SetQuantizationScale(scale0);
+ inputTensorInfo0.SetQuantizationOffset(offset0);
+
+ inputTensorInfo1.SetQuantizationScale(scale1);
+ inputTensorInfo1.SetQuantizationOffset(offset1);
+
+ outputTensorInfo.SetQuantizationScale(outScale);
+ outputTensorInfo.SetQuantizationOffset(outOffset);
+
+ auto input0 = MakeTensor<T, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outValues);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::SubtractionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSubtraction(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+} // anonymous namespace
+
+LayerTestResult<uint8_t, 4> SubtractionUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 2, 2 };
+
+ std::vector<uint8_t> input0({ 10, 12, 14, 16 });
+ std::vector<uint8_t> input1({ 1, 2, 1, 2 });
+ std::vector<uint8_t> output({ 3, 3, 5, 5 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 0.5f, 2,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> SubtractionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 1, 1 };
+
+ std::vector<uint8_t> input0({ 10, 12, 14, 16 });
+ std::vector<uint8_t> input1({ 2 });
+ std::vector<uint8_t> output({ 5, 6, 7, 8 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 0.5f, 2,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 3);
+}
+
+LayerTestResult<uint8_t, 4> SubtractionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 2, 1 };
+
+ std::vector<uint8_t> input0({ 10, 12, 14, 16 });
+ std::vector<uint8_t> input1({ 2, 1 });
+ std::vector<uint8_t> output({ 8, 11, 12, 15 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> SubtractionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 2, 2 };
+
+ std::vector<float> input0({ 1, 2, 3, 4 });
+ std::vector<float> input1({ 1, -1, 0, 2 });
+ std::vector<float> output({ 0, 3, 3, 2 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> SubtractionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 1, 1 };
+
+ std::vector<float> input0({ 1, 2, 3, 4 });
+ std::vector<float> input1({ 10 });
+ std::vector<float> output({ -9, -8, -7, -6 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> SubtractionBroadcastTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 1, 2 };
+
+ std::vector<float> input0({ 1, 2, 3, 4 });
+ std::vector<float> input1({ 10, -5 });
+ std::vector<float> output({ -9, 7, -7, 9 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearNopUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 4;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.5f);
+ inputTensorInfo.SetQuantizationOffset(-3);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.5f);
+ outputTensorInfo.SetQuantizationOffset(-3);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 2, 3, 4,
+ 2, 3, 4, 5,
+ 3, 4, 5, 6,
+ 4, 5, 6, 7
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = input;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> SimpleResizeBilinearUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 2;
+ constexpr unsigned int inputHeight = 2;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth / 2;
+ constexpr unsigned int outputHeight = inputHeight / 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(0.1567f);
+ inputTensorInfo.SetQuantizationOffset(1);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(0.1567f);
+ outputTensorInfo.SetQuantizationOffset(1);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 255,
+ 200, 250
+ }));
+
+ // The 'resize bilinear' operation projects the top-left corner of output texels into the input image,
+ // then figures out the interpolants and weights. Note this is different to projecting the centre of the
+ // output texel - and thus we'll expect the output 1x1 matrix to contain, as its single element, the value
+ // that was at position (0,0) of the input matrix (rather than an average, which we would expect if projecting
+ // the centre).
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 1
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearSqMinUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 4;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth / 2;
+ constexpr unsigned int outputHeight = inputHeight / 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(3.141592f);
+ inputTensorInfo.SetQuantizationOffset(3);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(3.141592f);
+ outputTensorInfo.SetQuantizationOffset(3);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 2, 3, 4,
+ 2, 3, 4, 5,
+ 3, 4, 5, 6,
+ 4, 5, 6, 7
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 1, 3,
+ 3, 5
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearMinUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 3;
+ constexpr unsigned int inputHeight = 2;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = 2;
+ constexpr unsigned int outputHeight = 1;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.5f);
+ inputTensorInfo.SetQuantizationOffset(-1);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.5f);
+ outputTensorInfo.SetQuantizationOffset(-1);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 2, 3, // 3.0, 4.5, 6.0
+ 5, 8, 13 // 9.0, 13.5, 21.0
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 1, 3 // 3.0, 5.25
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearMagUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 2;
+ constexpr unsigned int inputHeight = 3;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = 5;
+ constexpr unsigned int outputHeight = 3;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(0.010765f);
+ inputTensorInfo.SetQuantizationOffset(7);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(0.010132f);
+ outputTensorInfo.SetQuantizationOffset(-18);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 24, 228, // 0.183005, 2.379065,
+ 105, 128, // 1.05497, 1.302565
+ 230, 71 // 2.400595, 0.68896
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 0, 87, 173, 217, 217, // 0.18300501, 1.06142902, 1.93985295, 2.37906504, 2.37906504
+ 86, 96, 106, 111, 111, // 1.05497003, 1.15400803, 1.25304604, 1.30256498, 1.30256498
+ 219, 151, 84, 50, 50 // 2.40059495, 1.71594095, 1.03128707, 0.68896002, 0.68896002
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto ret = BatchNormTestImpl<float>(workloadFactory, 0.f, 0);
+ return ret;
+}
+
+LayerTestResult<uint8_t, 4> BatchNormUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto ret = BatchNormTestImpl<uint8_t>(workloadFactory, 1.f/20.f, 50);
+ return ret;
+}
+
+LayerTestResult<uint8_t, 4> ConstantUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantTestImpl<uint8_t>(workloadFactory, 2e-6f, 1);
+}
+
+LayerTestResult<uint8_t, 1> Concatenation1dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation1dTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim2Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim2DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<float, 4> SimpleMaxPooling2dSize2x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize2x2Stride2x2TestCommon<float>(workloadFactory, forceNoPadding);
+}
+
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize2x2Stride2x2Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize2x2Stride2x2TestCommon<uint8_t>(workloadFactory, forceNoPadding, 3.0f, -5);
+}
+
+LayerTestResult<float, 4> SimpleMaxPooling2dSize3x3Stride2x4Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize3x3Stride2x4TestCommon<float>(workloadFactory, forceNoPadding);
+}
+
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize3x3Stride2x4Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize3x3Stride2x4TestCommon<uint8_t>(workloadFactory, forceNoPadding, 0.1f, 128);
+}
+
+LayerTestResult<float, 4> SimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleAveragePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> SimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleAveragePooling2dTestCommon<uint8_t>(workloadFactory, 0.5, -1);
+}
+
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return IgnorePaddingAveragePooling2dSize3x2Stride2x2TestCommon<float>(workloadFactory, forceNoPadding);
+}
+
+LayerTestResult<float, 4> LargeTensorsAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return LargeTensorsAveragePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> LargeTensorsAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return LargeTensorsAveragePooling2dTestCommon<uint8_t>(workloadFactory, 0.5, -1);
+}
+
+LayerTestResult<float, 4> SimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleL2Pooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> SimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleL2Pooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride1TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride1Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride1TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride3TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride4Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride4TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride4Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride4TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize7Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize7TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize7Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize7TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize9Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize9TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize9Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize9TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> AsymmetricNonSquarePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AsymmetricNonSquarePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> AsymmetricNonSquarePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AsymmetricNonSquarePooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> ComparePooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType)
+{
+ return ComparePooling2dTestCommon<float>(workloadFactory, refWorkloadFactory, poolingType);
+}
+
+LayerTestResult<uint8_t, 4> ComparePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType)
+{
+ return ComparePooling2dTestCommon<uint8_t>(workloadFactory, refWorkloadFactory, poolingType, 0.1f, 128);
+}
+
+LayerTestResult<float, 2> FullyConnectedLargeTest(armnn::IWorkloadFactory& workloadFactory,
+ bool transposeWeights)
+{
+ return FullyConnectedLargeTestCommon<float>(workloadFactory, transposeWeights);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleMaxPooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleMaxPooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleMaxPooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleMaxPooling2dTestCommon<uint8_t>(workloadFactory, 1.0f, -5);
+}
+
+LayerTestResult<float, 4> IgnorePaddingMaxPooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingMaxPooling2dSize3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingMaxPooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingMaxPooling2dSize3TestCommon<uint8_t>(workloadFactory, 1.0f, -5);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dNoPaddingTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dNoPaddingTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingAveragePooling2dSize3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingAveragePooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingAveragePooling2dSize3TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleL2Pooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleL2Pooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingL2Pooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingL2Pooling2dSize3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingL2Pooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingL2Pooling2dSize3TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> SimplePermuteFloat32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimplePermuteFloat32TestCommon(workloadFactory);
+};
+
+LayerTestResult<uint8_t, 4> SimplePermuteUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimplePermuteUint8TestCommon(workloadFactory);
+};
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return PermuteFloat32ValueSet1TestCommon(workloadFactory);
+};
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet2Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return PermuteFloat32ValueSet2TestCommon(workloadFactory);
+};
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return PermuteFloat32ValueSet3TestCommon(workloadFactory);
+}; \ No newline at end of file
diff --git a/src/backends/test/LayerTests.hpp b/src/backends/test/LayerTests.hpp
new file mode 100644
index 0000000000..365a1f53d4
--- /dev/null
+++ b/src/backends/test/LayerTests.hpp
@@ -0,0 +1,345 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "armnn/ArmNN.hpp"
+#include "armnn/Tensor.hpp"
+#include "Half.hpp"
+
+#include <boost/multi_array.hpp>
+#include <boost/assert.hpp>
+#include <array>
+
+// Layer callables.
+
+namespace armnn
+{
+class IWorkloadFactory;
+}
+
+template <std::size_t n>
+boost::array<unsigned int, n> GetTensorShapeAsArray(const armnn::TensorInfo& tensorInfo)
+{
+ BOOST_ASSERT_MSG(n == tensorInfo.GetNumDimensions(),
+ "Attempting to construct a shape array of mismatching size");
+
+ boost::array<unsigned int, n> shape;
+ for (unsigned int i = 0; i < n; i++)
+ {
+ shape[i] = tensorInfo.GetShape()[i];
+ }
+ return shape;
+}
+
+template <typename T, std::size_t n>
+struct LayerTestResult
+{
+ LayerTestResult(const armnn::TensorInfo& outputInfo)
+ {
+ auto shape( GetTensorShapeAsArray<n>(outputInfo) );
+ output.resize(shape);
+ outputExpected.resize(shape);
+ supported = true;
+ }
+
+ boost::multi_array<T, n> output;
+ boost::multi_array<T, n> outputExpected;
+ bool supported;
+};
+
+LayerTestResult<float, 4> SimpleConvolution2d3x5Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4> SimpleConvolution2d3x3Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4>
+Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> Convolution2dAsymmetricPaddingTest(armnn::IWorkloadFactory& workloadFactory);
+
+
+LayerTestResult<float, 4> Convolution1dTest(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled);
+LayerTestResult<uint8_t, 4> Convolution1dUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dDepthMul1Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dAsymmetricTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4> SimpleMaxPooling2dSize2x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize2x2Stride2x2Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<float, 4> SimpleMaxPooling2dSize3x3Stride2x4Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize3x3Stride2x4Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding );
+LayerTestResult<float, 4> IgnorePaddingSimpleMaxPooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleMaxPooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingMaxPooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingMaxPooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test(
+ armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingAveragePooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride1Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize3Stride3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize3Stride4Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride4Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize7Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize7Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize9Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize9Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> LargeTensorsAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> LargeTensorsAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> IgnorePaddingSimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingL2Pooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingL2Pooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> AsymmetricNonSquarePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> AsymmetricNonSquarePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> ComparePooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType);
+LayerTestResult<uint8_t, 4> ComparePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType);
+
+LayerTestResult<float, 4> ConstantLinearActivationTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleNormalizationAcrossTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> SimpleNormalizationWithinTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> SimpleSoftmaxTest(armnn::IWorkloadFactory& workloadFactory, float beta);
+LayerTestResult<uint8_t, 2> SimpleSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory, float beta);
+
+LayerTestResult<float, 4> SimpleSigmoidTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleReshapeFloat32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimpleReshapeUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleFloorTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 1> Concatenation1dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim0Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim0Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim2Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim2DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> SimpleSigmoidUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+template<typename T>
+LayerTestResult<T, 4> CompareDepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> CompareNormalizationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod);
+
+LayerTestResult<float, 2> CompareSoftmaxTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory, float beta);
+
+LayerTestResult<float, 2> FullyConnectedFloat32Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ bool transposeWeights);
+
+std::vector<LayerTestResult<float, 3>> SplitterTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> CopyViaSplitterTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 3> MergerTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> AdditionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> AdditionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> AdditionBroadcastTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareAdditionTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> SubtractionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> SubtractionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> SubtractionBroadcastTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareActivationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f,
+ unsigned int batchSize);
+
+LayerTestResult<float, 4> DivisionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> DivisionByZeroTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> DivisionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> DivisionBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> MultiplicationTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> MultiplicationBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> MultiplicationBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareMultiplicationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareBatchNormTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> BoundedReLuUpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> BoundedReLuUpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareBoundedReLuTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float upperBound,
+ float lowerBound);
+
+// Tests that the output should be identical to the input when the output dimensions match the input ones.
+LayerTestResult<float, 4> ResizeBilinearNopTest(armnn::IWorkloadFactory& workloadFactory);
+
+// Tests the behaviour of the resize bilinear operation when rescaling a 2x2 image into a 1x1 image.
+LayerTestResult<float, 4> SimpleResizeBilinearTest(armnn::IWorkloadFactory& workloadFactory);
+
+// Tests the resize bilinear for minification of a square input matrix (also: input dimensions are a
+// multiple of output dimensions).
+LayerTestResult<float, 4> ResizeBilinearSqMinTest(armnn::IWorkloadFactory& workloadFactory);
+
+// Tests the resize bilinear for minification (output dimensions smaller than input dimensions).
+LayerTestResult<float, 4> ResizeBilinearMinTest(armnn::IWorkloadFactory& workloadFactory);
+
+// Tests the resize bilinear for magnification (output dimensions bigger than input dimensions).
+LayerTestResult<float, 4> ResizeBilinearMagTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> FakeQuantizationTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> L2Normalization1dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization4dTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> ConstantTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> ConstantTestUint8(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> BoundedReLuUint8Test(armnn::IWorkloadFactory& workloadFactory, float upperBound);
+LayerTestResult<uint8_t, 4> BoundedReLuUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ float upperBound,
+ float lowerBound);
+
+LayerTestResult<uint8_t, 2> FullyConnectedUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled);
+
+std::vector<LayerTestResult<uint8_t, 3>> SplitterUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> CopyViaSplitterUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 3> MergerUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> AdditionUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> AdditionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> AdditionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> SubtractionUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SubtractionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SubtractionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> CompareActivationUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f);
+
+LayerTestResult<uint8_t, 2> CompareSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta);
+
+LayerTestResult<uint8_t, 4> MultiplicationUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> DivisionUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> DivisionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> DivisionBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x5Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x3Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dDepthMul1Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<uint8_t, 4> ConstantLinearActivationUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> ResizeBilinearNopUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimpleResizeBilinearUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> ResizeBilinearSqMinUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> ResizeBilinearMinUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> ResizeBilinearMagUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> BatchNormUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> ConstantUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 1> Concatenation1dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim2Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim2DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+
+LayerTestResult<float, 2> FullyConnectedLargeTest(armnn::IWorkloadFactory& workloadFactory,
+ bool transposeWeights);
+LayerTestResult<float, 4> SimplePermuteFloat32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimplePermuteUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> PermuteFloat32ValueSet2Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> PermuteFloat32ValueSet3Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest
+ (armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2>
+ LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2>
+LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleConvertFp16ToFp32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<armnn::Half, 4> SimpleConvertFp32ToFp16Test(armnn::IWorkloadFactory& workloadFactory);
diff --git a/src/backends/test/LstmTestImpl.hpp b/src/backends/test/LstmTestImpl.hpp
new file mode 100644
index 0000000000..2c4e166084
--- /dev/null
+++ b/src/backends/test/LstmTestImpl.hpp
@@ -0,0 +1,1150 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include <backends/WorkloadInfo.hpp>
+#include "backends/WorkloadFactory.hpp"
+
+LayerTestResult<float, 2> LstmNoCifgNoPeepholeNoProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected)
+{
+ unsigned int batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int outputSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ // cellSize and outputSize have the same size when there is no projection.
