aboutsummaryrefslogtreecommitdiff
path: root/src/armnn/backends/test
diff options
context:
space:
mode:
Diffstat (limited to 'src/armnn/backends/test')
-rw-r--r--src/armnn/backends/test/ActivationFixture.hpp2
-rw-r--r--src/armnn/backends/test/ActivationTestImpl.hpp27
-rw-r--r--src/armnn/backends/test/ArmComputeCl.cpp48
-rw-r--r--src/armnn/backends/test/ArmComputeNeon.cpp156
-rw-r--r--src/armnn/backends/test/BatchNormTestImpl.hpp6
-rw-r--r--src/armnn/backends/test/ClContextControlFixture.hpp21
-rw-r--r--src/armnn/backends/test/Conv2dTestImpl.hpp52
-rw-r--r--src/armnn/backends/test/ConvertFp16ToFp32TestImpl.hpp55
-rw-r--r--src/armnn/backends/test/ConvertFp32ToFp16TestImpl.hpp55
-rw-r--r--src/armnn/backends/test/CreateWorkloadCl.cpp340
-rw-r--r--src/armnn/backends/test/CreateWorkloadNeon.cpp270
-rw-r--r--src/armnn/backends/test/CreateWorkloadRef.cpp219
-rw-r--r--src/armnn/backends/test/FullyConnectedTestImpl.hpp8
-rw-r--r--src/armnn/backends/test/IsLayerSupportedTest.cpp178
-rw-r--r--src/armnn/backends/test/IsLayerSupportedTestImpl.hpp167
-rw-r--r--src/armnn/backends/test/LayerReleaseConstantDataTest.cpp212
-rw-r--r--src/armnn/backends/test/LayerTests.cpp166
-rw-r--r--src/armnn/backends/test/LayerTests.hpp25
-rw-r--r--src/armnn/backends/test/LstmTestImpl.hpp1150
-rw-r--r--src/armnn/backends/test/MemCopyTests.cpp24
-rw-r--r--src/armnn/backends/test/NormTestImpl.hpp4
-rw-r--r--src/armnn/backends/test/Pooling2dTestImpl.hpp14
-rw-r--r--src/armnn/backends/test/QuantizeHelper.hpp2
-rw-r--r--src/armnn/backends/test/Reference.cpp26
-rw-r--r--src/armnn/backends/test/SoftmaxTestImpl.hpp2
-rw-r--r--src/armnn/backends/test/SplitterTestImpl.hpp40
-rw-r--r--src/armnn/backends/test/TensorCopyUtils.cpp11
-rw-r--r--src/armnn/backends/test/WorkloadDataValidation.cpp71
28 files changed, 2841 insertions, 510 deletions
diff --git a/src/armnn/backends/test/ActivationFixture.hpp b/src/armnn/backends/test/ActivationFixture.hpp
index a67a110354..69f3c8be05 100644
--- a/src/armnn/backends/test/ActivationFixture.hpp
+++ b/src/armnn/backends/test/ActivationFixture.hpp
@@ -41,7 +41,7 @@ struct ActivationFixture
armnn::TensorInfo inputTensorInfo;
armnn::TensorInfo outputTensorInfo;
- // parameters used by some of the activation functions
+ // Parameters used by some of the activation functions.
float a = 0.234f;
float b = -12.345f;
};
diff --git a/src/armnn/backends/test/ActivationTestImpl.hpp b/src/armnn/backends/test/ActivationTestImpl.hpp
index 255a00ef0b..e699b2289b 100644
--- a/src/armnn/backends/test/ActivationTestImpl.hpp
+++ b/src/armnn/backends/test/ActivationTestImpl.hpp
@@ -53,7 +53,7 @@ LayerTestResult<T, 4> BoundedReLuTestCommon(armnn::IWorkloadFactory& workloadFac
std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
- // Setup bounded ReLu
+ // Setup bounded ReLu.
armnn::ActivationQueueDescriptor descriptor;
armnn::WorkloadInfo workloadInfo;
AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
@@ -94,7 +94,7 @@ LayerTestResult<float, 4> BoundedReLuUpperAndLowerBoundTest(armnn::IWorkloadFact
0.999f, 1.2f, 0.89f, 6.1f,
};
- // Calculated manually
+ // Calculated manually.