+ unsigned numUnits = outputSize;
+
+
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::GetDataType<float>());
+
+
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+
+ LayerTestResult<float, 2> ret(outputTensorInfo);
+
+ std::vector<float> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputVector);
+
+ std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
+ auto cellStateInTensor = MakeTensor<float,2>(cellStateInTensorInfo, cellStateInVector);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float,2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> scratchBufferVector(batchSize * numUnits * 3, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+
+ std::vector<float> cellStateOutVector(batchSize * numUnits, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+
+ std::vector<float> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+ ret.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchHandle = workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+
+ armnn::LstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo4({numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo8({numUnits, 2}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo16({numUnits, 4}, armnn::GetDataType<float>());
+
+ auto inputToInputWeights = MakeTensor<float, 2>(tensorInfo8, {-0.45018822f, -0.02338299f, -0.0870589f,
+ -0.34550029f, 0.04266912f, -0.15680569f,
+ -0.34856534f, 0.43890524f});
+
+ auto inputToForgetWeights = MakeTensor<float, 2>(tensorInfo8, {0.09701663f, 0.20334584f, -0.50592935f,
+ -0.31343272f, -0.40032279f, 0.44781327f,
+ 0.01387155f, -0.35593212f});
+
+ auto inputToCellWeights = MakeTensor<float, 2>(tensorInfo8, {-0.50013041f, 0.1370284f, 0.11810488f, 0.2013163f,
+ -0.20583314f, 0.44344562f, 0.22077113f,
+ -0.29909778f});
+
+ auto inputToOutputWeights = MakeTensor<float, 2>(tensorInfo8, {-0.25065863f, -0.28290087f, 0.04613829f,
+ 0.40525138f, 0.44272184f, 0.03897077f,
+ -0.1556896f, 0.19487578f});
+
+ auto recurrentToInputWeights = MakeTensor<float, 2>(tensorInfo16, {-0.0063535f, -0.2042388f, 0.31454784f,
+ -0.35746509f, 0.28902304f, 0.08183324f,
+ -0.16555229f, 0.02286911f, -0.13566875f,
+ 0.03034258f, 0.48091322f, -0.12528998f,
+ 0.24077177f, -0.51332325f, -0.33502164f,
+ 0.10629296f});
+
+ auto recurrentToForgetWeights = MakeTensor<float, 2>(tensorInfo16, {-0.48684245f, -0.06655136f, 0.42224967f,
+ 0.2112639f, 0.27654213f, 0.20864892f,
+ -0.07646349f, 0.45877004f, 0.00141793f,
+ -0.14609534f, 0.36447752f, 0.09196436f,
+ 0.28053468f, 0.01560611f, -0.20127171f,
+ -0.01140004f});
+
+ auto recurrentToCellWeights = MakeTensor<float, 2>(tensorInfo16, {-0.3407414f, 0.24443203f, -0.2078532f,
+ 0.26320225f, 0.05695659f, -0.00123841f,
+ -0.4744786f, -0.35869038f, -0.06418842f,
+ -0.13502428f, -0.501764f, 0.22830659f,
+ -0.46367589f, 0.26016325f, -0.03894562f,
+ -0.16368064f});
+
+ auto recurrentToOutputWeights = MakeTensor<float, 2>(tensorInfo16, {0.43385774f, -0.17194885f, 0.2718237f,
+ 0.09215671f, 0.24107647f, -0.39835793f,
+ 0.18212086f, 0.01301402f, 0.48572797f,
+ -0.50656658f, 0.20047462f, -0.20607421f,
+ -0.51818722f, -0.15390486f, 0.0468148f,
+ 0.39922136f});
+
+ auto cellToInputWeights = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto inputGateBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto forgetGateBias = MakeTensor<float, 1>(tensorInfo4, {1., 1., 1., 1.});
+
+ auto cellBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto outputGateBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ armnn::ScopedCpuTensorHandle inputToInputWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle cellToInputWeightsTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle inputGateBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfo4);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, &inputToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, &recurrentToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, &cellToInputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, &inputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_CellToInputWeights = &cellToInputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = false;
+ data.m_Parameters.m_ProjectionEnabled = false;
+
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ return ret;
+}
+
+
+LayerTestResult<float, 2>
+LstmLayerFloat32NoCifgWithPeepholeWithProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected) {
+
+ unsigned int batchSize = 2;
+ unsigned int outputSize = 16;
+ unsigned int inputSize = 5;
+ unsigned numUnits = 20;
+
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::GetDataType<float>());
+
+ // Scratch buffer size without CIFG [batchSize, numUnits * 3]
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+ LayerTestResult<float, 2> ret(outputTensorInfo);
+
+ std::vector<float> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputVector);
+
+ std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
+ auto cellStateInTensor = MakeTensor<float,2>(cellStateInTensorInfo, cellStateInVector);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float,2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> scratchBufferVector(batchSize * numUnits * 3, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+
+ std::vector<float> cellStateOutVector(batchSize * numUnits, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+
+ std::vector<float> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+ ret.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchHandle = workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::LstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo16({outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20({numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20x5({numUnits, inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20x16({numUnits, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo16x20({outputSize, numUnits}, armnn::GetDataType<float>());
+
+ auto inputToInputWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {0.021393683f,0.06124551f, 0.046905167f,-0.014657677f,-0.03149463f,
+ 0.09171803f, 0.14647801f,0.10797193f, -0.0057968358f,0.0019193048f,
+ -0.2726754f, 0.10154029f, -0.018539885f, 0.080349885f, -0.10262385f,
+ -0.022599787f,-0.09121155f, -0.008675967f, -0.045206103f,-0.0821282f,
+ -0.008045952f,0.015478081f, 0.055217247f, 0.038719587f, 0.044153627f,
+ -0.06453243f,0.05031825f, -0.046935108f, -0.008164439f, 0.014574226f,
+ -0.1671009f, -0.15519552f, -0.16819797f,-0.13971269f,-0.11953059f,
+ 0.25005487f, -0.22790983f, 0.009855087f, -0.028140958f, -0.11200698f,
+ 0.11295408f, -0.0035217577f, 0.054485075f, 0.05184695f, 0.064711206f,
+ 0.10989193f, 0.11674786f, 0.03490607f, 0.07727357f, 0.11390585f,
+ -0.1863375f, -0.1034451f, -0.13945189f, -0.049401227f, -0.18767063f,
+ 0.042483903f, 0.14233552f, 0.13832581f, 0.18350165f, 0.14545603f,
+ -0.028545704f,0.024939531f,0.050929718f,0.0076203286f,-0.0029723682f,
+ -0.042484224f, -0.11827596f, -0.09171104f, -0.10808628f,-0.16327988f,
+ -0.2273378f, -0.0993647f, -0.017155107f,0.0023917493f,0.049272764f,
+ 0.0038534778f, 0.054764505f, 0.089753784f, 0.06947234f, 0.08014476f,
+ -0.04544234f, -0.0497073f,-0.07135631f, -0.048929106f,-0.004042012f,
+ -0.009284026f, 0.018042054f, 0.0036860977f,-0.07427302f, -0.11434604f,
+ -0.018995456f, 0.031487543f, 0.012834908f,0.019977754f,0.044256654f,
+ -0.39292613f, -0.18519334f, -0.11651281f,-0.06809892f, 0.011373677f
+ });
+
+ auto inputToForgetWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.0018401089f, -0.004852237f,0.03698424f, 0.014181704f,0.028273236f,
+ -0.016726194f, -0.05249759f,-0.10204261f, 0.00861066f,-0.040979505f,
+ -0.009899187f,0.01923892f,-0.028177269f, -0.08535103f,-0.14585495f,
+ 0.10662567f,-0.01909731f,-0.017883534f,-0.0047269356f,-0.045103323f,
+ 0.0030784295f,0.076784775f,0.07463696f, 0.094531395f,0.0814421f,
+ -0.12257899f, -0.033945758f,-0.031303465f, 0.045630626f,0.06843887f,
+ -0.13492945f, -0.012480007f,-0.0811829f, -0.07224499f,-0.09628791f,
+ 0.045100946f,0.0012300825f, 0.013964662f, 0.099372394f,0.02543059f,
+ 0.06958324f, 0.034257296f, 0.0482646f, 0.06267997f,0.052625068f,
+ 0.12784666f, 0.07077897f, 0.025725935f, 0.04165009f,0.07241905f,
+ 0.018668644f, -0.037377294f,-0.06277783f,-0.08833636f,-0.040120605f,
+ -0.011405586f,-0.007808335f,-0.010301386f,-0.005102167f,0.027717464f,
+ 0.05483423f, 0.11449111f, 0.11289652f,0.10939839f, 0.13396506f,
+ -0.08402166f,-0.01901462f, -0.044678304f,-0.07720565f,0.014350063f,
+ -0.11757958f, -0.0652038f, -0.08185733f,-0.076754324f,-0.092614375f,
+ 0.10405491f, 0.052960336f, 0.035755895f,0.035839386f,-0.012540553f,
+ 0.036881298f, 0.02913376f, 0.03420159f,0.05448447f,-0.054523353f,
+ 0.02582715f, 0.02327355f, -0.011857179f,-0.0011980024f,-0.034641717f,
+ -0.026125094f,-0.17582615f,-0.15923657f,-0.27486774f,-0.0006143371f,
+ 0.0001771948f, -8.470171e-05f, 0.02651807f,0.045790765f,0.06956496f
+ });
+
+ auto inputToCellWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.04580283f, -0.09549462f, -0.032418985f, -0.06454633f,
+ -0.043528453f, 0.043018587f, -0.049152344f, -0.12418144f,
+ -0.078985475f, -0.07596889f, 0.019484362f, -0.11434962f,
+ -0.0074034138f, -0.06314844f, -0.092981495f, 0.0062155537f,
+ -0.025034338f, -0.0028890965f, 0.048929527f, 0.06235075f,
+ 0.10665918f, -0.032036792f, -0.08505916f, -0.10843358f,
+ -0.13002433f, -0.036816437f, -0.02130134f, -0.016518239f,
+ 0.0047691227f, -0.0025825808f, 0.066017866f, 0.029991534f,
+ -0.10652836f, -0.1037554f, -0.13056071f, -0.03266643f,
+ -0.033702414f, -0.006473424f, -0.04611692f, 0.014419339f,
+ -0.025174323f, 0.0396852f, 0.081777506f, 0.06157468f,
+ 0.10210095f, -0.009658194f, 0.046511717f, 0.03603906f,
+ 0.0069369148f, 0.015960095f, -0.06507666f, 0.09551598f,
+ 0.053568836f, 0.06408714f, 0.12835667f, -0.008714329f,
+ -0.20211966f, -0.12093674f, 0.029450472f, 0.2849013f,
+ -0.029227901f, 0.1164364f, -0.08560263f, 0.09941786f,
+ -0.036999565f, -0.028842626f, -0.0033637602f, -0.017012902f,
+ -0.09720865f, -0.11193351f, -0.029155117f, -0.017936034f,
+ -0.009768936f, -0.04223324f, -0.036159635f, 0.06505112f,
+ -0.021742892f, -0.023377212f, -0.07221364f, -0.06430552f,
+ 0.05453865f, 0.091149814f, 0.06387331f, 0.007518393f,
+ 0.055960953f, 0.069779344f, 0.046411168f, 0.10509911f,
+ 0.07463894f, 0.0075130584f, 0.012850982f, 0.04555431f,
+ 0.056955688f, 0.06555285f, 0.050801456f, -0.009862683f,
+ 0.00826772f, -0.026555609f, -0.0073611983f, -0.0014897042f
+ });
+
+ auto inputToOutputWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.0998932f, -0.07201956f, -0.052803773f,-0.15629593f,-0.15001918f,
+ -0.07650751f,0.02359855f, -0.075155355f, -0.08037709f, -0.15093534f,
+ 0.029517552f, -0.04751393f, 0.010350531f,-0.02664851f, -0.016839722f,
+ -0.023121163f, 0.0077019283f, 0.012851257f, -0.05040649f,-0.0129761f,
+ -0.021737747f,-0.038305793f,-0.06870586f, -0.01481247f,-0.001285394f,
+ 0.10124236f, 0.083122835f, 0.053313006f,-0.062235646f,-0.075637154f,
+ -0.027833903f, 0.029774971f, 0.1130802f, 0.09218906f, 0.09506135f,
+ -0.086665764f,-0.037162706f,-0.038880914f,-0.035832845f,-0.014481564f,
+ -0.09825003f,-0.12048569f,-0.097665586f,-0.05287633f, -0.0964047f,
+ -0.11366429f, 0.035777505f, 0.13568819f, 0.052451383f,0.050649304f,
+ 0.05798951f, -0.021852335f,-0.099848844f,0.014740475f,-0.078897946f,
+ 0.04974699f, 0.014160473f, 0.06973932f, 0.04964942f, 0.033364646f,
+ 0.08190124f, 0.025535367f, 0.050893165f, 0.048514254f,0.06945813f,
+ -0.078907564f,-0.06707616f, -0.11844508f, -0.09986688f,-0.07509403f,
+ 0.06263226f, 0.14925587f, 0.20188436f, 0.12098451f,0.14639415f,
+ 0.0015017595f, -0.014267382f, -0.03417257f,0.012711468f,0.0028300495f,
+ -0.024758482f, -0.05098548f,-0.0821182f, 0.014225672f, 0.021544158f,
+ 0.08949725f, 0.07505268f, -0.0020780868f, 0.04908258f,0.06476295f,
+ -0.022907063f,0.027562456f,0.040185735f, 0.019567577f,-0.015598739f,
+ -0.049097303f, -0.017121866f, -0.083368234f,-0.02332002f,-0.0840956f
+ });
+
+ auto inputGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.02234832f, 0.14757581f, 0.18176508f, 0.10380666f, 0.053110216f,
+ -0.06928846f, -0.13942584f, -0.11816189f, 0.19483899f, 0.03652339f,
+ -0.10250295f, 0.036714908f, -0.18426876f, 0.036065217f, 0.21810818f,
+ 0.02383196f, -0.043370757f, 0.08690144f, -0.04444982f, 0.00030581196f
+ });
+
+ auto forgetGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.035185695f, -0.042891346f, -0.03032477f, 0.23027696f,
+ 0.11098921f, 0.15378423f, 0.09263801f, 0.09790885f,
+ 0.09508917f, 0.061199076f, 0.07665568f, -0.015443159f,
+ -0.03499149f, 0.046190713f, 0.08895977f, 0.10899629f,
+ 0.40694186f, 0.06030037f, 0.012413437f, -0.06108739f
+ });
+
+ auto cellBias =
+ MakeTensor<float, 1>(tensorInfo20, {-0.024379363f, 0.0055531194f, 0.23377132f, 0.033463873f,
+ -0.1483596f, -0.10639995f, -0.091433935f, 0.058573797f,
+ -0.06809782f, -0.07889636f, -0.043246906f, -0.09829136f,
+ -0.4279842f, 0.034901652f, 0.18797937f, 0.0075234566f,
+ 0.016178843f, 0.1749513f, 0.13975595f, 0.92058027f
+ });
+
+ auto outputGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.046159424f, -0.0012809046f, 0.03563469f, 0.12648113f, 0.027195795f,
+ 0.35373217f, -0.018957434f, 0.008907322f, -0.0762701f, 0.12018895f,
+ 0.04216877f, 0.0022856654f, 0.040952638f, 0.3147856f, 0.08225149f,
+ -0.057416286f, -0.14995944f, -0.008040261f, 0.13208859f, 0.029760877f
+ });
+
+ auto recurrentToInputWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.001374326f, -0.078856036f, 0.10672688f, 0.029162422f,
+ -0.11585556f, 0.02557986f, -0.13446963f, -0.035785314f,
+ -0.01244275f, 0.025961924f, -0.02337298f, -0.044228926f,
+ -0.055839065f, -0.046598054f, -0.010546039f, -0.06900766f,
+ 0.027239809f, 0.022582639f, -0.013296484f, -0.05459212f,
+ 0.08981f, -0.045407712f, 0.08682226f, -0.06867011f,
+ -0.14390695f, -0.02916037f, 0.000996957f, 0.091420636f,
+ 0.14283475f, -0.07390571f, -0.06402044f, 0.062524505f,
+ -0.093129106f, 0.04860203f, -0.08364217f, -0.08119002f,
+ 0.009352075f, 0.22920375f, 0.0016303885f, 0.11583097f,
+ -0.13732095f, 0.012405723f, -0.07551853f, 0.06343048f,
+ 0.12162708f, -0.031923793f, -0.014335606f, 0.01790974f,
+ -0.10650317f, -0.0724401f, 0.08554849f, -0.05727212f,
+ 0.06556731f, -0.042729504f, -0.043227166f, 0.011683251f,
+ -0.013082158f, -0.029302018f, -0.010899579f, -0.062036745f,
+ -0.022509435f, -0.00964907f, -0.01567329f, 0.04260106f,
+ -0.07787477f, -0.11576462f, 0.017356863f, 0.048673786f,
+ -0.017577527f, -0.05527947f, -0.082487635f, -0.040137455f,
+ -0.10820036f, -0.04666372f, 0.022746278f, -0.07851417f,
+ 0.01068115f, 0.032956902f, 0.022433773f, 0.0026891115f,
+ 0.08944216f, -0.0685835f, 0.010513544f, 0.07228705f,
+ 0.02032331f, -0.059686817f, -0.0005566496f, -0.086984694f,
+ 0.040414046f, -0.1380399f, 0.094208956f, -0.05722982f,
+ 0.012092817f, -0.04989123f, -0.086576f, -0.003399834f,
+ -0.04696032f, -0.045747425f, 0.10091314f, 0.048676282f,
+ -0.029037097f, 0.031399418f, -0.0040285117f, 0.047237843f,
+ 0.09504992f, 0.041799378f, -0.049185462f, -0.031518843f,
+ -0.10516937f, 0.026374253f, 0.10058866f, -0.0033195973f,
+ -0.041975245f, 0.0073591834f, 0.0033782164f, -0.004325073f,
+ -0.10167381f, 0.042500053f, -0.01447153f, 0.06464186f,
+ -0.017142897f, 0.03312627f, 0.009205989f, 0.024138335f,
+ -0.011337001f, 0.035530265f, -0.010912711f, 0.0706555f,
+ -0.005894094f, 0.051841937f, -0.1401738f, -0.02351249f,
+ 0.0365468f, 0.07590991f, 0.08838724f, 0.021681072f,
+ -0.10086113f, 0.019608743f, -0.06195883f, 0.077335775f,
+ 0.023646897f, -0.095322326f, 0.02233014f, 0.09756986f,
+ -0.048691444f, -0.009579111f, 0.07595467f, 0.11480546f,
+ -0.09801813f, 0.019894179f, 0.08502348f, 0.004032281f,
+ 0.037211012f, 0.068537936f, -0.048005626f, -0.091520436f,
+ -0.028379958f, -0.01556313f, 0.06554592f, -0.045599163f,
+ -0.01672207f, -0.020169014f, -0.011877351f, -0.20212261f,
+ 0.010889619f, 0.0047078193f, 0.038385306f, 0.08540671f,
+ -0.017140968f, -0.0035865551f, 0.016678626f, 0.005633034f,
+ 0.015963363f, 0.00871737f, 0.060130805f, 0.028611384f,
+ 0.10109069f, -0.015060172f, -0.07894427f, 0.06401885f,
+ 0.011584063f, -0.024466386f, 0.0047652307f, -0.09041358f,
+ 0.030737216f, -0.0046374933f, 0.14215417f, -0.11823516f,
+ 0.019899689f, 0.006106124f, -0.027092824f, 0.0786356f,
+ 0.05052217f, -0.058925f, -0.011402121f, -0.024987547f,
+ -0.0013661642f, -0.06832946f, -0.015667673f, -0.1083353f,
+ -0.00096863037f, -0.06988685f, -0.053350925f, -0.027275559f,
+ -0.033664223f, -0.07978348f, -0.025200296f, -0.017207067f,
+ -0.058403496f, -0.055697463f, 0.005798788f, 0.12965427f,
+ -0.062582195f, 0.0013350133f, -0.10482091f, 0.0379771f,
+ 0.072521195f, -0.0029455067f, -0.13797039f, -0.03628521f,
+ 0.013806405f, -0.017858358f, -0.01008298f, -0.07700066f,
+ -0.017081132f, 0.019358726f, 0.0027079724f, 0.004635139f,
+ 0.062634714f, -0.02338735f, -0.039547626f, -0.02050681f,
+ 0.03385117f, -0.083611414f, 0.002862572f, -0.09421313f,
+ 0.058618143f, -0.08598433f, 0.00972939f, 0.023867095f,
+ -0.053934585f, -0.023203006f, 0.07452513f, -0.048767887f,
+ -0.07314807f, -0.056307215f, -0.10433547f, -0.06440842f,
+ 0.04328182f, 0.04389765f, -0.020006588f, -0.09076438f,
+ -0.11652589f, -0.021705797f, 0.03345259f, -0.010329105f,
+ -0.025767034f, 0.013057034f, -0.07316461f, -0.10145612f,
+ 0.06358255f, 0.18531723f, 0.07759293f, 0.12006465f,
+ 0.1305557f, 0.058638252f, -0.03393652f, 0.09622831f,
+ -0.16253184f, -2.4580743e-06f, 0.079869635f, -0.070196845f,
+ -0.005644518f, 0.06857898f, -0.12598175f, -0.035084512f,
+ 0.03156317f, -0.12794146f, -0.031963028f, 0.04692781f,
+ 0.030070418f, 0.0071660685f, -0.095516115f, -0.004643372f,
+ 0.040170413f, -0.062104587f, -0.0037324072f, 0.0554317f,
+ 0.08184801f, -0.019164372f, 0.06791302f, 0.034257166f,
+ -0.10307039f, 0.021943003f, 0.046745934f, 0.0790918f,
+ -0.0265588f, -0.007824208f, 0.042546265f, -0.00977924f,
+ -0.0002440307f, -0.017384544f, -0.017990116f, 0.12252321f,
+ -0.014512694f, -0.08251313f, 0.08861942f, 0.13589665f,
+ 0.026351685f, 0.012641483f, 0.07466548f, 0.044301085f,
+ -0.045414884f, -0.051112458f, 0.03444247f, -0.08502782f,
+ -0.04106223f, -0.028126027f, 0.028473156f, 0.10467447f
+ });
+
+ auto recurrentToForgetWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.057784554f, -0.026057621f, -0.068447545f, -0.022581743f,
+ 0.14811787f, 0.10826372f, 0.09471067f, 0.03987225f,
+ -0.0039523416f, 0.00030638507f, 0.053185795f, 0.10572994f,
+ 0.08414449f, -0.022036452f, -0.00066928595f, -0.09203576f,
+ 0.032950465f, -0.10985798f, -0.023809856f, 0.0021431844f,
+ -0.02196096f, -0.00326074f, 0.00058621005f, -0.074678116f,
+ -0.06193199f, 0.055729095f, 0.03736828f, 0.020123724f,
+ 0.061878487f, -0.04729229f, 0.034919553f, -0.07585433f,
+ -0.04421272f, -0.044019096f, 0.085488975f, 0.04058006f,
+ -0.06890133f, -0.030951202f, -0.024628663f, -0.07672815f,
+ 0.034293607f, 0.08556707f, -0.05293577f, -0.033561368f,
+ -0.04899627f, 0.0241671f, 0.015736353f, -0.095442444f,
+ -0.029564252f, 0.016493602f, -0.035026584f, 0.022337519f,
+ -0.026871363f, 0.004780428f, 0.0077918363f, -0.03601621f,
+ 0.016435321f, -0.03263031f, -0.09543275f, -0.047392778f,
+ 0.013454138f, 0.028934088f, 0.01685226f, -0.086110644f,
+ -0.046250615f, -0.01847454f, 0.047608484f, 0.07339695f,
+ 0.034546845f, -0.04881143f, 0.009128804f, -0.08802852f,
+ 0.03761666f, 0.008096139f, -0.014454086f, 0.014361001f,
+ -0.023502491f, -0.0011840804f, -0.07607001f, 0.001856849f,
+ -0.06509276f, -0.006021153f, -0.08570962f, -0.1451793f,
+ 0.060212336f, 0.055259194f, 0.06974018f, 0.049454916f,
+ -0.027794661f, -0.08077226f, -0.016179763f, 0.1169753f,
+ 0.17213494f, -0.0056326236f, -0.053934924f, -0.0124349f,
+ -0.11520337f, 0.05409887f, 0.088759385f, 0.0019655675f,
+ 0.0042065294f, 0.03881498f, 0.019844765f, 0.041858196f,
+ -0.05695512f, 0.047233116f, 0.038937137f, -0.06542224f,
+ 0.014429736f, -0.09719407f, 0.13908425f, -0.05379757f,
+ 0.012321099f, 0.082840554f, -0.029899208f, 0.044217527f,
+ 0.059855383f, 0.07711018f, -0.045319796f, 0.0948846f,
+ -0.011724666f, -0.0033288454f, -0.033542685f, -0.04764985f,
+ -0.13873616f, 0.040668588f, 0.034832682f, -0.015319203f,
+ -0.018715994f, 0.046002675f, 0.0599172f, -0.043107376f,
+ 0.0294216f, -0.002314414f, -0.022424703f, 0.0030315618f,
+ 0.0014641669f, 0.0029166266f, -0.11878115f, 0.013738511f,
+ 0.12375372f, -0.0006038222f, 0.029104086f, 0.087442465f,
+ 0.052958444f, 0.07558703f, 0.04817258f, 0.044462286f,
+ -0.015213451f, -0.08783778f, -0.0561384f, -0.003008196f,
+ 0.047060397f, -0.002058388f, 0.03429439f, -0.018839769f,
+ 0.024734668f, 0.024614193f, -0.042046934f, 0.09597743f,
+ -0.0043254104f, 0.04320769f, 0.0064070094f, -0.0019131786f,
+ -0.02558259f, -0.022822596f, -0.023273505f, -0.02464396f,
+ -0.10991725f, -0.006240552f, 0.0074488563f, 0.024044557f,
+ 0.04383914f, -0.046476185f, 0.028658995f, 0.060410924f,
+ 0.050786525f, 0.009452605f, -0.0073054377f, -0.024810238f,
+ 0.0052906186f, 0.0066939713f, -0.0020913032f, 0.014515517f,
+ 0.015898481f, 0.021362653f, -0.030262267f, 0.016587038f,
+ -0.011442813f, 0.041154444f, -0.007631438f, -0.03423484f,
+ -0.010977775f, 0.036152758f, 0.0066366293f, 0.11915515f,
+ 0.02318443f, -0.041350313f, 0.021485701f, -0.10906167f,
+ -0.028218046f, -0.00954771f, 0.020531068f, -0.11995105f,
+ -0.03672871f, 0.024019798f, 0.014255957f, -0.05221243f,
+ -0.00661567f, -0.04630967f, 0.033188973f, 0.10107534f,
+ -0.014027541f, 0.030796422f, -0.10270911f, -0.035999842f,
+ 0.15443139f, 0.07684145f, 0.036571592f, -0.035900835f,
+ -0.0034699554f, 0.06209149f, 0.015920248f, -0.031122351f,
+ -0.03858649f, 0.01849943f, 0.13872518f, 0.01503974f,
+ 0.069941424f, -0.06948533f, -0.0088794185f, 0.061282158f,
+ -0.047401894f, 0.03100163f, -0.041533746f, -0.10430945f,
+ 0.044574402f, -0.01425562f, -0.024290353f, 0.034563623f,
+ 0.05866852f, 0.023947537f, -0.09445152f, 0.035450947f,
+ 0.02247216f, -0.0042998926f, 0.061146557f, -0.10250651f,
+ 0.020881841f, -0.06747029f, 0.10062043f, -0.0023941975f,
+ 0.03532124f, -0.016341697f, 0.09685456f, -0.016764693f,
+ 0.051808182f, 0.05875331f, -0.04536488f, 0.001626336f,
+ -0.028892258f, -0.01048663f, -0.009793449f, -0.017093895f,
+ 0.010987891f, 0.02357273f, -0.00010856845f, 0.0099760275f,
+ -0.001845119f, -0.03551521f, 0.0018358806f, 0.05763657f,
+ -0.01769146f, 0.040995963f, 0.02235177f, -0.060430344f,
+ 0.11475477f, -0.023854522f, 0.10071741f, 0.0686208f,
+ -0.014250481f, 0.034261297f, 0.047418304f, 0.08562733f,
+ -0.030519066f, 0.0060542435f, 0.014653856f, -0.038836084f,
+ 0.04096551f, 0.032249358f, -0.08355519f, -0.026823482f,
+ 0.056386515f, -0.010401743f, -0.028396193f, 0.08507674f,
+ 0.014410365f, 0.020995233f, 0.17040324f, 0.11511526f,
+ 0.02459721f, 0.0066619175f, 0.025853224f, -0.023133837f,
+ -0.081302024f, 0.017264642f, -0.009585969f, 0.09491168f,
+ -0.051313367f, 0.054532815f, -0.014298593f, 0.10657464f,
+ 0.007076659f, 0.10964551f, 0.0409152f, 0.008275321f,
+ -0.07283536f, 0.07937492f, 0.04192024f, -0.1075027f
+ });
+
+ auto recurrentToCellWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.037322544f, 0.018592842f, 0.0056175636f, -0.06253426f,
+ 0.055647098f, -0.05713207f, -0.05626563f, 0.005559383f,
+ 0.03375411f, -0.025757805f, -0.088049285f, 0.06017052f,
+ -0.06570978f, 0.007384076f, 0.035123326f, -0.07920549f,
+ 0.053676967f, 0.044480428f, -0.07663568f, 0.0071805613f,
+ 0.08089997f, 0.05143358f, 0.038261272f, 0.03339287f,
+ -0.027673481f, 0.044746667f, 0.028349208f, 0.020090483f,
+ -0.019443132f, -0.030755889f, -0.0040000007f, 0.04465846f,
+ -0.021585021f, 0.0031670958f, 0.0053199246f, -0.056117613f,
+ -0.10893326f, 0.076739706f, -0.08509834f, -0.027997585f,
+ 0.037871376f, 0.01449768f, -0.09002357f, -0.06111149f,
+ -0.046195522f, 0.0422062f, -0.005683705f, -0.1253618f,
+ -0.012925729f, -0.04890792f, 0.06985068f, 0.037654128f,
+ 0.03398274f, -0.004781977f, 0.007032333f, -0.031787455f,
+ 0.010868644f, -0.031489216f, 0.09525667f, 0.013939797f,
+ 0.0058680447f, 0.0167067f, 0.02668468f, -0.04797466f,
+ -0.048885044f, -0.12722108f, 0.035304096f, 0.06554885f,
+ 0.00972396f, -0.039238118f, -0.05159735f, -0.11329045f,
+ 0.1613692f, -0.03750952f, 0.06529313f, -0.071974665f,
+ -0.11769596f, 0.015524369f, -0.0013754242f, -0.12446318f,
+ 0.02786344f, -0.014179351f, 0.005264273f, 0.14376344f,
+ 0.015983658f, 0.03406988f, -0.06939408f, 0.040699873f,
+ 0.02111075f, 0.09669095f, 0.041345075f, -0.08316494f,
+ -0.07684199f, -0.045768797f, 0.032298047f, -0.041805092f,
+ 0.0119405f, 0.0061010392f, 0.12652606f, 0.0064572375f,
+ -0.024950314f, 0.11574242f, 0.04508852f, -0.04335324f,
+ 0.06760663f, -0.027437469f, 0.07216407f, 0.06977076f,
+ -0.05438599f, 0.034033038f, -0.028602652f, 0.05346137f,
+ 0.043184172f, -0.037189785f, 0.10420091f, 0.00882477f,
+ -0.054019816f, -0.074273005f, -0.030617684f, -0.0028467078f,
+ 0.024302477f, -0.0038869337f, 0.005332455f, 0.0013399826f,
+ 0.04361412f, -0.007001822f, 0.09631092f, -0.06702025f,
+ -0.042049985f, -0.035070654f, -0.04103342f, -0.10273396f,
+ 0.0544271f, 0.037184782f, -0.13150354f, -0.0058036847f,
+ -0.008264958f, 0.042035464f, 0.05891794f, 0.029673764f,
+ 0.0063542654f, 0.044788733f, 0.054816857f, 0.062257513f,
+ -0.00093483756f, 0.048938446f, -0.004952862f, -0.007730018f,
+ -0.04043371f, -0.017094059f, 0.07229206f, -0.023670016f,
+ -0.052195564f, -0.025616996f, -0.01520939f, 0.045104615f,
+ -0.007376126f, 0.003533447f, 0.006570588f, 0.056037236f,
+ 0.12436656f, 0.051817212f, 0.028532185f, -0.08686856f,
+ 0.11868599f, 0.07663395f, -0.07323171f, 0.03463402f,
+ -0.050708205f, -0.04458982f, -0.11590894f, 0.021273347f,
+ 0.1251325f, -0.15313013f, -0.12224372f, 0.17228661f,
+ 0.023029093f, 0.086124025f, 0.006445803f, -0.03496501f,
+ 0.028332196f, 0.04449512f, -0.042436164f, -0.026587414f,
+ -0.006041347f, -0.09292539f, -0.05678812f, 0.03897832f,
+ 0.09465633f, 0.008115513f, -0.02171956f, 0.08304309f,
+ 0.071401566f, 0.019622514f, 0.032163795f, -0.004167056f,
+ 0.02295182f, 0.030739572f, 0.056506045f, 0.004612461f,
+ 0.06524936f, 0.059999723f, 0.046395954f, -0.0045512207f,
+ -0.1335546f, -0.030136576f, 0.11584653f, -0.014678886f,
+ 0.0020118146f, -0.09688814f, -0.0790206f, 0.039770417f,
+ -0.0329582f, 0.07922767f, 0.029322514f, 0.026405897f,
+ 0.04207835f, -0.07073373f, 0.063781224f, 0.0859677f,
+ -0.10925287f, -0.07011058f, 0.048005477f, 0.03438226f,
+ -0.09606514f, -0.006669445f, -0.043381985f, 0.04240257f,
+ -0.06955775f, -0.06769346f, 0.043903265f, -0.026784198f,
+ -0.017840602f, 0.024307009f, -0.040079936f, -0.019946516f,
+ 0.045318738f, -0.12233574f, 0.026170589f, 0.0074471775f,
+ 0.15978073f, 0.10185836f, 0.10298046f, -0.015476589f,
+ -0.039390966f, -0.072174534f, 0.0739445f, -0.1211869f,
+ -0.0347889f, -0.07943156f, 0.014809798f, -0.12412325f,
+ -0.0030663363f, 0.039695457f, 0.0647603f, -0.08291318f,
+ -0.018529687f, -0.004423833f, 0.0037507233f, 0.084633216f,
+ -0.01514876f, -0.056505352f, -0.012800942f, -0.06994386f,
+ 0.012962922f, -0.031234352f, 0.07029052f, 0.016418684f,
+ 0.03618972f, 0.055686004f, -0.08663945f, -0.017404709f,
+ -0.054761406f, 0.029065743f, 0.052404847f, 0.020238016f,
+ 0.0048197987f, -0.0214882f, 0.07078733f, 0.013016777f,
+ 0.06262858f, 0.009184685f, 0.020785125f, -0.043904778f,
+ -0.0270329f, -0.03299152f, -0.060088247f, -0.015162964f,
+ -0.001828936f, 0.12642565f, -0.056757294f, 0.013586685f,
+ 0.09232601f, -0.035886683f, 0.06000002f, 0.05229691f,
+ -0.052580316f, -0.082029596f, -0.010794592f, 0.012947712f,
+ -0.036429964f, -0.085508935f, -0.13127148f, -0.017744139f,
+ 0.031502828f, 0.036232427f, -0.031581745f, 0.023051167f,
+ -0.05325106f, -0.03421577f, 0.028793324f, -0.034633752f,
+ -0.009881397f, -0.043551125f, -0.018609839f, 0.0019097115f,
+ -0.008799762f, 0.056595087f, 0.0022273948f, 0.055752404f
+ });
+
+ auto recurrentToOutputWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {0.025825322f, -0.05813119f, 0.09495884f,-0.045984812f, -0.01255415f,
+ -0.0026479573f,-0.08196161f,-0.054914974f,-0.0046604523f,
+ -0.029587349f, -0.044576716f, -0.07480124f, -0.082868785f,
+ 0.023254942f, 0.027502948f, -0.0039728214f, -0.08683098f,
+ -0.08116779f, -0.014675607f, -0.037924774f, -0.023314456f,
+ -0.007401714f, -0.09255757f, 0.029460307f, -0.08829125f,
+ -0.005139627f, -0.08989442f, -0.0555066f, 0.13596267f,
+ -0.025062224f, -0.048351806f, -0.03850004f, 0.07266485f,
+ -0.022414139f, 0.05940088f, 0.075114764f, 0.09597592f,
+ -0.010211725f, -0.0049794707f, -0.011523867f, -0.025980417f,
+ 0.072999895f, 0.11091378f, -0.081685916f, 0.014416728f,
+ 0.043229222f, 0.034178585f, -0.07530371f, 0.035837382f,
+ -0.085607f, -0.007721233f, -0.03287832f, -0.043848954f,
+ -0.06404588f, -0.06632928f, -0.073643476f, 0.008214239f,
+ -0.045984086f, 0.039764922f, 0.03474462f, 0.060612556f,
+ -0.080590084f, 0.049127717f, 0.04151091f, -0.030063879f,
+ 0.008801774f, -0.023021035f, -0.019558564f, 0.05158114f,
+ -0.010947698f, -0.011825728f, 0.0075720972f, 0.0699727f,
+ -0.0039981045f, 0.069350146f, 0.08799282f, 0.016156472f,
+ 0.035502106f, 0.11695009f, 0.006217345f, 0.13392477f,
+ -0.037875112f, 0.025745004f, 0.08940699f, -0.00924166f,
+ 0.0046702605f, -0.036598757f, -0.08811812f, 0.10522024f,
+ -0.032441203f, 0.008176899f, -0.04454919f, 0.07058152f,
+ 0.0067963637f, 0.039206743f, 0.03259838f, 0.03725492f,
+ -0.09515802f, 0.013326398f, -0.052055415f, -0.025676316f,
+ 0.03198509f, -0.015951829f, -0.058556724f, 0.036879618f,
+ 0.043357447f, 0.028362012f, -0.05908629f, 0.0059240665f,
+ -0.04995891f, -0.019187413f,0.0276265f, -0.01628143f, 0.0025863599f,
+ 0.08800015f, 0.035250366f, -0.022165963f, -0.07328642f,
+ -0.009415526f, -0.07455109f, 0.11690406f, 0.0363299f,
+ 0.07411125f, 0.042103454f, -0.009660886f, 0.019076364f,
+ 0.018299393f, -0.046004917f, 0.08891175f,0.0431396f, -0.026327137f,
+ -0.051502608f, 0.08979574f, -0.051670972f, 0.04940282f,
+ -0.07491107f, -0.021240504f, 0.022596184f, -0.034280192f,
+ 0.060163025f, -0.058211457f, -0.051837247f, -0.01349775f,
+ -0.04639988f, -0.035936575f, -0.011681591f, 0.064818054f,
+ 0.0073146066f, -0.021745546f, -0.043124277f, -0.06471268f,
+ -0.07053354f, -0.029321948f, -0.05330136f, 0.016933719f,
+ -0.053782392f, 0.13747959f, -0.1361751f, -0.11569455f,
+ 0.0033329215f, 0.05693899f, -0.053219706f, 0.063698f,
+ 0.07977434f, -0.07924483f, 0.06936997f, 0.0034815092f,
+ -0.007305279f, -0.037325785f, -0.07251102f, -0.033633437f,
+ -0.08677009f, 0.091591336f, -0.14165086f, 0.021752775f,
+ 0.019683983f, 0.0011612234f, -0.058154266f, 0.049996935f,
+ 0.0288841f, -0.0024567875f, -0.14345716f, 0.010955264f,-0.10234828f,
+ 0.1183656f, -0.0010731248f, -0.023590032f,-0.072285876f,-0.0724771f,
+ -0.026382286f, -0.0014920527f, 0.042667855f, 0.0018776858f,
+ 0.02986552f, 0.009814309f, 0.0733756f, 0.12289186f,
+ 0.018043943f, -0.0458958f, 0.049412545f, 0.033632483f,
+ 0.05495232f, 0.036686596f, -0.013781798f, -0.010036754f,
+ 0.02576849f, -0.08307328f, 0.010112348f, 0.042521734f,
+ -0.05869831f, -0.071689695f, 0.03876447f, -0.13275425f, -0.0352966f,
+ -0.023077697f, 0.10285965f, 0.084736146f, 0.15568255f,
+ -0.00040734606f, 0.027835453f, -0.10292561f, -0.032401145f,
+ 0.10053256f, -0.026142767f, -0.08271222f, -0.0030240538f,
+ -0.016368777f, 0.1070414f, 0.042672627f, 0.013456989f,
+ -0.0437609f, -0.022309763f, 0.11576483f, 0.04108048f,
+ 0.061026827f, -0.0190714f, -0.0869359f, 0.037901703f, 0.0610107f,
+ 0.07202949f, 0.01675338f, 0.086139716f, -0.08795751f,
+ -0.014898893f, -0.023771819f, -0.01965048f, 0.007955471f,
+ -0.043740474f, 0.03346837f, -0.10549954f, 0.090567775f,
+ 0.042013682f, -0.03176985f, 0.12569028f, -0.02421228f,
+ -0.029526481f, 0.023851605f, 0.031539805f, 0.05292009f,
+ -0.02344001f, -0.07811758f, -0.08834428f, 0.10094801f,
+ 0.16594367f, -0.06861939f, -0.021256343f, -0.041093912f,
+ -0.06669611f, 0.035498552f, 0.021757556f, -0.09302526f,
+ -0.015403468f, -0.06614931f, -0.051798206f, -0.013874718f,
+ 0.03630673f, 0.010412845f, -0.08077351f, 0.046185967f,
+ 0.0035662893f, 0.03541868f, -0.094149634f, -0.034814864f,
+ 0.003128424f, -0.020674974f, -0.03944324f, -0.008110165f,
+ -0.11113267f, 0.08484226f, 0.043586485f, 0.040582247f,
+ 0.0968012f, -0.065249965f, -0.028036479f, 0.0050708856f,
+ 0.0017462453f, 0.0326779f, 0.041296225f, 0.09164146f,
+ -0.047743853f, -0.015952192f, -0.034451712f, 0.084197424f,
+ -0.05347844f, -0.11768019f, 0.085926116f, -0.08251791f,
+ -0.045081906f, 0.0948852f, 0.068401024f, 0.024856757f,
+ 0.06978981f, -0.057309967f, -0.012775832f, -0.0032452994f,
+ 0.01977615f, -0.041040014f, -0.024264973f,0.063464895f, 0.05431621f
+ });
+
+ auto cellToInputWeights =
+ MakeTensor<float, 1>(tensorInfo20, {0.040369894f, 0.030746894f, 0.24704495f, 0.018586371f, -0.037586458f,
+ -0.15312155f, -0.11812848f, -0.11465643f, 0.20259799f, 0.11418174f,
+ -0.10116027f, -0.011334949f, 0.12411352f, -0.076769054f,-0.052169047f,
+ 0.21198851f, -0.38871562f, -0.09061183f, -0.09683246f, -0.21929175f
+ });
+
+
+ auto cellToForgetWeights =
+ MakeTensor<float, 1>(tensorInfo20, {-0.01998659f,-0.15568835f,-0.24248174f, -0.012770197f, 0.041331276f,
+ -0.072311886f, -0.052123554f,-0.0066330447f,-0.043891653f,0.036225766f,
+ -0.047248036f, 0.021479502f,0.033189066f, 0.11952997f, -0.020432774f,