std::vector<float> output = std::vector<float>{
-1.0f, 0.1f, 0.5f, 1.0f,
0.786f, 0.9875f, -1.0f, 0.384f,
@@ -122,7 +122,7 @@ LayerTestResult<float, 4> BoundedReLuUpperBoundOnlyTest(armnn::IWorkloadFactory&
0.999f, 1.2f, 0.89f, 6.1f,
};
- // Calculated manually
+ // Calculated manually.
std::vector<float> output = std::vector<float>{
0.0f, 0.1f, 0.5f, 6.0f,
0.786f, 5.9875f, 0.0f, 0.384f,
@@ -147,7 +147,7 @@ LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperBoundOnlyTest(armnn::IWorkloadF
251, 8, 92
};
- // Calculated manually
+ // Calculated manually.
std::vector<uint8_t> output = std::vector<uint8_t>{
0, 122, 0,
255, 0, 58
@@ -176,7 +176,7 @@ LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperAndLowerBoundTest(armnn::IWorkl
251, 8, 92
};
- // Calculated manually
+ // Calculated manually.
std::vector<uint8_t> output = std::vector<uint8_t>{
51, 192, 32,
192, 32, 92
@@ -186,7 +186,7 @@ LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperAndLowerBoundTest(armnn::IWorkl
float inputScale = 0.0125f;
return BoundedReLuTestCommon(workloadFactory, 1.0f, -1.0f,
- inputScale, inputOffset, inputScale, inputOffset, // input/output scale & offset same
+ inputScale, inputOffset, inputScale, inputOffset, // Input/output scale & offset same.
input, output,
inputWidth, inputHeight, inputChannels, inputBatchSize);
}
@@ -229,13 +229,14 @@ boost::multi_array<float, 4> BoundedReLuRandomInputTest(armnn::IWorkloadFactory&
boost::multi_array<float, 4> output(GetTensorShapeAsArray<4>(outputTensorInfo));
- // min/max random values passed to MakeRandomTensor are purposely outside of the ReLu range [lowerBound, upperBound]
+ // Min/max random values passed to MakeRandomTensor are purposely outside of the ReLu
+ // range [lowerBound, upperBound].
auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 4605828, lowerBound - 5.0f, upperBound * 2.0f);
std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
- // Setup bounded ReLu
+ // Set up bounded ReLu.
armnn::ActivationQueueDescriptor descriptor;
armnn::WorkloadInfo workloadInfo;
AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
@@ -308,7 +309,7 @@ LayerTestResult<T,4> ConstantLinearActivationTestCommon(armnn::IWorkloadFactory&
std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
- // Do linear activation that should leave tensor unchanged
+ // Do linear activation that should leave the tensor unchanged.
armnn::ActivationQueueDescriptor data;
armnn::WorkloadInfo info;
AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
@@ -329,7 +330,7 @@ LayerTestResult<T,4> ConstantLinearActivationTestCommon(armnn::IWorkloadFactory&
CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
- // Ensure output equals input
+ // Ensure output equals input.
ret.outputExpected = input;
return ret;
@@ -386,7 +387,7 @@ LayerTestResult<T, 4> SimpleActivationTest(armnn::IWorkloadFactory& workloadFact
std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
- // Setup bounded ReLu
+ // Setup bounded ReLu.
armnn::ActivationQueueDescriptor descriptor;
armnn::WorkloadInfo workloadInfo;
AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
@@ -407,7 +408,7 @@ LayerTestResult<T, 4> SimpleActivationTest(armnn::IWorkloadFactory& workloadFact
CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
- // Calculated manually
+ // Calculated manually.
result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, outputExpectedData));
return result;
@@ -423,7 +424,7 @@ LayerTestResult<T, 4> SimpleSigmoidTestCommon(armnn::IWorkloadFactory& workloadF
1.0f, 2.0f, 3.0f, 4.0f
};
- // Calculate output values for input
+ // Calculate output values for input.
auto f = [](float value)
{
return 1.0f / (1.0f + std::exp(-value));
diff --git a/src/armnn/backends/test/ArmComputeCl.cpp b/src/armnn/backends/test/ArmComputeCl.cpp
index ae42d03ee3..d0cb7243c3 100644
--- a/src/armnn/backends/test/ArmComputeCl.cpp
+++ b/src/armnn/backends/test/ArmComputeCl.cpp
@@ -3,7 +3,6 @@
// See LICENSE file in the project root for full license information.