+ 0.64658105f, -0.06650122f, -0.03467612f, 0.095340036f, 0.23647355f
+ });
+
+ auto cellToOutputWeights =
+ MakeTensor<float, 1>(tensorInfo20, {0.08286371f, -0.08261836f, -0.51210177f, 0.002913762f, 0.17764764f,
+ -0.5495371f, -0.08460716f, -0.24552552f, 0.030037103f, 0.04123544f,
+ -0.11940523f, 0.007358328f, 0.1890978f, 0.4833202f, -0.34441817f,
+ 0.36312827f, -0.26375428f, 0.1457655f, -0.19724406f, 0.15548733f
+ });
+
+ auto projectionWeights =
+ MakeTensor<float, 2>(tensorInfo16x20,
+ {-0.009802181f, 0.09401916f, 0.0717386f, -0.13895074f, 0.09641832f,
+ 0.060420845f, 0.08539281f, 0.054285463f, 0.061395317f, 0.034448683f,
+ -0.042991187f, 0.019801661f, -0.16840284f, -0.015726732f, -0.23041931f,
+ -0.024478018f, -0.10959692f, -0.013875541f, 0.18600968f, -0.061274476f,
+ 0.0138165f, -0.08160894f, -0.07661644f, 0.032372914f, 0.16169067f,
+ 0.22465782f, -0.03993472f, -0.004017731f, 0.08633481f, -0.28869787f,
+ 0.08682067f, 0.17240396f, 0.014975425f, 0.056431185f, 0.031037588f,
+ 0.16702051f, 0.0077946745f, 0.15140012f, 0.29405436f, 0.120285f,
+ -0.188994f, -0.027265169f, 0.043389652f, -0.022061434f, 0.014777949f,
+ -0.20203483f, 0.094781205f, 0.19100232f, 0.13987629f, -0.036132768f,
+ -0.06426278f, -0.05108664f, 0.13221376f, 0.009441198f, -0.16715929f,
+ 0.15859416f, -0.040437475f, 0.050779544f, -0.022187516f, 0.012166504f,
+ 0.027685808f, -0.07675938f, -0.0055694645f, -0.09444123f, 0.0046453946f,
+ 0.050794356f, 0.10770313f, -0.20790008f, -0.07149004f, -0.11425117f,
+ 0.008225835f, -0.035802525f, 0.14374903f, 0.15262283f, 0.048710253f,
+ 0.1847461f, -0.007487823f, 0.11000021f, -0.09542012f, 0.22619456f,
+ -0.029149994f, 0.08527916f, 0.009043713f, 0.0042746216f, 0.016261552f,
+ 0.022461696f, 0.12689082f, -0.043589946f, -0.12035478f, -0.08361797f,
+ -0.050666027f, -0.1248618f, -0.1275799f, -0.071875185f, 0.07377272f,
+ 0.09944291f, -0.18897448f, -0.1593054f, -0.06526116f, -0.040107165f,
+ -0.004618631f, -0.067624845f, -0.007576253f, 0.10727444f, 0.041546922f,
+ -0.20424393f, 0.06907816f, 0.050412357f, 0.00724631f, 0.039827548f,
+ 0.12449835f, 0.10747581f, 0.13708383f, 0.09134148f, -0.12617786f,
+ -0.06428341f, 0.09956831f, 0.1208086f, -0.14676677f, -0.0727722f,
+ 0.1126304f, 0.010139365f, 0.015571211f, -0.038128063f, 0.022913318f,
+ -0.042050496f, 0.16842307f, -0.060597885f, 0.10531834f, -0.06411776f,
+ -0.07451711f, -0.03410368f, -0.13393489f, 0.06534304f, 0.003620307f,
+ 0.04490757f, 0.05970546f, 0.05197996f, 0.02839995f, 0.10434969f,
+ -0.013699693f, -0.028353551f, -0.07260381f, 0.047201227f, -0.024575593f,
+ -0.036445823f, 0.07155557f, 0.009672501f, -0.02328883f, 0.009533515f,
+ -0.03606021f, -0.07421458f, -0.028082801f, -0.2678904f, -0.13221288f,
+ 0.18419984f, -0.13012612f, -0.014588381f, -0.035059117f, -0.04824723f,
+ 0.07830115f, -0.056184657f, 0.03277091f, 0.025466874f, 0.14494097f,
+ -0.12522776f, -0.098633975f, -0.10766018f, -0.08317623f, 0.08594209f,
+ 0.07749552f, 0.039474737f, 0.1776665f, -0.07409566f, -0.0477268f,
+ 0.29323658f, 0.10801441f, 0.1154011f, 0.013952499f, 0.10739139f,
+ 0.10708251f, -0.051456142f, 0.0074137426f, -0.10430189f, 0.10034707f,
+ 0.045594677f, 0.0635285f, -0.0715442f, -0.089667566f, -0.10811871f,
+ 0.00026344223f, 0.08298446f, -0.009525053f, 0.006585689f, -0.24567553f,
+ -0.09450807f, 0.09648481f, 0.026996298f, -0.06419476f, -0.04752702f,
+ -0.11063944f, -0.23441927f, -0.17608605f, -0.052156363f, 0.067035615f,
+ 0.19271925f, -0.0032889997f, -0.043264326f, 0.09663576f, -0.057112187f,
+ -0.10100678f, 0.0628376f, 0.04447668f, 0.017961001f, -0.10094388f,
+ -0.10190601f, 0.18335468f, 0.10494553f, -0.052095775f, -0.0026118709f,
+ 0.10539724f, -0.04383912f, -0.042349473f, 0.08438151f, -0.1947263f,
+ 0.02251204f, 0.11216432f, -0.10307853f, 0.17351969f, -0.039091777f,
+ 0.08066188f, -0.00561982f, 0.12633002f, 0.11335965f, -0.0088127935f,
+ -0.019777594f, 0.06864014f, -0.059751723f, 0.016233567f, -0.06894641f,
+ -0.28651384f, -0.004228674f, 0.019708522f, -0.16305895f, -0.07468996f,
+ -0.0855457f, 0.099339016f, -0.07580735f, -0.13775392f, 0.08434318f,
+ 0.08330512f, -0.12131499f, 0.031935584f, 0.09180414f, -0.08876437f,
+ -0.08049874f, 0.008753825f, 0.03498998f, 0.030215185f, 0.03907079f,
+ 0.089751154f, 0.029194152f, -0.03337423f, -0.019092513f, 0.04331237f,
+ 0.04299654f, -0.036394123f, -0.12915532f, 0.09793732f, 0.07512415f,
+ -0.11319543f, -0.032502122f, 0.15661901f, 0.07671967f, -0.005491124f,
+ -0.19379048f, -0.218606f, 0.21448623f, 0.017840758f, 0.1416943f,
+ -0.07051762f, 0.19488361f, 0.02664691f, -0.18104725f, -0.09334311f,
+ 0.15026465f, -0.15493552f, -0.057762887f, -0.11604192f, -0.262013f,
+ -0.01391798f, 0.012185008f, 0.11156489f, -0.07483202f, 0.06693364f,
+ -0.26151478f, 0.046425626f, 0.036540434f, -0.16435726f, 0.17338543f,
+ -0.21401681f, -0.11385144f, -0.08283257f, -0.069031075f, 0.030635102f,
+ 0.010969227f, 0.11109743f, 0.010919218f, 0.027526086f, 0.13519906f,
+ 0.01891392f, -0.046839405f, -0.040167913f, 0.017953383f, -0.09700955f,
+ 0.0061885654f, -0.07000971f, 0.026893595f, -0.038844477f, 0.14543656f
+ });
+
+ std::vector<float> projectionBiasVector(outputSize, 0.f);
+ auto projectionBias = MakeTensor<float,1>(tensorInfo16, projectionBiasVector);
+
+ armnn::ScopedCpuTensorHandle inputToInputWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToInputWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle cellToInputWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle inputGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellToForgetWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellToOutputWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle projectionWeightsTensor(tensorInfo16x20);
+ armnn::ScopedCpuTensorHandle projectionBiasTensor(tensorInfo16);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, &inputToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, &recurrentToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, &cellToInputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, &inputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, &cellToForgetWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, &cellToOutputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, &projectionWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, &projectionBias[0]);
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_CellToInputWeights = &cellToInputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+ data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
+ data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
+ data.m_ProjectionWeights = &projectionWeightsTensor;
+ data.m_ProjectionBias = &projectionBiasTensor;
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = true;
+ data.m_Parameters.m_ProjectionEnabled = true;
+
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ return ret;
+
+}
+
+
+LayerTestResult<float, 2> LstmLayerWithCifgWithPeepholeNoProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected)
+{
+ bool cifgEnabled = true;
+ bool peepholeEnabled = true;
+ bool projectionEnabled = false;
+ // These are not the input and the output of Lstm yet
+ unsigned int batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
+
+ unsigned int outputSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+
+ const unsigned int cellSize = outputSize;
+
+ // Decide the shape of all input tensors
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize, cellSize}, armnn::GetDataType<float>());
+
+ unsigned int scratchBufferSize = cifgEnabled ? cellSize * 4 : cellSize * 3;
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, scratchBufferSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, cellSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+ // List of inputs
+ std::vector<float> inputData;
+ inputData.assign(input.data(), input.data() + batchSize*inputSize);
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputData);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float, 2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> cellStateInVector(batchSize * cellSize, 0.f);
+ auto cellStateInTensor = MakeTensor<float, 2>(cellStateInTensorInfo, cellStateInVector);
+
+
+ // Prepare all the weights in the descriptor for LSTM
+ armnn::LstmQueueDescriptor data;
+ armnn::TensorInfo tensorInfoInput({cellSize, inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfoOutput({cellSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfoNumUnits({cellSize}, armnn::GetDataType<float>());
+
+ auto inputToCellWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {-0.49770179f, -0.27711356f, -0.09624726f, 0.05100781f,
+ 0.04717243f, 0.48944736f, -0.38535351f,
+ -0.17212132f});
+ auto inputToForgetWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {-0.55291498f, -0.42866567f, 0.13056988f,
+ -0.3633365f, -0.22755712f, 0.28253698f, 0.24407166f,
+ 0.33826375f});
+ auto inputToOutputWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {0.10725588f, -0.02335852f, -0.55932593f,
+ -0.09426838f, -0.44257352f, 0.54939759f,
+ 0.01533556f, 0.42751634f});
+ auto cellBias = MakeTensor<float, 1>(tensorInfoNumUnits, {0.f, 0.f, 0.f, 0.f});
+ auto forgetGateBias = MakeTensor<float, 1>(tensorInfoNumUnits, {1.f, 1.f, 1.f, 1.f});
+ auto outputGateBias = MakeTensor<float, 1>(tensorInfoNumUnits, {0.f, 0.f, 0.f, 0.f});
+
+ auto recurrentToCellWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {0.54066205f, -0.32668582f, -0.43562764f, -0.56094903f, 0.42957711f,
+ 0.01841056f, -0.32764608f, -0.33027974f, -0.10826075f, 0.20675004f,
+ 0.19069612f, -0.03026325f, -0.54532051f, 0.33003211f, 0.44901288f,
+ 0.21193194f});
+ auto recurrentToForgetWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {-0.13832897f, -0.0515101f, -0.2359007f, -0.16661474f, -0.14340827f,
+ 0.36986142f, 0.23414481f, 0.55899f, 0.10798943f, -0.41174671f, 0.17751795f,
+ -0.34484994f, -0.35874045f, -0.11352962f, 0.27268326f, 0.54058349f});
+
+ auto recurrentToOutputWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {0.41613156f, 0.42610586f, -0.16495961f, -0.5663873f, 0.30579174f, -0.05115908f,
+ -0.33941799f, 0.23364776f, 0.11178309f, 0.09481031f, -0.26424935f, 0.46261835f,
+ 0.50248802f, 0.26114327f, -0.43736315f, 0.33149987f});
+
+ auto cellToForgetWeights = MakeTensor<float, 1>(tensorInfoNumUnits,
+ {0.47485286f, -0.51955009f, -0.24458408f, 0.31544167f});
+ auto cellToOutputWeights = MakeTensor<float, 1>(tensorInfoNumUnits,
+ {-0.17135078f, 0.82760304f, 0.85573703f, -0.77109635f});
+
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfoInput);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfoInput);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfoInput);
+
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfoNumUnits);
+
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfoOutput);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfoOutput);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfoOutput);
+
+
+ armnn::ScopedCpuTensorHandle cellToForgetWeightsTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle cellToOutputWeightsTensor(tensorInfoNumUnits);
+
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+
+ AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, &cellToForgetWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, &cellToOutputWeights[0]);
+
+
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+
+ data.m_CellBias = &cellBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+
+ data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
+ data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
+
+ // other parameters for the descriptor
+ data.m_Parameters.m_CifgEnabled = cifgEnabled;
+ data.m_Parameters.m_ProjectionEnabled = projectionEnabled;
+ data.m_Parameters.m_PeepholeEnabled = peepholeEnabled;
+
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_ClippingThresProj = 0.0;
+ data.m_Parameters.m_ClippingThresCell = 0.0;
+
+
+ // List of outputs
+ std::vector<float> scratchBufferVector(batchSize * scratchBufferSize, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+ LayerTestResult<float, 2> ret0(scratchBufferTensorInfo);
+
+ // Output state for a certain time step
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+ LayerTestResult<float, 2> ret1(outputStateOutTensorInfo);
+
+ // Cell state for a certain time step
+ std::vector<float> cellStateOutVector(batchSize * cellSize, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+ LayerTestResult<float, 2> ret2(cellStateOutTensorInfo);
+
+ // Output for a certain time step
+ std::vector<float> outputVector(batchSize * outputSize, 0.f);
+ auto outputTensor = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+ std::vector<float> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + batchSize*outputSize);
+ LayerTestResult<float, 2> ret3(outputTensorInfo);
+ ret3.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputData);
+
+ // Prepare the inputs and outputs for the workload
+ std::unique_ptr<armnn::ITensorHandle> inputHandle =
+ workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchBufferHandle =
+ workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle =
+ workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchBufferHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+
+
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchBufferHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ CopyDataToITensorHandle(scratchBufferHandle.get(), &scratchBufferTensor[0][0]);
+ CopyDataToITensorHandle(outputStateOutHandle.get(), &outputStateOutTensor[0][0]);
+ CopyDataToITensorHandle(cellStateOutHandle.get(), &cellStateOutTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret0.output[0][0], scratchBufferHandle.get());
+ CopyDataFromITensorHandle(&ret1.output[0][0], outputStateOutHandle.get());
+ CopyDataFromITensorHandle(&ret2.output[0][0], cellStateOutHandle.get());
+ CopyDataFromITensorHandle(&ret3.output[0][0], outputHandle.get());
+
+ return ret3;
+}
diff --git a/src/backends/test/MemCopyTests.cpp b/src/backends/test/MemCopyTests.cpp
new file mode 100644
index 0000000000..44089c9d65
--- /dev/null
+++ b/src/backends/test/MemCopyTests.cpp
@@ -0,0 +1,180 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <boost/test/unit_test.hpp>
+#include <boost/multi_array.hpp>
+
+#include "armnn/ArmNN.hpp"
+#include "backends/RefWorkloadFactory.hpp"
+#if ARMCOMPUTECL_ENABLED
+#include "backends/ClWorkloadFactory.hpp"
+#endif
+#if ARMCOMPUTENEON_ENABLED
+#include "backends/NeonWorkloadFactory.hpp"
+#endif
+#include "backends/CpuTensorHandle.hpp"
+#include "test/TensorHelpers.hpp"
+
+#include "TensorCopyUtils.hpp"
+#include "WorkloadTestUtils.hpp"
+
+#if ARMCOMPUTECL_ENABLED || ARMCOMPUTENEON_ENABLED
+#include "../ArmComputeTensorUtils.hpp"
+#endif
+
+BOOST_AUTO_TEST_SUITE(MemCopyTestSuite)
+
+void MemCopyTest(armnn::IWorkloadFactory& srcWorkloadFactory, armnn::IWorkloadFactory& dstWorkloadFactory,
+ bool withSubtensors)
+{
+ const std::array<unsigned int, 4> shapeData = { { 1u, 1u, 6u, 5u } };
+ const armnn::TensorShape tensorShape(4, shapeData.data());
+ const armnn::TensorInfo tensorInfo(tensorShape, armnn::DataType::Float32);
+ boost::multi_array<float, 4> inputData = MakeTensor<float, 4>(tensorInfo, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+ })
+ );
+
+ boost::multi_array<float, 4> outputData(shapeData);
+
+ auto inputTensorHandle = srcWorkloadFactory.CreateTensorHandle(tensorInfo);
+ auto outputTensorHandle = dstWorkloadFactory.CreateTensorHandle(tensorInfo);
+
+ AllocateAndCopyDataToITensorHandle(inputTensorHandle.get(), inputData.data());
+ outputTensorHandle->Allocate();
+
+ armnn::MemCopyQueueDescriptor memCopyQueueDesc;
+ armnn::WorkloadInfo workloadInfo;
+
+ const unsigned int origin[4] = {};
+
+ auto workloadInput = (withSubtensors && srcWorkloadFactory.SupportsSubTensors())
+ ? srcWorkloadFactory.CreateSubTensorHandle(*inputTensorHandle, tensorShape, origin)
+ : std::move(inputTensorHandle);
+ auto workloadOutput = (withSubtensors && dstWorkloadFactory.SupportsSubTensors())
+ ? dstWorkloadFactory.CreateSubTensorHandle(*outputTensorHandle, tensorShape, origin)
+ : std::move(outputTensorHandle);
+
+ AddInputToWorkload(memCopyQueueDesc, workloadInfo, tensorInfo, workloadInput.get());
+ AddOutputToWorkload(memCopyQueueDesc, workloadInfo, tensorInfo, workloadOutput.get());
+
+ dstWorkloadFactory.CreateMemCopy(memCopyQueueDesc, workloadInfo)->Execute();
+
+ CopyDataFromITensorHandle(outputData.data(), workloadOutput.get());
+
+ BOOST_TEST(CompareTensors(inputData, outputData));
+}
+
+template <typename SrcWorkloadFactory, typename DstWorkloadFactory>
+void MemCopyTest(bool withSubtensors)
+{
+ SrcWorkloadFactory srcWorkloadFactory;
+ DstWorkloadFactory dstWorkloadFactory;
+ MemCopyTest(srcWorkloadFactory, dstWorkloadFactory, withSubtensors);
+}
+
+#if ARMCOMPUTECL_ENABLED || ARMCOMPUTENEON_ENABLED
+
+BOOST_AUTO_TEST_CASE(AclTypeConversions)
+{
+ arm_compute::Strides strides(1,2,3,4);
+ armnn::TensorShape convertedStrides = armnn::armcomputetensorutils::GetStrides(strides);
+ BOOST_TEST(convertedStrides[0] == 4);
+ BOOST_TEST(convertedStrides[1] == 3);
+ BOOST_TEST(convertedStrides[2] == 2);
+ BOOST_TEST(convertedStrides[3] == 1);
+
+ arm_compute::TensorShape shape(5,6,7,8);
+ armnn::TensorShape convertedshape = armnn::armcomputetensorutils::GetShape(shape);
+ BOOST_TEST(convertedshape[0] == 8);
+ BOOST_TEST(convertedshape[1] == 7);
+ BOOST_TEST(convertedshape[2] == 6);
+ BOOST_TEST(convertedshape[3] == 5);
+}
+#endif
+
+#if ARMCOMPUTECL_ENABLED
+
+BOOST_AUTO_TEST_CASE(CopyBetweenCpuAndGpu)
+{
+ MemCopyTest<armnn::RefWorkloadFactory, armnn::ClWorkloadFactory>(false);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenGpuAndCpu)
+{
+ MemCopyTest<armnn::ClWorkloadFactory, armnn::RefWorkloadFactory>(false);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenCpuAndGpuWithSubtensors)
+{
+ MemCopyTest<armnn::RefWorkloadFactory, armnn::ClWorkloadFactory>(true);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenGpuAndCpuWithSubtensors)
+{
+ MemCopyTest<armnn::ClWorkloadFactory, armnn::RefWorkloadFactory>(true);
+}
+
+#endif // ARMCOMPUTECL_ENABLED
+
+#if ARMCOMPUTENEON_ENABLED
+
+BOOST_AUTO_TEST_CASE(CopyBetweenCpuAndNeon)
+{
+ MemCopyTest<armnn::RefWorkloadFactory, armnn::NeonWorkloadFactory>(false);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenNeonAndCpu)
+{
+ MemCopyTest<armnn::NeonWorkloadFactory, armnn::RefWorkloadFactory>(false);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenCpuAndNeonWithSubtensors)
+{
+ MemCopyTest<armnn::RefWorkloadFactory, armnn::NeonWorkloadFactory>(true);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenNeonAndCpuWithSubtensors)
+{
+ MemCopyTest<armnn::NeonWorkloadFactory, armnn::RefWorkloadFactory>(true);
+}
+
+#endif // ARMCOMPUTENEON_ENABLED
+
+#if ARMCOMPUTECL_ENABLED && ARMCOMPUTENEON_ENABLED
+
+BOOST_AUTO_TEST_CASE(CopyBetweenNeonAndGpu)
+{
+ MemCopyTest<armnn::NeonWorkloadFactory, armnn::ClWorkloadFactory>(false);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenGpuAndNeon)
+{
+ MemCopyTest<armnn::ClWorkloadFactory, armnn::NeonWorkloadFactory>(false);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenNeonAndGpuWithSubtensors)
+{
+ MemCopyTest<armnn::NeonWorkloadFactory, armnn::ClWorkloadFactory>(true);
+}
+
+BOOST_AUTO_TEST_CASE(CopyBetweenGpuAndNeonWithSubtensors)
+{
+ MemCopyTest<armnn::ClWorkloadFactory, armnn::NeonWorkloadFactory>(true);
+}
+
+#endif
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/NormTestImpl.hpp b/src/backends/test/NormTestImpl.hpp
new file mode 100644
index 0000000000..2690313655
--- /dev/null
+++ b/src/backends/test/NormTestImpl.hpp
@@ -0,0 +1,241 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "armnn/Exceptions.hpp"
+#include "armnn/LayerSupport.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+LayerTestResult<float,4> SimpleNormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ const unsigned int inputHeight = 2;
+ const unsigned int inputWidth = 2;
+ const unsigned int inputChannels = 1;
+ const unsigned int inputNum = 2;
+
+ unsigned int outputHeight = inputHeight;
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputNum = inputNum;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+
+ auto inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ auto outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ // Batch #0
+ 1.0f, 2.0f,
+ 3.0f, 4.0f,
+ // Batch #1
+ 5.0f, 6.0f,
+ 7.0f, 8.0f
+ }));
+
+ float alpha = 1.f;
+ float beta = 1.f;
+ float kappa = 1.f;
+ uint32_t normSize = 3;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_NormChannelType = normChannel;
+ data.m_Parameters.m_NormMethodType = normMethod;
+ data.m_Parameters.m_NormSize = normSize;
+ data.m_Parameters.m_Alpha = alpha;
+ data.m_Parameters.m_Beta = beta;
+ data.m_Parameters.m_K = kappa;
+
+ armnn::PassthroughCpuTensorHandle refHandle(outputTensorInfo, &ret.outputExpected[0][0][0][0]);
+ armnn::NormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, &refHandle);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ switch (normMethod)
+ {
+ case armnn::NormalizationAlgorithmMethod::LocalBrightness:
+ {
+ switch (normChannel)
+ {
+ case armnn::NormalizationAlgorithmChannel::Within:
+ {
+ // When normalising within channels, the 3x3 kernel covers the entire 2x2 input at every index.
+ // Therefore, all output values should equal the inputs, but divided by:
+ // pow((kappa + (accumulatedScale * alpha)), beta)
+ // ...where accumulatedScale is the sum of every element squared.
+ float divisor[inputNum];
+ for(int i = 0; i < boost::numeric_cast<int>(inputNum); i++)
+ {
+ float accumulatedScale = input[i][0][0][0]*input[i][0][0][0] +
+ input[i][0][0][1]*input[i][0][0][1] +
+ input[i][0][1][0]*input[i][0][1][0] +
+ input[i][0][1][1]*input[i][0][1][1];
+ divisor[i] = powf((kappa + accumulatedScale * alpha), beta);
+ }
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ std::vector<float>({input[0][0][0][0]/divisor[0],
+ input[0][0][0][1]/divisor[0],
+ input[0][0][1][0]/divisor[0],
+ input[0][0][1][1]/divisor[0],
+ input[1][0][0][0]/divisor[1],
+ input[1][0][0][1]/divisor[1],
+ input[1][0][1][0]/divisor[1],
+ input[1][0][1][1]/divisor[1]}));
+ break;
+ }
+ case armnn::NormalizationAlgorithmChannel::Across:
+ {
+ // When normalising across channels, all output values should equal the inputs, but multiplied by:
+ // pow((kappa + (accumulatedScale * alpha)), -beta)
+ // ...where accumulatedScale is the sum of the inputs for adjacent channels for this element squared
+ // ...where adjacent channels means within half the normSize for the channel
+ // The test data has only one channel, so this is simplified below.
+ std::vector<float> outputVector;
+ for (int n = 0; n < boost::numeric_cast<int>(inputNum); ++n)
+ {
+ for (int h = 0; h < boost::numeric_cast<int>(inputHeight); ++h)
+ {
+ for (int w = 0; w < boost::numeric_cast<int>(inputWidth); ++w)
+ {
+ float accumulatedScale = input[n][0][h][w]*input[n][0][h][w];
+ float scale = powf((kappa + accumulatedScale * alpha), -beta);
+ outputVector.push_back(input[n][0][h][w] * scale);
+ }
+ }
+ }
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputVector);
+ break;
+ }
+ default:
+ {
+ throw armnn::UnimplementedException("Unsupported normalisation channel type, "
+ "only Across and Within are supported");
+ }
+ }
+ break;
+ }
+ case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough.
+ default:
+ {
+ throw armnn::UnimplementedException("Unsupported normalisation method type, "
+ "only LocalBrightness is supported");
+ }
+ }
+
+ return ret;
+}
+
+LayerTestResult<float,4> CompareNormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ constexpr unsigned int inputNum = 5;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+
+ constexpr unsigned int outputNum = inputNum;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputWidth = inputWidth;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 111234);
+
+ constexpr float alpha = 1.f;
+ constexpr float beta = 1.f;
+ constexpr float kappa = 1.f;
+ constexpr uint32_t normSize = 5;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_NormChannelType = normChannel;
+ data.m_Parameters.m_NormMethodType = normMethod;
+ data.m_Parameters.m_NormSize = normSize;
+ data.m_Parameters.m_Alpha = alpha;
+ data.m_Parameters.m_Beta = beta;
+ data.m_Parameters.m_K = kappa;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ // Don't execute if Normalization is not supported for the method and channel types, as an exception will be raised.
+ armnn::Compute compute = workloadFactory.GetCompute();
+ const size_t reasonIfUnsupportedMaxLen = 255;
+ char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
+ ret.supported = armnn::IsNormalizationSupported(compute, inputTensorInfo, outputTensorInfo, data.m_Parameters,
+ reasonIfUnsupported, reasonIfUnsupportedMaxLen);
+ if (!ret.supported)
+ {
+ return ret;
+ }
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateNormalization(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
diff --git a/src/backends/test/PermuteTestImpl.hpp b/src/backends/test/PermuteTestImpl.hpp
new file mode 100644
index 0000000000..b49c539b2e
--- /dev/null
+++ b/src/backends/test/PermuteTestImpl.hpp
@@ -0,0 +1,225 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+template<typename T>
+LayerTestResult<T, 4> SimplePermuteTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::PermuteDescriptor descriptor,
+ armnn::TensorInfo inputTensorInfo,
+ armnn::TensorInfo outputTensorInfo,
+ const std::vector<T>& inputData,
+ const std::vector<T>& outputExpectedData)
+{
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputExpectedData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PermuteQueueDescriptor data;
+ data.m_Parameters = descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePermute(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float, 4> SimplePermuteFloat32TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 2, 2 };
+ unsigned int outputShape[] = { 1, 2, 2, 2 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 3U, 1U, 2U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 2.0f,
+ 3.0f, 4.0f,
+
+ 5.0f, 6.0f,
+ 7.0f, 8.0f
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 5.0f, 2.0f, 6.0f,
+ 3.0f, 7.0f, 4.0f, 8.0f
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<uint8_t, 4> SimplePermuteUint8TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 2, 2 };
+ unsigned int outputShape[] = { 1, 2, 2, 2 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 3U, 1U, 2U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.0f);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.0f);
+
+ std::vector<uint8_t> input = std::vector<uint8_t>(
+ {
+ 1, 2,
+ 3, 4,
+
+ 5, 6,
+ 7, 8
+ });
+
+ std::vector<uint8_t> outputExpected = std::vector<uint8_t>(
+ {
+ 1, 5, 2, 6,
+ 3, 7, 4, 8
+ });
+
+ return SimplePermuteTestImpl<uint8_t>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4>
+PermuteFloat32ValueSet1TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 2, 3 };
+ unsigned int outputShape[] = { 1, 3, 2, 2 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 2U, 3U, 1U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 11.0f, 12.0f, 13.0f,
+ 21.0f, 22.0f, 23.0f,
+ 31.0f, 32.0f, 33.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 11.0f, 21.0f, 31.0f,
+ 2.0f, 12.0f, 22.0f, 32.0f,
+ 3.0f, 13.0f, 23.0f, 33.0f,
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4>
+PermuteFloat32ValueSet2TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 3, 2, 2 };
+ unsigned int outputShape[] = { 1, 2, 2, 3 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 3U, 1U, 2U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 11.0f, 21.0f, 31.0f,
+ 2.0f, 12.0f, 22.0f, 32.0f,
+ 3.0f, 13.0f, 23.0f, 33.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 11.0f, 12.0f, 13.0f,
+ 21.0f, 22.0f, 23.0f,
+ 31.0f, 32.0f, 33.0f,
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4>
+PermuteFloat32ValueSet3TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 3, 3 };
+ unsigned int outputShape[] = { 1, 3, 2, 3 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 2U, 3U, 1U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 11.0f, 12.0f, 13.0f,
+ 21.0f, 22.0f, 23.0f,
+ 31.0f, 32.0f, 33.0f,
+ 41.0f, 42.0f, 43.0f,
+ 51.0f, 52.0f, 53.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 11.0f, 21.0f, 31.0f, 41.0f, 51.0f,
+ 2.0f, 12.0f, 22.0f, 32.0f, 42.0f, 52.0f,
+ 3.0f, 13.0f, 23.0f, 33.0f, 43.0f, 53.0f,
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
diff --git a/src/backends/test/Pooling2dTestImpl.hpp b/src/backends/test/Pooling2dTestImpl.hpp
new file mode 100644
index 0000000000..e8c7e86e9d
--- /dev/null
+++ b/src/backends/test/Pooling2dTestImpl.hpp
@@ -0,0 +1,1116 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+#include <algorithm>
+
+template<typename T>
+LayerTestResult<T, 4> SimplePooling2dTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::Pooling2dDescriptor descriptor,
+ float qScale,
+ int32_t qOffset,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& outputExpected)
+{
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[2]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[3]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int inputBatchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ unsigned int outputBatchSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Pooling2dQueueDescriptor queueDescriptor;
+ queueDescriptor.m_Parameters = descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(queueDescriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(queueDescriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ // Don't execute if Pooling is not supported, as an exception will be raised.
+ armnn::Compute compute = workloadFactory.GetCompute();
+ const size_t reasonIfUnsupportedMaxLen = 255;
+ char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
+ result.supported = armnn::IsPooling2dSupported(compute, inputTensorInfo, outputTensorInfo,
+ queueDescriptor.m_Parameters,
+ reasonIfUnsupported, reasonIfUnsupportedMaxLen);
+ if (!result.supported)
+ {
+ return result;
+ }
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePooling2d(queueDescriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ result.outputExpected = outputExpected;
+
+ return result;
+}
+
+//
+// Tests max pooling with the following parameters:
+//
+// Pooling size: 3x3
+// Stride: (2,4)
+// input size: 8x13
+// channels: 2
+// batch size: 2
+//
+template<typename T>
+LayerTestResult<T, 4> SimpleMaxPooling2dSize3x3Stride2x4TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 4;
+ // forceNoPadding is mainly used for compatibility with ARM Compute.
+ // As of 16/05/2017, it errors if padX or padY are equal to or greater than the pool size.
+ descriptor.m_PadLeft = descriptor.m_PadRight = forceNoPadding ? 0 : 3;
+ descriptor.m_PadTop = descriptor.m_PadBottom = 0;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ unsigned int inputWidth = 8;
+ unsigned int inputHeight = 13;
+ unsigned int outputWidth =
+ (inputWidth + descriptor.m_PadLeft + descriptor.m_PadRight + descriptor.m_StrideX - descriptor.m_PoolWidth) /
+ descriptor.m_StrideX;
+ unsigned int outputHeight =
+ (inputHeight + descriptor.m_PadTop + descriptor.m_PadBottom + descriptor.m_StrideY - descriptor.m_PoolHeight) /
+ descriptor.m_StrideY;
+ unsigned int channels = 2;
+ unsigned int batchSize = 2;
+
+ armnn::TensorInfo inputTensorInfo({ batchSize, channels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ batchSize, channels, outputHeight, outputWidth }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ std::vector<float> singleChannelData({
+ 0.0f, 4.0f, 8.0f, 1.0f, 6.0f, 4.0f, 5.0f, 8.0f,
+ 1.0f, 1.0f, 6.0f, 0.0f, 3.0f, 7.0f, 4.0f, 7.0f,
+ 8.0f, 5.0f, 0.0f, 0.0f, 8.0f, 3.0f, 4.0f, 3.0f,
+ 8.0f, 2.0f, 5.0f, 4.0f, 1.0f, 9.0f, 2.0f, 0.0f,
+ 5.0f, 4.0f, 5.0f, 0.0f, 0.0f, 0.0f, 7.0f, 2.0f,
+ 1.0f, 2.0f, 6.0f, 2.0f, 7.0f, 9.0f, 5.0f, 2.0f,
+ 9.0f, 7.0f, 3.0f, 1.0f, 3.0f, 4.0f, 8.0f, 3.0f,
+ 1.0f, 0.0f, 0.0f, 5.0f, 5.0f, 4.0f, 2.0f, 0.0f,
+ 6.0f, 4.0f, 3.0f, 6.0f, 9.0f, 5.0f, 5.0f, 6.0f,
+ 8.0f, 7.0f, 9.0f, 6.0f, 1.0f, 4.0f, 1.0f, 9.0f,
+ 7.0f, 1.0f, 9.0f, 2.0f, 9.0f, 9.0f, 8.0f, 1.0f,
+ 4.0f, 4.0f, 5.0f, 9.0f, 2.0f, 6.0f, 6.0f, 4.0f,
+ 3.0f, 5.0f, 4.0f, 0.0f, 1.0f, 5.0f, 9.0f, 7.0f,
+ });
+
+ // Constructs input data.
+ std::vector<float> inputData;
+ auto negator = [](float f) { return -f; };
+
+ // First image (two channels where the second channel is the negative of the first one).
+ inputData.insert(inputData.end(), singleChannelData.begin(), singleChannelData.end());
+ std::transform(singleChannelData.begin(), singleChannelData.end(), std::back_inserter(inputData), negator);
+
+ // Second image (same as first image).
+ inputData.insert(inputData.end(), singleChannelData.begin(), singleChannelData.end());
+ std::transform(singleChannelData.begin(), singleChannelData.end(), std::back_inserter(inputData), negator);
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ // These were calculated manually.