//
#include <boost/test/unit_test.hpp>
-
#include "test/TensorHelpers.hpp"
#include "LayerTests.hpp"
@@ -13,6 +12,7 @@
#include "backends/RefWorkloadFactory.hpp"
#include "backends/ClLayerSupport.hpp"
#include "ActivationFixture.hpp"
+#include "ClContextControlFixture.hpp"
#include <arm_compute/core/CL/CLKernelLibrary.h>
#include <arm_compute/runtime/CL/CLScheduler.h>
@@ -21,7 +21,7 @@
#include "test/UnitTests.hpp"
-BOOST_AUTO_TEST_SUITE(Compute_ArmComputeCl)
+BOOST_FIXTURE_TEST_SUITE(Compute_ArmComputeCl, ClContextControlFixture)
using FactoryType = armnn::ClWorkloadFactory;
// ============================================================================
@@ -65,27 +65,24 @@ ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dDepthMul1Uint8, DepthwiseConv
ARMNN_AUTO_TEST_CASE(DepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, true)
ARMNN_AUTO_TEST_CASE(UnbiasedDepthwiseConvolution2dAsymmetric, DepthwiseConvolution2dAsymmetricTest, false)
-// Splitter
-BOOST_AUTO_TEST_CASE(SimpleSplitter)
+// Softmax
+BOOST_AUTO_TEST_CASE(Softmax4dSupport)
{
- armnn::ClWorkloadFactory workloadFactory;
- auto testResult = SplitterTest(workloadFactory);
- for (unsigned int i = 0; i < testResult.size(); ++i)
- {
- BOOST_TEST(CompareTensors(testResult[i].output, testResult[i].outputExpected));
- }
-}
+ const unsigned int numDimensions = 4u;
+ std::array<unsigned int, numDimensions> dimensionSizes;
+ dimensionSizes.fill(1u);
-BOOST_AUTO_TEST_CASE(SimpleSplitterUint8)
-{
- armnn::ClWorkloadFactory workloadFactory;
- auto testResult = SplitterUint8Test(workloadFactory);
- for (unsigned int i = 0; i < testResult.size(); ++i)
- {
- BOOST_TEST(CompareTensors(testResult[i].output, testResult[i].outputExpected));
- }
+ const armnn::TensorInfo inputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+ const armnn::TensorInfo outputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+
+ // 4D Softmax should be reported as unsupported on the CL backend
+ BOOST_TEST(!armnn::IsSoftmaxSupportedCl(inputInfo, outputInfo, armnn::SoftmaxDescriptor()));
}
+// Splitter
+ARMNN_AUTO_TEST_CASE(SimpleSplitter, SplitterTest)
+ARMNN_AUTO_TEST_CASE(SimpleSplitterUint8, SplitterUint8Test)
+
ARMNN_AUTO_TEST_CASE(CopyViaSplitter, CopyViaSplitterTest)
ARMNN_AUTO_TEST_CASE(CopyViaSplitterUint8, CopyViaSplitterUint8Test)
@@ -209,6 +206,19 @@ ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet1, PermuteFloat32ValueSet1Test)
ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet2, PermuteFloat32ValueSet2Test)
ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet3, PermuteFloat32ValueSet3Test)
+// Lstm
+ARMNN_AUTO_TEST_CASE(LstmLayerFloat32WithCifgWithPeepholeNoProjection,
+ LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest)
+ARMNN_AUTO_TEST_CASE(LstmLayerFloat32NoCifgNoPeepholeNoProjection,
+ LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest)
+ARMNN_AUTO_TEST_CASE(LstmLayerFloat32NoCifgWithPeepholeWithProjection,
+ LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest)
+
+// Convert from Float16 to Float32
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp16ToFp32, SimpleConvertFp16ToFp32Test)
+// Convert from Float32 to Float16
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp32ToFp16, SimpleConvertFp32ToFp16Test)
+
// ============================================================================
// COMPARE tests
diff --git a/src/armnn/backends/test/ArmComputeNeon.cpp b/src/armnn/backends/test/ArmComputeNeon.cpp
index 0a78b75e2e..12947ca77a 100644
--- a/src/armnn/backends/test/ArmComputeNeon.cpp
+++ b/src/armnn/backends/test/ArmComputeNeon.cpp
@@ -54,7 +54,7 @@ armnn::Convolution2dDescriptor MakeConv2dDesc(uint32_t strideX, uint32_t strideY
BOOST_AUTO_TEST_CASE(Conv2dUtils)
{
- // the only preferred Neon convolution is 1x1 with padding=0 and stride size {1,2,3}
+ // The only preferred Neon convolution is 1x1 with padding=0 and stride size {1,2,3}.