+ auto shape(GetTensorShapeAsArray<4>(outputTensorInfo));
+ boost::multi_array<T, 4> outputExpected(shape);
+ if (forceNoPadding)
+ {
+ outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 8.0f, 8.0f, 8.0f,
+ 9.0f, 7.0f, 9.0f,
+ 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, -3.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, -1.0f, -1.0f,
+
+ 8.0f, 8.0f, 8.0f,
+ 9.0f, 7.0f, 9.0f,
+ 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, -3.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, -1.0f, -1.0f
+ }));
+ }
+ else
+ {
+ outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 0.0f, 8.0f, 8.0f, 8.0f, 8.0f, 8.0f,
+ 0.0f, 9.0f, 7.0f, 9.0f, 9.0f, 3.0f,
+ 0.0f, 8.0f, 9.0f, 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, 0.0f, 0.0f,-3.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f,-1.0f,-1.0f,-1.0f,-1.0f, 0.0f,
+
+ 0.0f, 8.0f, 8.0f, 8.0f, 8.0f, 8.0f,
+ 0.0f, 9.0f, 7.0f, 9.0f, 9.0f, 3.0f,
+ 0.0f, 8.0f, 9.0f, 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, 0.0f, 0.0f,-3.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f,-1.0f,-1.0f,-1.0f,-1.0f, 0.0f
+ }));
+ }
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleAveragePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.5f, 4.0f,
+ 1.0f, 2.5f, 4.0f,
+ 1.0f, 2.5f, 4.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> LargeTensorsAveragePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 100;
+ descriptor.m_StrideX = descriptor.m_StrideY = 5;
+ descriptor.m_PadLeft = 50;
+ descriptor.m_PadRight = 50;
+ descriptor.m_PadTop = 50;
+ descriptor.m_PadBottom = 50;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 5, 3, 52, 60 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 5, 3, 11, 13 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ std::vector<T> inputVec;
+
+ for (unsigned int i = 0 ; i < inputTensorInfo.GetShape().GetNumElements(); ++i)
+ {
+ inputVec.push_back(1);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputVec);
+
+ std::vector<T> outputVec;
+
+ for (unsigned int i = 0 ; i < outputTensorInfo.GetShape().GetNumElements(); ++i)
+ {
+ outputVec.push_back(1);
+ }
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputVec);
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleL2Pooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 7.0f, 1.0f, 7.0f,
+ 1.0f, 7.0f, 1.0f, 7.0f,
+ 1.0f, 7.0f, 1.0f, 7.0f,
+ 1.0f, 7.0f, 1.0f, 7.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 5.0f, 5.0f,
+ 5.0f, 5.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize3Stride1TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 2.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 3.0f,
+ 3.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize3Stride3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 3;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 9, 9 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 3.0f, 3.0f,
+ 3.0f, 3.0f, 3.0f,
+ 3.0f, 3.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize3Stride4TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 4;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 7, 7 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 0.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 0.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 0.0f, 5.0f, 4.0f, 1.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 2.0f, 1.0f, 5.0f, 0.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 0.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 0.0f, 5.0f, 4.0f, 1.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 3.0f,
+ 3.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize7TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 7;
+ descriptor.m_StrideX = descriptor.m_StrideY = 7;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 7, 7 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 0.0f, 2.0f, 0.0f, 3.0f, 0.0f, 4.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 5.0f, 0.0f, 6.0f, 0.0f, 7.0f, 0.0f,
+ 8.0f, 0.0f, 9.0f, 0.0f, 10.0f, 0.0f, 5.0f,
+ 0.0f, 5.0f, 0.0f, 2.0f, 0.0f, 1.0f, 1.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 1, 1 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize9TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 9;
+ descriptor.m_StrideX = descriptor.m_StrideY = 9;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 9, 9 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 1, 1 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> AsymmetricNonSquarePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 1, 3 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = 2;
+ descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 2;
+ descriptor.m_PadRight = 0;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 2;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ // Construct input data.
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 3.0f, 4.0f,
+ }));
+
+ // These were calculated manually.
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 0.0f, 3.0f, 0.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> ComparePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ const unsigned int inputWidth = 16;
+ const unsigned int inputHeight = 32;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 5;
+
+ const unsigned int poolSize = 3;
+ const unsigned int strideX = 2;
+ const unsigned int strideY = 4;
+ const unsigned int padX = 0;
+ const unsigned int padY = 0;
+
+ const unsigned int outputWidth = (inputWidth + 2 * padX + strideX - poolSize) / strideX;
+ const unsigned int outputHeight = (inputHeight + 2 * padY + strideY - poolSize) / strideY;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { batchSize, channelCount, inputHeight, inputWidth };
+ unsigned int outputShape[] = { batchSize, channelCount, outputHeight, outputWidth };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ boost::multi_array<T, 4> input = MakeRandomTensor<T, 4>(inputTensorInfo, 81715);
+
+ LayerTestResult<T, 4> comparisonResult(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Pooling2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_PoolType = poolingType;
+ data.m_Parameters.m_PoolWidth = poolSize;
+ data.m_Parameters.m_PoolHeight = poolSize;
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padX;
+ data.m_Parameters.m_PadRight = padX;
+ data.m_Parameters.m_PadTop = padY;
+ data.m_Parameters.m_PadBottom = padY;
+ data.m_Parameters.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ // Don't execute if Pooling is not supported, as an exception will be raised.
+ armnn::Compute compute = workloadFactory.GetCompute();
+ const size_t reasonIfUnsupportedMaxLen = 255;
+ char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
+ comparisonResult.supported = armnn::IsPooling2dSupported(compute, inputTensorInfo, outputTensorInfo,
+ data.m_Parameters,
+ reasonIfUnsupported, reasonIfUnsupportedMaxLen);
+ if (!comparisonResult.supported)
+ {
+ return comparisonResult;
+ }
+
+ armnn::Pooling2dQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePooling2d(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreatePooling2d(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&comparisonResult.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&comparisonResult.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return comparisonResult;
+}
+
+//
+// Tests max pooling with the following parameters:
+//
+// Pooling size: 2x2
+// Stride: (2,2)
+// input size: 4x4
+// channels: 1
+// batch size: 1
+//
+template<typename T>
+LayerTestResult<T, 4> SimpleMaxPooling2dSize2x2Stride2x2TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = descriptor.m_PadRight = forceNoPadding ? 0 : 3;
+ descriptor.m_PadTop = descriptor.m_PadBottom = 0;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ unsigned int inputWidth = 4;
+ unsigned int inputHeight = 4;
+ unsigned int outputWidth =
+ (inputWidth + descriptor.m_PadLeft + descriptor.m_PadRight + descriptor.m_StrideX - descriptor.m_PoolWidth) /
+ descriptor.m_StrideX;
+ unsigned int outputHeight =
+ (inputHeight + descriptor.m_PadTop + descriptor.m_PadBottom + descriptor.m_StrideY - descriptor.m_PoolHeight) /
+ descriptor.m_StrideY;
+ unsigned int channels = 1;
+ unsigned int batchSize = 1;
+
+ std::vector<float> inputData = {
+ 510.0f, 222.0f, 780.0f, 654.0f,
+ 141.0f, 276.0f, 15.0f, 546.0f,
+ 303.0f, 618.0f, 582.0f, 339.0f,
+ 438.0f, 564.0f, 573.0f, 402.0f
+ };
+
+ // Note that left and right edges will be 0.f, due to the 2x2 max pooling only accessing zeros here.
+ std::vector<float> expectedOutputDataWithPadding = {
+ 0.0f, 510.0f, 780.0f, 654.0f, 0.0f,
+ 0.0f, 438.0f, 618.0f, 402.0f, 0.0f
+ };
+
+ std::vector<float> expectedOutputDataNoPadding = {
+ 510.0f, 780.0f,
+ 618.0f, 582.0f
+ };
+
+ armnn::TensorInfo inputTensorInfo({ batchSize, channels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+
+ // Scale and offset should match input - we're just calculating maximum values.
+ armnn::TensorInfo outputTensorInfo({ batchSize, channels, outputHeight, outputWidth }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ forceNoPadding ? QuantizedVector<T>(qScale, qOffset, expectedOutputDataNoPadding) :
+ QuantizedVector<T>(qScale, qOffset, expectedOutputDataWithPadding));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+//
+// Tests max pooling with the following parameters:
+//
+// Pooling size: 3x2
+// Stride: (2,2)
+// input size: 3x2
+// channels: 1
+// batch size: 1
+//
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingAveragePooling2dSize3x2Stride2x2TestCommon(
+ armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = 3;
+ descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = (forceNoPadding) ? 0 : 1;
+ descriptor.m_PadRight = descriptor.m_PadLeft;
+ descriptor.m_PadTop = 0;
+ descriptor.m_PadBottom = 0;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ unsigned int inputWidth = 3;
+ unsigned int inputHeight = 2;
+ unsigned int outputWidth =
+ (inputWidth + descriptor.m_PadLeft + descriptor.m_PadRight + descriptor.m_StrideX - descriptor.m_PoolWidth) /
+ descriptor.m_StrideX;
+ unsigned int outputHeight =
+ (inputHeight + descriptor.m_PadTop + descriptor.m_PadBottom + descriptor.m_StrideY - descriptor.m_PoolHeight) /
+ descriptor.m_StrideY;
+ unsigned int channels = 1;
+ unsigned int batchSize = 1;
+
+ std::vector<float> inputData = {
+ 3.0f, 6.0f, 9.0f,
+ 12.0f, 15.0f, 18.0f,
+ };
+
+ std::vector<float> expectedOutputDataWithPadding = {
+ 6.0f, 8.0f,
+ };
+
+ std::vector<float> expectedOutputDataNoPadding = {
+ 10.5f,
+ };
+
+ armnn::TensorInfo inputTensorInfo({ batchSize, channels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+
+ // Scale and offset should match input - we're just calculating average values.
+ armnn::TensorInfo outputTensorInfo({ batchSize, channels, outputHeight, outputWidth }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ forceNoPadding ? QuantizedVector<T>(qScale, qOffset, expectedOutputDataNoPadding) :
+ QuantizedVector<T>(qScale, qOffset, expectedOutputDataWithPadding));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleMaxPooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, 3.0f, 4.0f,
+ 1.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, -4.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingMaxPooling2dSize3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, 3.0f, 4.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 4.0f,
+ 2.0f, 2.0f, 2.0f, -3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleAveragePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 13.0f, 10.0f,
+ 6.0f, 26.0f, 20.0f,
+ 3.0f, 13.0f, 10.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 0;
+ descriptor.m_PadRight = 0;
+ descriptor.m_PadTop = 0;
+ descriptor.m_PadBottom = 0;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Ceiling;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 3.5f,
+ 2.0f, 3.5f
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingAveragePooling2dSize3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 9.0f, 27.0f, 18.0f, 36.0f,
+ 18.0f, 9.0f, 18.0f, 9.0f,
+ 27.0f, 18.0f, 9.0f, 27.0f,
+ 9.0f, 27.0f, 9.0f, 18.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 7.0f, 11.0f, 13.0f, 9.0f,
+ 12.0f, 17.0f, 19.0f, 13.0f,
+ 12.0f, 16.0f, 16.0f, 10.0f,
+ 9.0f, 11.0f, 12.0f, 7.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleL2Pooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 4.0f, 8.0f, 16.0f,
+ 4.0f, 2.0f, 2.0f, 4.0f,
+ 8.0f, 2.0f, 4.0f, 2.0f,
+ 16.0f, 2.0f, 2.0f, 8.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 4.4721f, 8.0f,
+ 4.4721f, 2.6457f, 2.236f,
+ 8.0f, 1.4142f, 4.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingL2Pooling2dSize3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0540f, 1.7638f, 2.5385f, 2.3570f,
+ 1.2909f, 2.1602f, 3.1091f, 2.8867f,
+ 1.2909f, 2.1602f, 3.1091f, 2.8867f,
+ 1.0540f, 1.7638f, 2.5385f, 2.3570f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
diff --git a/src/backends/test/QuantizeHelper.hpp b/src/backends/test/QuantizeHelper.hpp
new file mode 100644
index 0000000000..bb4e561d59
--- /dev/null
+++ b/src/backends/test/QuantizeHelper.hpp
@@ -0,0 +1,91 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <initializer_list>
+#include <iterator>
+#include <vector>
+#include <boost/core/ignore_unused.hpp>
+
+template<typename T, bool DoQuantize=true>
+struct SelectiveQuantizer
+{
+ static T Quantize(float value, float scale, int32_t offset)
+ {
+ return armnn::Quantize<T>(value, scale, offset);
+ }
+
+ static float Dequantize(T value, float scale, int32_t offset)
+ {
+ return armnn::Dequantize(value, scale, offset);
+ }
+};
+
+template<typename T>
+struct SelectiveQuantizer<T, false>
+{
+ static T Quantize(float value, float scale, int32_t offset)
+ {
+ boost::ignore_unused(scale, offset);
+ return value;
+ }
+
+ static float Dequantize(T value, float scale, int32_t offset)
+ {
+ boost::ignore_unused(scale, offset);
+ return value;
+ }
+};
+
+template<typename T>
+T SelectiveQuantize(float value, float scale, int32_t offset)
+{
+ return SelectiveQuantizer<T, armnn::IsQuantizedType<T>()>::Quantize(value, scale, offset);
+};
+
+template<typename T>
+float SelectiveDequantize(T value, float scale, int32_t offset)
+{
+ return SelectiveQuantizer<T, armnn::IsQuantizedType<T>()>::Dequantize(value, scale, offset);
+};
+
+template<typename ItType>
+struct IsFloatingPointIterator
+{
+ static constexpr bool value=std::is_floating_point<typename std::iterator_traits<ItType>::value_type>::value;
+};
+
+template <typename T, typename FloatIt,
+typename std::enable_if<IsFloatingPointIterator<FloatIt>::value, int>::type=0 // Makes sure fp iterator is valid.