armnn::TensorShape shape1x1({ 1,1,1,1 });
armnn::TensorInfo info1x1(shape1x1, armnn::DataType::Float32);
BOOST_TEST(armnn::IsNeonDirectConvolutionPreferred(info1x1, MakeConv2dDesc(1, 1)));
@@ -98,49 +98,133 @@ armnn::DepthwiseConvolution2dDescriptor MakeDepthwiseConv2dDesc(uint32_t strideX
uint32_t depthMultiplier = 1, uint32_t padLeft = 0, uint32_t padRight = 0,
uint32_t padTop = 0, uint32_t padBottom = 0)
{
+ boost::ignore_unused(depthMultiplier);
+
armnn::DepthwiseConvolution2dDescriptor desc;
+
desc.m_PadLeft = padLeft;
desc.m_PadRight = padRight;
+
desc.m_PadTop = padTop;
desc.m_PadBottom = padBottom;
desc.m_StrideX = strideX;
desc.m_StrideY = strideY;
- desc.m_BiasEnabled = true;
+ desc.m_BiasEnabled = false;
+
return desc;
}
+armnn::TensorInfo CreateOutputTensorInfo(const armnn::TensorInfo& inputInfo,
+ const armnn::TensorInfo& weightsInfo,
+ const armnn::DepthwiseConvolution2dDescriptor& descriptor,
+ armnn::DataType dataType)
+{
+ const armnn::TensorShape& inputShape = inputInfo.GetShape();
+ const armnn::TensorShape& filterShape = weightsInfo.GetShape();
+
+ unsigned int inWidth = inputShape[3];
+ unsigned int inHeight = inputShape[2];
+ unsigned int inBatchSize = inputShape[0];
+
+ unsigned int filterWidth = filterShape[3];
+ unsigned int readWidth = (inWidth + descriptor.m_PadLeft + descriptor.m_PadRight) - (filterWidth);
+ unsigned int outWidth = 1u + (readWidth / descriptor.m_StrideX);
+
+ unsigned int filterHeight = filterShape[2];
+ unsigned int readHeight = (inHeight + descriptor.m_PadTop + descriptor.m_PadBottom) - (filterHeight);
+ unsigned int outHeight = 1u + (readHeight / descriptor.m_StrideY);
+ unsigned int depthMultiplier = filterShape[0];
+
+ unsigned int outChannels = filterShape[1] * depthMultiplier;
+ unsigned int outBatchSize = inBatchSize;
+
+ armnn::TensorShape outputShape({outBatchSize, outChannels, outHeight, outWidth});
+ return armnn::TensorInfo(outputShape, dataType);
+}
}
BOOST_AUTO_TEST_CASE(DepthwiseConv2dUtils)
{
- armnn::TensorInfo inputInfo({ 1, 1, 10, 10 }, armnn::DataType::Float32);
- armnn::TensorInfo weightsInfo3x3({ 1, 1, 3, 3 }, armnn::DataType::Float32);
+ const armnn::DataType dataType = armnn::DataType::Float32;
+
+ armnn::TensorInfo inputInfo({1, 1, 10, 10 }, dataType);
+ armnn::TensorInfo outputInfo;
+ armnn::TensorInfo weightsInfo3x3({ 1, 1, 3, 3 }, dataType);
+ armnn::TensorInfo biasesInfo;
+
+ armnn::DepthwiseConvolution2dDescriptor descriptor;
// Strides supported: 1,2,3
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(1, 1), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(1, 2), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(1, 3), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(2, 1), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(2, 2), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(2, 3), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(3, 1), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(3, 2), weightsInfo3x3));
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(3, 3), weightsInfo3x3));
-
- // Unsupported stride
- BOOST_TEST(!armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(4, 1), weightsInfo3x3));
+ descriptor = MakeDepthwiseConv2dDesc(1, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(1, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(1, 3);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(2, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(2, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(2, 3);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(3, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(3, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ descriptor = MakeDepthwiseConv2dDesc(3, 3);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
+
+ // Supported stride 4
+ descriptor = MakeDepthwiseConv2dDesc(4, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
// Supported weights shape 1x1
armnn::TensorInfo weightsInfo1x1({ 1, 1, 1, 1 }, armnn::DataType::Float32);
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(1, 1), weightsInfo1x1));
+ descriptor = MakeDepthwiseConv2dDesc(1, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo1x1, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo1x1, biasesInfo));
// Supported shape 2x2
armnn::TensorInfo weightsInfo2x2({ 1, 1, 2, 2 }, armnn::DataType::Float32);
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(1, 1), weightsInfo2x2));
+ descriptor = MakeDepthwiseConv2dDesc(1, 1);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo2x2, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo2x2, biasesInfo));
// Asymmetric padding
- BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, MakeDepthwiseConv2dDesc(1, 1, 1, 1, 2, 1, 2),
- weightsInfo3x3));
+ descriptor = MakeDepthwiseConv2dDesc(1, 1, 1, 1, 2, 1, 2);
+ outputInfo = CreateOutputTensorInfo(inputInfo, weightsInfo3x3, descriptor, dataType);
+ BOOST_TEST(armnn::IsDepthwiseConvolutionSupportedNeon(inputInfo, outputInfo, descriptor,
+ weightsInfo3x3, biasesInfo));
}
// Pooling
@@ -201,27 +285,24 @@ ARMNN_AUTO_TEST_CASE(SimpleSoftmaxBeta2Uint8, SimpleSoftmaxUint8Test, 2.0f)
ARMNN_AUTO_TEST_CASE(ReLu1Uint8, BoundedReLuUint8UpperAndLowerBoundTest)
ARMNN_AUTO_TEST_CASE(ReLu6Uint8, BoundedReLuUint8UpperBoundOnlyTest)
-// Splitter
-BOOST_AUTO_TEST_CASE(SimpleSplitter)
+// Softmax
+BOOST_AUTO_TEST_CASE(Softmax4dSupport)
{
- armnn::NeonWorkloadFactory workloadFactory;
- auto testResult = SplitterTest(workloadFactory);
- for (unsigned int i = 0; i < testResult.size(); ++i)
- {
- BOOST_TEST(CompareTensors(testResult[i].output, testResult[i].outputExpected));
- }
-}
+ const unsigned int numDimensions = 4u;
+ std::array<unsigned int, numDimensions> dimensionSizes;
+ dimensionSizes.fill(1u);
-BOOST_AUTO_TEST_CASE(SimpleSplitterUint8)
-{
- armnn::NeonWorkloadFactory workloadFactory;
- auto testResult = SplitterUint8Test(workloadFactory);
- for (unsigned int i = 0; i < testResult.size(); ++i)
- {
- BOOST_TEST(CompareTensors(testResult[i].output, testResult[i].outputExpected));
- }
+ const armnn::TensorInfo inputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+ const armnn::TensorInfo outputInfo(numDimensions, &dimensionSizes.front(), armnn::DataType::Float32);
+
+ // 4D Softmax should be reported as unsupported on the NEON backend
+ BOOST_TEST(!armnn::IsSoftmaxSupportedNeon(inputInfo, outputInfo, armnn::SoftmaxDescriptor()));
}
+// Splitter
+ARMNN_AUTO_TEST_CASE(SimpleSplitter, SplitterTest)
+ARMNN_AUTO_TEST_CASE(SimpleSplitterUint8, SplitterUint8Test)
+
ARMNN_AUTO_TEST_CASE(CopyViaSplitter, CopyViaSplitterTest)
ARMNN_AUTO_TEST_CASE(CopyViaSplitterUint8, CopyViaSplitterUint8Test)
@@ -375,5 +456,4 @@ ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSqrtActivationWithReference, Positive
ARMNN_COMPARE_REF_FIXTURE_TEST_CASE(CompareSquareActivationWithReference, ActivationFixture,
CompareActivationTest, armnn::ActivationFunction::Square, 5u)
-