+>
+std::vector<T> QuantizedVector(float qScale, int32_t qOffset, FloatIt first, FloatIt last)
+{
+ std::vector<T> quantized;
+ quantized.reserve(boost::numeric_cast<size_t>(std::distance(first, last)));
+
+ for (auto it = first; it != last; ++it)
+ {
+ auto f = *it;
+ T q =SelectiveQuantize<T>(f, qScale, qOffset);
+ quantized.push_back(q);
+ }
+
+ return quantized;
+}
+
+template<typename T>
+std::vector<T> QuantizedVector(float qScale, int32_t qOffset, const std::vector<float>& array)
+{
+ return QuantizedVector<T>(qScale, qOffset, array.begin(), array.end());
+}
+
+template<typename T>
+std::vector<T> QuantizedVector(float qScale, int32_t qOffset, std::initializer_list<float> array)
+{
+ return QuantizedVector<T>(qScale, qOffset, array.begin(), array.end());
+}
diff --git a/src/backends/test/Reference.cpp b/src/backends/test/Reference.cpp
new file mode 100644
index 0000000000..62786a9ec4
--- /dev/null
+++ b/src/backends/test/Reference.cpp
@@ -0,0 +1,253 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <boost/test/unit_test.hpp>
+
+#include "LayerTests.hpp"
+#include "test/TensorHelpers.hpp"
+
+#include "backends/RefWorkloadFactory.hpp"
+
+#include "test/UnitTests.hpp"
+
+BOOST_AUTO_TEST_SUITE(Compute_Reference)
+using FactoryType = armnn::RefWorkloadFactory;
+
+// ============================================================================
+// UNIT tests
+
+// Convolution
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d3x5, SimpleConvolution2d3x5Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d3x5Uint8, SimpleConvolution2d3x5Uint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolution2d, SimpleConvolution2d3x5Test, false)
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolutionUint8, SimpleConvolution2d3x5Uint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(SimpleConvolution1d, Convolution1dTest, true)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution1dUint8, Convolution1dUint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d3x3, SimpleConvolution2d3x3Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2d3x3Uint8, SimpleConvolution2d3x3Uint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(UnbiasedConvolution2dSquare, SimpleConvolution2d3x3Test, false)
+
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2dAsymmetricPaddingLargerThanHalfKernelSize,
+ Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest)
+ARMNN_AUTO_TEST_CASE(SimpleConvolution2dAsymmetricPadding, Convolution2dAsymmetricPaddingTest)
+
+// Depthwise Convolution
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2d, DepthwiseConvolution2dTest, true)
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dUint8, DepthwiseConvolution2dUint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2d, DepthwiseConvolution2dTest, false)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dUint8, DepthwiseConvolution2dUint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dDepthMul1, DepthwiseConvolution2dDepthMul1Test, true)
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dDepthMul1Uint8, DepthwiseConvolution2dDepthMul1Uint8Test, true)
+
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1, DepthwiseConvolution2dDepthMul1Test, false)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1Uint8, DepthwiseConvolution2dDepthMul1Uint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, true)
+ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, false)
+
+// Pooling
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize2x2Stride2x2, SimpleMaxPooling2dSize2x2Stride2x2Test, false)
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize2x2Stride2x2Uint8, SimpleMaxPooling2dSize2x2Stride2x2Uint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize3x3Stride2x4, SimpleMaxPooling2dSize3x3Stride2x4Test, false)
+ARMNN_AUTO_TEST_CASE(SimpleMaxPooling2dSize3x3Stride2x4Uint8, SimpleMaxPooling2dSize3x3Stride2x4Uint8Test, false)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleMaxPooling2d, IgnorePaddingSimpleMaxPooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleMaxPooling2dUint8, IgnorePaddingSimpleMaxPooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingMaxPooling2dSize3, IgnorePaddingMaxPooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingMaxPooling2dSize3Uint8, IgnorePaddingMaxPooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2d, IgnorePaddingSimpleAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dUint8, IgnorePaddingSimpleAveragePooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dNoPadding, IgnorePaddingSimpleAveragePooling2dNoPaddingTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleAveragePooling2dNoPaddingUint8,
+ IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3, IgnorePaddingAveragePooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3Uint8, IgnorePaddingAveragePooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleL2Pooling2d, IgnorePaddingSimpleL2Pooling2dTest)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingSimpleL2Pooling2dUint8, IgnorePaddingSimpleL2Pooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingL2Pooling2dSize3, IgnorePaddingL2Pooling2dSize3Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingL2Pooling2dSize3Uint8, IgnorePaddingL2Pooling2dSize3Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(SimpleAveragePooling2d, SimpleAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(SimpleAveragePooling2dUint8, SimpleAveragePooling2dUint8Test)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3x2Stride2x2,
+ IgnorePaddingAveragePooling2dSize3x2Stride2x2Test, false)
+ARMNN_AUTO_TEST_CASE(IgnorePaddingAveragePooling2dSize3x2Stride2x2NoPadding,
+ IgnorePaddingAveragePooling2dSize3x2Stride2x2Test, true)
+
+ARMNN_AUTO_TEST_CASE(LargeTensorsAveragePooling2d, LargeTensorsAveragePooling2dTest)
+ARMNN_AUTO_TEST_CASE(LargeTensorsAveragePooling2dUint8, LargeTensorsAveragePooling2dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(SimpleL2Pooling2d, SimpleL2Pooling2dTest)
+ARMNN_AUTO_TEST_CASE(SimpleL2Pooling2dUint8, SimpleL2Pooling2dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize7, L2Pooling2dSize7Test)
+ARMNN_AUTO_TEST_CASE(L2Pooling2dSize7Uint8, L2Pooling2dSize7Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(AsymmNonSquarePooling2d, AsymmetricNonSquarePooling2dTest)
+ARMNN_AUTO_TEST_CASE(AsymmNonSquarePooling2dUint8, AsymmetricNonSquarePooling2dUint8Test)
+
+// Activation
+ARMNN_AUTO_TEST_CASE(ConstantLinearActivation, ConstantLinearActivationTest)
+ARMNN_AUTO_TEST_CASE(ConstantLinearActivationUint8, ConstantLinearActivationUint8Test)
+
+ARMNN_AUTO_TEST_CASE(SimpleNormalizationAcross, SimpleNormalizationAcrossTest)
+ARMNN_AUTO_TEST_CASE(SimpleNormalizationWithin, SimpleNormalizationWithinTest)
+
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta1, SimpleSoftmaxTest, 1.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2, SimpleSoftmaxTest, 2.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta1Uint8, SimpleSoftmaxUint8Test, 1.0f)
+ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2Uint8, SimpleSoftmaxUint8Test, 2.0f)
+
+ARMNN_AUTO_TEST_CASE(SimpleSigmoid, SimpleSigmoidTest)
+ARMNN_AUTO_TEST_CASE(SimpleSigmoidUint8, SimpleSigmoidUint8Test)
+
+ARMNN_AUTO_TEST_CASE(ReLu1, BoundedReLuUpperAndLowerBoundTest)
+ARMNN_AUTO_TEST_CASE(ReLu6, BoundedReLuUpperBoundOnlyTest)
+ARMNN_AUTO_TEST_CASE(ReLu1Uint8, BoundedReLuUint8UpperAndLowerBoundTest)
+ARMNN_AUTO_TEST_CASE(ReLu6Uint8, BoundedReLuUint8UpperBoundOnlyTest)
+
+// Fully Conected
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnected, FullyConnectedFloat32Test, false, false)
+ARMNN_AUTO_TEST_CASE(FullyConnectedUint8, FullyConnectedUint8Test, false)
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnectedWithBias, FullyConnectedFloat32Test, true, false)
+ARMNN_AUTO_TEST_CASE(FullyConnectedBiasedUint8, FullyConnectedUint8Test, true)
+ARMNN_AUTO_TEST_CASE(SimpleFullyConnectedWithTranspose, FullyConnectedFloat32Test, false, true)
+
+ARMNN_AUTO_TEST_CASE(FullyConnectedLarge, FullyConnectedLargeTest, false)
+ARMNN_AUTO_TEST_CASE(FullyConnectedLargeTransposed, FullyConnectedLargeTest, true)
+
+// Splitter
+ARMNN_AUTO_TEST_CASE(SimpleSplitter, SplitterTest)
+ARMNN_AUTO_TEST_CASE(SimpleSplitterUint8, SplitterUint8Test)
+
+ARMNN_AUTO_TEST_CASE(CopyViaSplitter, CopyViaSplitterTest)
+ARMNN_AUTO_TEST_CASE(CopyViaSplitterUint8, CopyViaSplitterUint8Test)
+
+// Merger
+ARMNN_AUTO_TEST_CASE(SimpleMerger, MergerTest)
+ARMNN_AUTO_TEST_CASE(MergerUint8, MergerUint8Test)
+
+// Add
+ARMNN_AUTO_TEST_CASE(SimpleAdd, AdditionTest)
+ARMNN_AUTO_TEST_CASE(AddBroadcast1Element, AdditionBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(AddBroadcast, AdditionBroadcastTest)
+
+ARMNN_AUTO_TEST_CASE(AdditionUint8, AdditionUint8Test)
+ARMNN_AUTO_TEST_CASE(AddBroadcastUint8, AdditionBroadcastUint8Test)
+ARMNN_AUTO_TEST_CASE(AddBroadcast1ElementUint8, AdditionBroadcast1ElementUint8Test)
+
+// Sub
+ARMNN_AUTO_TEST_CASE(SimpleSub, SubtractionTest)
+ARMNN_AUTO_TEST_CASE(SubBroadcast1Element, SubtractionBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(SubBroadcast, SubtractionBroadcastTest)
+
+ARMNN_AUTO_TEST_CASE(SubtractionUint8, SubtractionUint8Test)
+ARMNN_AUTO_TEST_CASE(SubBroadcastUint8, SubtractionBroadcastUint8Test)
+ARMNN_AUTO_TEST_CASE(SubBroadcast1ElementUint8, SubtractionBroadcast1ElementUint8Test)
+
+// Div
+ARMNN_AUTO_TEST_CASE(SimpleDivision, DivisionTest)
+ARMNN_AUTO_TEST_CASE(DivisionByZero, DivisionByZeroTest)
+ARMNN_AUTO_TEST_CASE(DivisionBroadcast1Element, DivisionBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(DivisionBroadcast1DVector, DivisionBroadcast1DVectorTest)
+// NOTE: division by zero for quantized div needs more attention
+// see IVGCVSW-1849
+ARMNN_AUTO_TEST_CASE(DivisionUint8, DivisionUint8Test)
+ARMNN_AUTO_TEST_CASE(DivisionUint8Broadcast1Element, DivisionBroadcast1ElementUint8Test)
+ARMNN_AUTO_TEST_CASE(DivisionUint8Broadcast1DVector, DivisionBroadcast1DVectorUint8Test)
+
+// Mul
+ARMNN_AUTO_TEST_CASE(SimpleMultiplication, MultiplicationTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1Element, MultiplicationBroadcast1ElementTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1DVector, MultiplicationBroadcast1DVectorTest)
+ARMNN_AUTO_TEST_CASE(MultiplicationUint8, MultiplicationUint8Test)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1ElementUint8, MultiplicationBroadcast1ElementUint8Test)
+ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1DVectorUint8, MultiplicationBroadcast1DVectorUint8Test)
+
+// Batch Norm
+ARMNN_AUTO_TEST_CASE(BatchNorm, BatchNormTest)
+ARMNN_AUTO_TEST_CASE(BatchNormUint8, BatchNormUint8Test)
+
+// Resize Bilinear
+ARMNN_AUTO_TEST_CASE(SimpleResizeBilinear, SimpleResizeBilinearTest)
+ARMNN_AUTO_TEST_CASE(SimpleResizeBilinearUint8, SimpleResizeBilinearUint8Test)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearNop, ResizeBilinearNopTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearNopUint8, ResizeBilinearNopUint8Test)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearSqMin, ResizeBilinearSqMinTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearSqMinUint8, ResizeBilinearSqMinUint8Test)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearMin, ResizeBilinearMinTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearMinUint8, ResizeBilinearMinUint8Test)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearMag, ResizeBilinearMagTest)
+ARMNN_AUTO_TEST_CASE(ResizeBilinearMagUint8, ResizeBilinearMagUint8Test)
+
+// Fake Quantization
+ARMNN_AUTO_TEST_CASE(FakeQuantization, FakeQuantizationTest)
+
+// L2 Noramlization
+ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest)
+ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest)
+ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest)
+ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest)
+
+// Constant
+ARMNN_AUTO_TEST_CASE(Constant, ConstantTest)
+ARMNN_AUTO_TEST_CASE(ConstantUint8, ConstantUint8Test)
+
+// Concat
+ARMNN_AUTO_TEST_CASE(Concatenation1d, Concatenation1dTest)
+ARMNN_AUTO_TEST_CASE(Concatenation1dUint8, Concatenation1dUint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0, Concatenation2dDim0Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0Uint8, Concatenation2dDim0Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1, Concatenation2dDim1Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1Uint8, Concatenation2dDim1Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0DiffInputDims, Concatenation2dDim0DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim0DiffInputDimsUint8, Concatenation2dDim0DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1DiffInputDims, Concatenation2dDim1DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation2dDim1DiffInputDimsUint8, Concatenation2dDim1DiffInputDimsUint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0, Concatenation3dDim0Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0Uint8, Concatenation3dDim0Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1, Concatenation3dDim1Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1Uint8, Concatenation3dDim1Uint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2, Concatenation3dDim2Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2Uint8, Concatenation3dDim2Uint8Test)
+
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0DiffInputDims, Concatenation3dDim0DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim0DiffInputDimsUint8, Concatenation3dDim0DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1DiffInputDims, Concatenation3dDim1DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim1DiffInputDimsUint8, Concatenation3dDim1DiffInputDimsUint8Test)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDims, Concatenation3dDim2DiffInputDimsTest)
+ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDimsUint8, Concatenation3dDim2DiffInputDimsUint8Test)
+
+// Floor
+ARMNN_AUTO_TEST_CASE(SimpleFloor, SimpleFloorTest)
+
+// Reshape
+ARMNN_AUTO_TEST_CASE(SimpleReshapeFloat32, SimpleReshapeFloat32Test)
+ARMNN_AUTO_TEST_CASE(SimpleReshapeUint8, SimpleReshapeUint8Test)
+
+// Permute
+ARMNN_AUTO_TEST_CASE(SimplePermuteFloat32, SimplePermuteFloat32Test)
+ARMNN_AUTO_TEST_CASE(SimplePermuteUint8, SimplePermuteUint8Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet1, PermuteFloat32ValueSet1Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet2, PermuteFloat32ValueSet2Test)
+ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet3, PermuteFloat32ValueSet3Test)
+
+// Convert from Float16 to Float32
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp16ToFp32, SimpleConvertFp16ToFp32Test)
+// Convert from Float32 to Float16
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp32ToFp16, SimpleConvertFp32ToFp16Test)
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/ReshapeTestImpl.hpp b/src/backends/test/ReshapeTestImpl.hpp
new file mode 100644
index 0000000000..5d32d9d3a6
--- /dev/null
+++ b/src/backends/test/ReshapeTestImpl.hpp
@@ -0,0 +1,177 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+template<typename T>
+LayerTestResult<T, 4> SimpleReshapeTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::TensorInfo inputTensorInfo,
+ armnn::TensorInfo outputTensorInfo,
+ const std::vector<T>& inputData,
+ const std::vector<T>& outputExpectedData)
+{
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputExpectedData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ReshapeQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateReshape(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float, 4> SimpleReshapeFloat32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 2, 2, 3, 3 };
+ unsigned int outputShape[] = { 2, 2, 9, 1 };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 0.0f, 1.0f, 2.0f,
+ 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f,
+
+ 9.0f, 10.0f, 11.0f,
+ 12.0f, 13.0f, 14.0f,
+ 15.0f, 16.0f, 17.0f,
+
+ 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f,
+ 24.0f, 25.0f, 26.0f,
+
+ 27.0f, 28.0f, 29.0f,
+ 30.0f, 31.0f, 32.0f,
+ 33.0f, 34.0f, 35.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f,
+
+ 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f,
+
+ 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f,
+
+ 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ });
+
+ return SimpleReshapeTestImpl<float>(workloadFactory, inputTensorInfo, outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4> SimpleFloorTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo(inputTensorInfo);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ LayerTestResult<float, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ { -38.0f, -16.0f, -9.0f, -2.0f, -2.0f, -2.0f, -1.0f, -1.0f, 0.0f,
+ 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 2.0f, 8.0f, 15.0f, 37.0f });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::FloorQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateFloor(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<uint8_t, 4> SimpleReshapeUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 2, 2, 3, 3 };
+ unsigned int outputShape[] = { 2, 2, 9, 1 };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.0f);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.0f);
+
+ std::vector<uint8_t> input = std::vector<uint8_t>(
+ {
+ 0, 1, 2,
+ 3, 4, 5,
+ 6, 7, 8,
+
+ 9, 10, 11,
+ 12, 13, 14,
+ 15, 16, 17,
+
+ 18, 19, 20,
+ 21, 22, 23,
+ 24, 25, 26,
+
+ 27, 28, 29,
+ 30, 31, 32,
+ 33, 34, 35,
+ });
+
+ std::vector<uint8_t> outputExpected = std::vector<uint8_t>(
+ {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8,
+
+ 9, 10, 11, 12, 13, 14, 15, 16, 17,
+
+ 18, 19, 20, 21, 22, 23, 24, 25, 26,
+
+ 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ });
+
+ return SimpleReshapeTestImpl<uint8_t>(workloadFactory, inputTensorInfo, outputTensorInfo, input, outputExpected);
+}
diff --git a/src/backends/test/SoftmaxTestImpl.hpp b/src/backends/test/SoftmaxTestImpl.hpp
new file mode 100644
index 0000000000..5bc13fa21c
--- /dev/null
+++ b/src/backends/test/SoftmaxTestImpl.hpp
@@ -0,0 +1,153 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+#include <algorithm>
+
+template<typename T>
+LayerTestResult<T, 2> SimpleSoftmaxTestImpl(armnn::IWorkloadFactory& workloadFactory, float beta)
+{
+ using std::exp;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 2, 4 };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ float qScale = 1.f / 256.f;
+ int qOffset = 0;
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+
+ outputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+
+ LayerTestResult<T, 2> ret(outputTensorInfo);
+
+ // Each row is independently softmax'd.
+ auto input = MakeTensor<T, 2>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, 0, {
+ 0.f, 1.f, 0.f, 0.f,
+ .5f, 0.f, 0.f, 0.f,
+ })));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::SoftmaxQueueDescriptor data;
+ data.m_Parameters.m_Beta = beta;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSoftmax(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ float x0[4] = { exp((0.f - 1.0f) * beta), exp((1.0f - 1.0f) * beta),
+ exp((0.0f - 1.0f) * beta), exp((0.0f - 1.0f) * beta) };
+ float sum0 = x0[0] + x0[1] + x0[2] + x0[3];
+ float x1[4] = { exp((0.5f - 0.5f) * beta), exp((0.0f - 0.5f) * beta),
+ exp((0.0f - 0.5f) * beta), exp((0.0f - 0.5f) * beta) };
+ float sum1 = x1[0] + x1[1] + x1[2] + x1[3];
+
+ ret.outputExpected = MakeTensor<T, 2>(outputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ x0[0] / sum0, x0[1] / sum0, x0[2] / sum0, x0[3] / sum0,
+ x1[0] / sum1, x1[1] / sum1, x1[2] / sum1, x1[3] / sum1
+ })));
+
+ return ret;
+}
+
+template<typename T>
+LayerTestResult<T, 2> CompareSoftmaxTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta)
+{
+
+ const int batchSize = 20;
+ const int channels = 30;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { batchSize, channels };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ float qScale = 1.f / 256.f;
+ int qOffset = 0;
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+
+
+ LayerTestResult<T, 2> ret(outputTensorInfo);
+ auto input = MakeRandomTensor<T, 2>(inputTensorInfo, 0xF00D, 0.0f, 1.0f);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::SoftmaxQueueDescriptor data;
+ data.m_Parameters.m_Beta = beta;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+
+ armnn::SoftmaxQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSoftmax(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateSoftmax(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0], outputHandleRef.get());
+
+ return ret;
+}
diff --git a/src/backends/test/SplitterTestImpl.hpp b/src/backends/test/SplitterTestImpl.hpp
new file mode 100644
index 0000000000..5dcc412d0e
--- /dev/null
+++ b/src/backends/test/SplitterTestImpl.hpp
@@ -0,0 +1,307 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+#include "test/TensorHelpers.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/WorkloadFactory.hpp"
+
+#include "backends/test/QuantizeHelper.hpp"
+
+
+template<typename T>
+std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int inputWidth = 5;
+ unsigned int inputHeight = 6;
+ unsigned int inputChannels = 3;
+
+ // NOTE: Compute Library imposes a restriction that the x and y dimension (input height and width)
+ // cannot be split.
+ // For the reasons for this, see first comment on https://jira.arm.com/browse/IVGCVSW-1239
+ //
+ // This test has therefore been recast to split the channels, then split the resulting subtensor.
+
+ // To take channel 0 of original output
+ // and channel 0 and channel 1 of the split subtensor.
+ unsigned int outputWidth1 = inputWidth;
+ unsigned int outputHeight1 = inputHeight;
+ unsigned int outputChannels1 = 1;
+
+ // To take channel 1 and 2 of the original output.
+ unsigned int outputWidth2 = inputWidth;
+ unsigned int outputHeight2 = inputHeight;
+ unsigned int outputChannels2 = 2;
+
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo({ inputChannels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+
+ // Outputs of the original split.
+ armnn::TensorInfo outputTensorInfo1({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo2({ outputChannels2, outputHeight2, outputWidth2 }, armnn::GetDataType<T>());
+
+ // Outputs of the subsequent subtensor split.
+ armnn::TensorInfo outputTensorInfo3({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo4({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ // The quantization doesn't really matter as the splitter operator doesn't dequantize/quantize.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo1.SetQuantizationScale(qScale);
+ outputTensorInfo1.SetQuantizationOffset(qOffset);
+ outputTensorInfo2.SetQuantizationScale(qScale);
+ outputTensorInfo2.SetQuantizationOffset(qOffset);
+ outputTensorInfo3.SetQuantizationScale(qScale);
+ outputTensorInfo3.SetQuantizationOffset(qOffset);
+ outputTensorInfo4.SetQuantizationScale(qScale);
+ outputTensorInfo4.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T,3> ret1(outputTensorInfo1);
+ LayerTestResult<T,3> ret2(outputTensorInfo2);
+ LayerTestResult<T,3> ret3(outputTensorInfo3);
+ LayerTestResult<T,3> ret4(outputTensorInfo4);
+
+ auto input = MakeTensor<T, 3>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ })
+ ));
+
+ // Channel 0 of the original input.
+ ret1.outputExpected = MakeTensor<T, 3>(outputTensorInfo1, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+ })
+ ));
+
+ // Channel 1 & 2 of the original input.
+ ret2.outputExpected = MakeTensor<T, 3>(outputTensorInfo2, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ })
+ ));
+
+ // Channel 0 of return 2 (i.e. channels 1 and 2 of the original input).
+ ret3.outputExpected = MakeTensor<T, 3>(outputTensorInfo3, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+ })
+ ));
+
+ // Channel 1 of return 2.
+ ret4.outputExpected = MakeTensor<T, 3>(outputTensorInfo4, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ })
+ ));
+
+ // NOTE: as a corollary of the splitting of x and y restriction the x and y values of the view origins
+ // have to be zero, the co-ordinates are as per the tensor info above channels, height/y, width/x
+ // note that under the hood the compute engine reverses these i.e. its coordinate system is x, y, channels.
+ std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //Extent of the window is defined by size of output[0].
+ armnn::SplitterQueueDescriptor::ViewOrigin window1(wOrigin1);
+
+ std::vector<unsigned int> wOrigin2 = {1, 0, 0}; //Extent of the window is defined by size of output[1].
+ armnn::SplitterQueueDescriptor::ViewOrigin window2(wOrigin2);
+
+ std::vector<unsigned int> wOrigin3 = {0, 0, 0}; //Extent of the window is defined by size of output[2].
+ armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
+
+ std::vector<unsigned int> wOrigin4 = {1, 0, 0}; //Extent of the window is defined by size of output[3].
+ armnn::SplitterQueueDescriptor::ViewOrigin window4(wOrigin4);
+
+ bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle1 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*inputHandle, outputTensorInfo1.GetShape(), wOrigin1.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo1);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle2 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*inputHandle, outputTensorInfo2.GetShape(), wOrigin2.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo2);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle3 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle2, outputTensorInfo3.GetShape(), wOrigin3.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo3);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle4 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle2, outputTensorInfo4.GetShape(), wOrigin4.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo4);
+
+ // Do the first split
+ armnn::SplitterQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo1, outputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo2, outputHandle2.get());
+
+ data.m_ViewOrigins.push_back(window1);
+ data.m_ViewOrigins.push_back(window2);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSplitter(data, info);
+
+ inputHandle->Allocate();
+ outputHandle1->Allocate();
+ outputHandle2->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret1.output[0][0][0], outputHandle1.get());
+ CopyDataFromITensorHandle(&ret2.output[0][0][0], outputHandle2.get());
+
+// // Do the second split.