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/armnn/backends/test/BatchNormTestImpl.hpp b/src/armnn/backends/test/BatchNormTestImpl.hpp
index 861ef6b053..82e6e86747 100644
--- a/src/armnn/backends/test/BatchNormTestImpl.hpp
+++ b/src/armnn/backends/test/BatchNormTestImpl.hpp
@@ -52,7 +52,7 @@ LayerTestResult<T,4> BatchNormTestImpl(armnn::IWorkloadFactory& workloadFactory,
4.f, 1.f,
-2.f, 4.f
}));
- // these values are per-channel of the input
+ // These values are per-channel of the input.
auto mean = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, -2}));
auto variance = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {4, 9}));
auto beta = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, 2}));
@@ -82,8 +82,8 @@ LayerTestResult<T,4> BatchNormTestImpl(armnn::IWorkloadFactory& workloadFactory,
data.m_Gamma = &gammaTensor;
data.m_Parameters.m_Eps = 0.0f;
- // for each channel:
- // substract mean, divide by standard deviation (with an epsilon to avoid div by 0)
+ // For each channel:
+ // substract mean, divide by standard deviation (with an epsilon to avoid div by 0),
// multiply by gamma and add beta
ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo,
QuantizedVector<T>(qScale, qOffset,
diff --git a/src/armnn/backends/test/ClContextControlFixture.hpp b/src/armnn/backends/test/ClContextControlFixture.hpp
new file mode 100644
index 0000000000..13c061f818
--- /dev/null
+++ b/src/armnn/backends/test/ClContextControlFixture.hpp
@@ -0,0 +1,21 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+
+#pragma once
+
+#include "backends/ClContextControl.hpp"
+
+template<bool ProfilingEnabled>
+struct ClContextControlFixtureBase
+{
+ // Initialising ClContextControl to ensure OpenCL is loaded correctly for each test case
+ ClContextControlFixtureBase() : m_ClContextControl(nullptr, ProfilingEnabled) {}
+ ~ClContextControlFixtureBase() {}
+
+ armnn::ClContextControl m_ClContextControl;
+};
+
+using ClContextControlFixture = ClContextControlFixtureBase<false>;
+using ClProfilingContextControlFixture = ClContextControlFixtureBase<true>;
diff --git a/src/armnn/backends/test/Conv2dTestImpl.hpp b/src/armnn/backends/test/Conv2dTestImpl.hpp
index 0c34beaa33..43297880f8 100644
--- a/src/armnn/backends/test/Conv2dTestImpl.hpp
+++ b/src/armnn/backends/test/Conv2dTestImpl.hpp
@@ -32,7 +32,7 @@ struct FullyConnectedBiasTypeForInputType<uint8_t>
using Type = int32_t;
};
-// Modifies a std::vector in-place using a specified bias
+// Modifies a std::vector in-place using a specified bias.
template<typename T, typename B>
void ApplyBias(std::vector<T>& v, float vScale, int32_t vOffset,
const std::vector<B>& bias, float bScale, int32_t bOffset, uint32_t w, uint32_t h)
@@ -42,7 +42,7 @@ void ApplyBias(std::vector<T>& v, float vScale, int32_t vOffset,
BOOST_ASSERT_MSG((armnn::IsQuantizedType<B>() && bScale != 0.0f) || (!armnn::IsQuantizedType<B>()),
"Invalid type and parameter combination.");
- // Note we need to dequantize and re-quantize the image value and the bias
+ // Note we need to dequantize and re-quantize the image value and the bias.
for (uint32_t i = 0; i < bias.size(); ++i)
{
float dBias = SelectiveDequantize(bias[i], bScale, bOffset);
@@ -90,15 +90,15 @@ LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workl
bool biasEnabled = bias.size() > 0;
- // This function currently assumes 1 batch of input/output (and duplicates this into 2 batches)
+ // This function currently assumes 1 batch of input/output (and duplicates this into 2 batches).