+ armnn::SplitterQueueDescriptor data2;
+ armnn::WorkloadInfo info2;
+ AddInputToWorkload(data2, info2, outputTensorInfo2, outputHandle2.get());
+ AddOutputToWorkload(data2, info2, outputTensorInfo3, outputHandle3.get());
+ AddOutputToWorkload(data2, info2, outputTensorInfo4, outputHandle4.get());
+
+ data2.m_ViewOrigins.push_back(window3);
+ data2.m_ViewOrigins.push_back(window4);
+
+ std::unique_ptr<armnn::IWorkload> workload2 = workloadFactory.CreateSplitter(data2, info2);
+
+ outputHandle3->Allocate();
+ outputHandle4->Allocate();
+
+ workload2->Execute();
+
+ CopyDataFromITensorHandle(&ret3.output[0][0][0], outputHandle3.get());
+ CopyDataFromITensorHandle(&ret4.output[0][0][0], outputHandle4.get());
+
+ std::vector<LayerTestResult<T,3>> ret = {ret1, ret2, ret3, ret4,};
+
+ return ret;
+}
+
+
+template <typename T>
+LayerTestResult<T, 3> CopyViaSplitterTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ const armnn::TensorInfo tensorInfo({ 3, 6, 5 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 3>(tensorInfo, QuantizedVector<T>(qScale, qOffset,
+ {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ }));
+
+ std::vector<unsigned int> origin = { 0, 0, 0 };
+ armnn::SplitterQueueDescriptor::ViewOrigin window(origin);
+
+ const bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(tensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*inputHandle, tensorInfo.GetShape(), origin.data()) :
+ workloadFactory.CreateTensorHandle(tensorInfo);
+
+ armnn::SplitterQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, tensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, tensorInfo, outputHandle.get());
+
+ data.m_ViewOrigins.push_back(window);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSplitter(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0]);
+
+ workload->Execute();
+
+ LayerTestResult<T, 3> ret(tensorInfo);
+ CopyDataFromITensorHandle(&ret.output[0][0][0], outputHandle.get());
+ ret.outputExpected = input;
+
+ return ret;
+}
diff --git a/src/backends/test/TensorCopyUtils.cpp b/src/backends/test/TensorCopyUtils.cpp
new file mode 100644
index 0000000000..dc5864b285
--- /dev/null
+++ b/src/backends/test/TensorCopyUtils.cpp
@@ -0,0 +1,159 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <algorithm>
+#include <cstring>
+#include <boost/cast.hpp>
+#include <Half.hpp>
+
+#include "TensorCopyUtils.hpp"
+
+#ifdef ARMCOMPUTECL_ENABLED
+#include "backends/ClTensorHandle.hpp"
+#endif
+
+#if ARMCOMPUTENEON_ENABLED
+#include "backends/NeonTensorHandle.hpp"
+#endif
+
+#if ARMCOMPUTECLENABLED || ARMCOMPUTENEON_ENABLED
+#include "backends/ArmComputeTensorUtils.hpp"
+#endif
+
+#include "backends/CpuTensorHandle.hpp"
+
+void CopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem)
+{
+ switch (tensorHandle->GetType())
+ {
+ case armnn::ITensorHandle::Cpu:
+ {
+ auto handle = boost::polymorphic_downcast<armnn::ScopedCpuTensorHandle*>(tensorHandle);
+ memcpy(handle->GetTensor<void>(), mem, handle->GetTensorInfo().GetNumBytes());
+ break;
+ }
+#ifdef ARMCOMPUTECL_ENABLED
+ case armnn::ITensorHandle::CL:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<armnn::IClTensorHandle*>(tensorHandle);
+ handle->Map(true);
+ switch(handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(static_cast<const float*>(mem), handle->GetTensor());
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(static_cast<const uint8_t*>(mem), handle->GetTensor());
+ break;
+ case arm_compute::DataType::F16:
+ CopyArmComputeITensorData(static_cast<const armnn::Half*>(mem), handle->GetTensor());
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ handle->Unmap();
+ break;
+ }
+#endif
+#if ARMCOMPUTENEON_ENABLED
+ case armnn::ITensorHandle::Neon:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<armnn::INeonTensorHandle*>(tensorHandle);
+ switch (handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(static_cast<const float*>(mem), handle->GetTensor());
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(static_cast<const uint8_t*>(mem), handle->GetTensor());
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ break;
+ }
+#endif
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+}
+
+void CopyDataFromITensorHandle(void* mem, const armnn::ITensorHandle* tensorHandle)
+{
+ switch (tensorHandle->GetType())
+ {
+ case armnn::ITensorHandle::Cpu:
+ {
+ auto handle = boost::polymorphic_downcast<const armnn::ScopedCpuTensorHandle*>(tensorHandle);
+ memcpy(mem, handle->GetTensor<void>(), handle->GetTensorInfo().GetNumBytes());
+ break;
+ }
+#ifdef ARMCOMPUTECL_ENABLED
+ case armnn::ITensorHandle::CL:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<const armnn::IClTensorHandle*>(tensorHandle);
+ const_cast<armnn::IClTensorHandle*>(handle)->Map(true);
+ switch(handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<float*>(mem));
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<uint8_t*>(mem));
+ break;
+ case arm_compute::DataType::F16:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<armnn::Half*>(mem));
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ const_cast<armnn::IClTensorHandle*>(handle)->Unmap();
+ break;
+ }
+#endif
+#if ARMCOMPUTENEON_ENABLED
+ case armnn::ITensorHandle::Neon:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<const armnn::INeonTensorHandle*>(tensorHandle);
+ switch (handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<float*>(mem));
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<uint8_t*>(mem));
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ break;
+ }
+#endif
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+}
+
+void AllocateAndCopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem)
+{
+ tensorHandle->Allocate();
+ CopyDataToITensorHandle(tensorHandle, mem);
+}
diff --git a/src/backends/test/TensorCopyUtils.hpp b/src/backends/test/TensorCopyUtils.hpp
new file mode 100644
index 0000000000..0cec839903
--- /dev/null
+++ b/src/backends/test/TensorCopyUtils.hpp
@@ -0,0 +1,14 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "armnn/Tensor.hpp"
+#include "backends/ITensorHandle.hpp"
+
+void CopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem);
+
+void CopyDataFromITensorHandle(void* mem, const armnn::ITensorHandle* tensorHandle);
+
+void AllocateAndCopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem); \ No newline at end of file
diff --git a/src/backends/test/WorkloadDataValidation.cpp b/src/backends/test/WorkloadDataValidation.cpp
new file mode 100644
index 0000000000..a5cfbd1270
--- /dev/null
+++ b/src/backends/test/WorkloadDataValidation.cpp
@@ -0,0 +1,471 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <boost/test/unit_test.hpp>
+#include <backends/CpuTensorHandle.hpp>
+#include <backends/Workload.hpp>
+#include <backends/RefWorkloads.hpp>
+#include <backends/RefWorkloadFactory.hpp>
+
+#include <armnn/Exceptions.hpp>
+
+#include "WorkloadTestUtils.hpp"
+
+using namespace armnn;
+
+BOOST_AUTO_TEST_SUITE(WorkloadInfoValidation)
+
+
+
+BOOST_AUTO_TEST_CASE(QueueDescriptor_Validate_WrongNumOfInputsOutputs)
+{
+ InputQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+ //Invalid argument exception is expected, because no inputs and no outputs were defined.
+ BOOST_CHECK_THROW(RefWorkloadFactory().CreateInput(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(RefPooling2dFloat32Workload_Validate_WrongDimTensor)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {2, 3, 4}; // <- Invalid - input tensor has to be 4D.
+ unsigned int outputShape[] = {2, 3, 4, 5};
+
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+ inputTensorInfo = armnn::TensorInfo(3, inputShape, armnn::DataType::Float32);
+
+ Pooling2dQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+
+ // Invalid argument exception is expected, input tensor has to be 4D.
+ BOOST_CHECK_THROW(RefPooling2dFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(SoftmaxQueueDescriptor_Validate_WrongInputHeight)
+{
+ unsigned int inputHeight = 1;
+ unsigned int inputWidth = 1;
+ unsigned int inputChannels = 4;
+ unsigned int inputNum = 2;
+
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputHeight = inputHeight + 1; //Makes data invalid - Softmax expects height and width to be 1.
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputNum = inputNum;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ SoftmaxQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ //Invalid argument exception is expected, because height != 1.
+ BOOST_CHECK_THROW(RefSoftmaxFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(FullyConnectedQueueDescriptor_Validate_RequiredDataMissing)
+{
+ unsigned int inputWidth = 1;
+ unsigned int inputHeight = 1;
+ unsigned int inputChannels = 5;
+ unsigned int inputNum = 2;
+
+ unsigned int outputWidth = 1;
+ unsigned int outputHeight = 1;
+ unsigned int outputChannels = 3;
+ unsigned int outputNum = 2;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo weightsDesc;
+ armnn::TensorInfo biasesDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+ unsigned int weightsShape[] = { 1, 1, inputChannels, outputChannels };
+ unsigned int biasShape[] = { 1, outputChannels, outputHeight, outputWidth };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+ weightsDesc = armnn::TensorInfo(4, weightsShape, armnn::DataType::Float32);
+ biasesDesc = armnn::TensorInfo(4, biasShape, armnn::DataType::Float32);
+
+ FullyConnectedQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ ScopedCpuTensorHandle weightTensor(weightsDesc);
+ ScopedCpuTensorHandle biasTensor(biasesDesc);
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ invalidData.m_Weight = &weightTensor;
+ invalidData.m_Bias = &biasTensor;
+ invalidData.m_Parameters.m_BiasEnabled = true;
+ invalidData.m_Parameters.m_TransposeWeightMatrix = false;
+
+
+ //Invalid argument exception is expected, because not all required fields have been provided.
+ //In particular inputsData[0], outputsData[0] and weightsData can not be null.
+ BOOST_CHECK_THROW(RefFullyConnectedFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+
+BOOST_AUTO_TEST_CASE(NormalizationQueueDescriptor_Validate_WrongInputHeight)
+{
+ constexpr unsigned int inputNum = 5;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+ constexpr unsigned int inputChannels = 3;
+
+ constexpr unsigned int outputNum = inputNum;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputHeight = inputHeight + 1; //Makes data invalid - normalization requires.
+ //Input and output to have the same dimensions.
+ constexpr unsigned int outputWidth = inputWidth;
+
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+
+ armnn::NormalizationAlgorithmMethod normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ armnn::NormalizationAlgorithmChannel normChannel = armnn::NormalizationAlgorithmChannel::Across;
+ float alpha = 1.f;
+ float beta = 1.f;
+ float kappa = 1.f;
+ uint32_t normSize = 5;
+
+ NormalizationQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ invalidData.m_Parameters.m_NormChannelType = normChannel;
+ invalidData.m_Parameters.m_NormMethodType = normMethod;
+ invalidData.m_Parameters.m_NormSize = normSize;
+ invalidData.m_Parameters.m_Alpha = alpha;
+ invalidData.m_Parameters.m_Beta = beta;
+ invalidData.m_Parameters.m_K = kappa;
+
+ //Invalid argument exception is expected, because input height != output height.
+ BOOST_CHECK_THROW(RefNormalizationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(SplitterQueueDescriptor_Validate_WrongWindow)
+{
+ constexpr unsigned int inputNum = 1;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+ constexpr unsigned int inputChannels = 3;
+
+ constexpr unsigned int outputNum = inputNum;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputHeight = 18;
+ constexpr unsigned int outputWidth = inputWidth;
+
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ SplitterQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Invalid, since it has only 3 dimensions while the input tensor is 4d.
+ std::vector<unsigned int> wOrigin = {0, 0, 0};
+ armnn::SplitterQueueDescriptor::ViewOrigin window(wOrigin);
+ invalidData.m_ViewOrigins.push_back(window);
+
+ BOOST_TEST_INFO("Invalid argument exception is expected, because split window dimensionality does not "
+ "match input.");
+ BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+ // Invalid, since window extends past the boundary of input tensor.
+ std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
+ armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
+ invalidData.m_ViewOrigins[0] = window3;
+ BOOST_TEST_INFO("Invalid argument exception is expected (wOrigin3[2]+ outputHeight > inputHeight");
+ BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+
+ std::vector<unsigned int> wOrigin4 = {0, 0, 0, 0};
+ armnn::SplitterQueueDescriptor::ViewOrigin window4(wOrigin4);
+ invalidData.m_ViewOrigins[0] = window4;
+
+ std::vector<unsigned int> wOrigin5 = {1, 16, 20, 2};
+ armnn::SplitterQueueDescriptor::ViewOrigin window5(wOrigin4);
+ invalidData.m_ViewOrigins.push_back(window5);
+
+ BOOST_TEST_INFO("Invalid exception due to number of split windows not matching number of outputs.");
+ BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+
+BOOST_AUTO_TEST_CASE(MergerQueueDescriptor_Validate_WrongWindow)
+{
+ constexpr unsigned int inputNum = 1;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+
+ constexpr unsigned int outputNum = 1;
+ constexpr unsigned int outputChannels = 3;
+ constexpr unsigned int outputHeight = 32;
+ constexpr unsigned int outputWidth = 24;
+
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ MergerQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Invalid, since it has only 3 dimensions while the input tensor is 4d.
+ std::vector<unsigned int> wOrigin = {0, 0, 0};
+ armnn::MergerQueueDescriptor::ViewOrigin window(wOrigin);
+ invalidData.m_ViewOrigins.push_back(window);
+
+ BOOST_TEST_INFO("Invalid argument exception is expected, because merge window dimensionality does not "
+ "match input.");
+ BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+ // Invalid, since window extends past the boundary of output tensor.
+ std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
+ armnn::MergerQueueDescriptor::ViewOrigin window3(wOrigin3);
+ invalidData.m_ViewOrigins[0] = window3;
+ BOOST_TEST_INFO("Invalid argument exception is expected (wOrigin3[2]+ inputHeight > outputHeight");
+ BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+
+ std::vector<unsigned int> wOrigin4 = {0, 0, 0, 0};
+ armnn::MergerQueueDescriptor::ViewOrigin window4(wOrigin4);
+ invalidData.m_ViewOrigins[0] = window4;
+
+ std::vector<unsigned int> wOrigin5 = {1, 16, 20, 2};
+ armnn::MergerQueueDescriptor::ViewOrigin window5(wOrigin4);
+ invalidData.m_ViewOrigins.push_back(window5);
+
+ BOOST_TEST_INFO("Invalid exception due to number of merge windows not matching number of inputs.");
+ BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputNumbers)
+{
+ armnn::TensorInfo input1TensorInfo;
+ armnn::TensorInfo input2TensorInfo;
+ armnn::TensorInfo input3TensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {1, 1, 1, 1};
+
+ input1TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ input2TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ input3TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+ AdditionQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Too few inputs.
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+ AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
+
+ // Correct.
+ BOOST_CHECK_NO_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo));
+
+ AddInputToWorkload(invalidData, invalidInfo, input3TensorInfo, nullptr);
+
+ // Too many inputs.
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputShapes)
+{
+ armnn::TensorInfo input1TensorInfo;
+ armnn::TensorInfo input2TensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape1[] = {1, 1, 2, 1};
+ unsigned int shape2[] = {1, 1, 3, 2};
+
+ // Incompatible shapes even with broadcasting.
+ {
+ input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+ input2TensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+
+ AdditionQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+
+ // Output size not compatible with input sizes.
+ {
+ input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+ input2TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);
+
+ AdditionQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Output differs.
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+}
+
+BOOST_AUTO_TEST_CASE(MultiplicationQueueDescriptor_Validate_InputTensorDimensionMismatch)
+{
+ armnn::TensorInfo input0TensorInfo;
+ armnn::TensorInfo input1TensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ constexpr unsigned int input0Shape[] = { 2, 2, 4, 4 };
+ constexpr std::size_t dimensionCount = std::extent<decltype(input0Shape)>::value;
+
+ // Checks dimension consistency for input tensors.
+ for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
+ {
+ unsigned int input1Shape[dimensionCount];
+ for (unsigned int i = 0; i < dimensionCount; ++i)
+ {
+ input1Shape[i] = input0Shape[i];
+ }
+
+ ++input1Shape[dimIndex];
+
+ input0TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+ input1TensorInfo = armnn::TensorInfo(dimensionCount, input1Shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+
+ MultiplicationQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input0TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(RefMultiplicationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+
+ // Checks dimension consistency for input and output tensors.
+ for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
+ {
+ unsigned int outputShape[dimensionCount];
+ for (unsigned int i = 0; i < dimensionCount; ++i)
+ {
+ outputShape[i] = input0Shape[i];
+ }
+
+ ++outputShape[dimIndex];
+
+ input0TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+ input1TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(dimensionCount, outputShape, armnn::DataType::Float32);
+
+ MultiplicationQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input0TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(RefMultiplicationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+}
+
+BOOST_AUTO_TEST_CASE(ReshapeQueueDescriptor_Validate_MismatchingNumElements)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ // The input and output shapes should have the same number of elements, but these don't.
+ unsigned int inputShape[] = { 1, 1, 2, 3 };
+ unsigned int outputShape[] = { 1, 1, 1, 2 };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ ReshapeQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // InvalidArgumentException is expected, because the number of elements don't match.
+ BOOST_CHECK_THROW(RefReshapeFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+
+BOOST_AUTO_TEST_CASE(LstmQueueDescriptor_Validate)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2 };
+ unsigned int outputShape[] = { 1 };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(1, outputShape, armnn::DataType::Float32);
+
+ LstmQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(invalidData.Validate(invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/test/WorkloadTestUtils.hpp b/src/backends/test/WorkloadTestUtils.hpp
new file mode 100644
index 0000000000..a7b75309f7
--- /dev/null
+++ b/src/backends/test/WorkloadTestUtils.hpp
@@ -0,0 +1,55 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/Tensor.hpp>
+#include <backends/WorkloadInfo.hpp>
+
+namespace armnn
+{
+class ITensorHandle;
+}
+
+template <typename QueueDescriptor>
+void AddInputToWorkload(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Inputs.push_back(tensorHandle);
+ info.m_InputTensorInfos.push_back(tensorInfo);
+}
+
+template <typename QueueDescriptor>
+void AddOutputToWorkload(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Outputs.push_back(tensorHandle);
+ info.m_OutputTensorInfos.push_back(tensorInfo);
+}
+
+template <typename QueueDescriptor>
+void SetWorkloadInput(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ unsigned int index,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Inputs[index] = tensorHandle;
+ info.m_InputTensorInfos[index] = tensorInfo;
+}
+
+template <typename QueueDescriptor>
+void SetWorkloadOutput(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ unsigned int index,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Outputs[index] = tensorHandle;
+ info.m_OutputTensorInfos[index] = tensorInfo;
+} \ No newline at end of file