BOOST_ASSERT(inputNum == 1);
BOOST_ASSERT(outputNum == 1);
- // If a bias is used, its size must equal the number of output channels
+ // If a bias is used, its size must equal the number of output channels.
BOOST_ASSERT(!biasEnabled || bias.size() == outputChannels);
- // Note these tensors will use two (identical) batches
+ // Note these tensors will use two (identical) batches.
armnn::TensorInfo inputTensorInfo({2*inputNum, inputChannels, inputHeight, inputWidth}, armnn::GetDataType<T>());
armnn::TensorInfo outputTensorInfo({2*outputNum, outputChannels, outputHeight, outputWidth},
armnn::GetDataType<T>());
@@ -120,7 +120,7 @@ LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workl
LayerTestResult<T, 4> ret(outputTensorInfo);
- // Construct input data - Two batches of the same input image
+ // Construct input data - two batches of the same input image.
std::vector<T> inputImage;
inputImage.assign(input.data(), input.data() + 1*inputChannels*inputHeight*inputWidth);
std::vector<T> inputData;
@@ -131,7 +131,7 @@ LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workl
std::vector<T> outputImage;
outputImage.assign(outputExpected.data(), outputExpected.data() + outputChannels*outputHeight*outputWidth);
- // Apply bias to output image if enabled
+ // Apply bias to output image if it is enabled.
if(biasEnabled)
{
std::vector<T> biasV;
@@ -141,14 +141,14 @@ LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workl
outputWidth, outputHeight);
}
- // Construct expected output data - two identical images
+ // Construct expected output data - two identical images.
std::vector<T> outputData;
outputData.insert(outputData.end(), outputImage.begin(), outputImage.end());
outputData.insert(outputData.end(), outputImage.begin(), outputImage.end());
ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
- // todo: nontrivial padding and strides
+ // Todo: nontrivial padding and strides.
uint32_t strideX = 1;
uint32_t strideY = 1;
@@ -171,7 +171,7 @@ LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workl
AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
data.m_Weight = &weightsTensor;
- data.m_Bias = &biasTensor; // still set this whether or not bias is enabled - can be a source of bugs
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - can be a source of bugs.
data.m_Parameters.m_StrideX = strideX;
data.m_Parameters.m_StrideY = strideY;
data.m_Parameters.m_PadLeft = padLeft;
@@ -222,11 +222,11 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestImpl(armnn::IWorkloadF
unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
- // If a bias is used, its size must equal the number of output channels
+ // If a bias is used, its size must equal the number of output channels.
bool biasEnabled = bias.size() > 0;
BOOST_ASSERT(!biasEnabled || bias.size() == outputChannels);
- // create the tensors
+ // Creates the tensors.
armnn::TensorInfo inputTensorInfo({inputNum, inputChannels, inputHeight, inputWidth}, armnn::GetDataType<T>());
armnn::TensorInfo outputTensorInfo({outputNum, outputChannels, outputHeight, outputWidth},
armnn::GetDataType<T>());
@@ -246,12 +246,12 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestImpl(armnn::IWorkloadF
biasDesc.SetQuantizationOffset(0);
}
- // Construct the input data
+ // Construct the input data.
std::vector<T> inputData;
inputData.assign(input.data(), input.data() + inputChannels*inputHeight*inputWidth);
auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
- // Construct the output data, with bias applied, as appropriate
+ // Construct the output data, with bias applied, as appropriate.
std::vector<T> outputData;
outputData.assign(outputExpected.data(), outputExpected.data() + outputChannels*outputHeight*outputWidth);
if (biasEnabled)
@@ -280,7 +280,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestImpl(armnn::IWorkloadF
armnn::DepthwiseConvolution2dQueueDescriptor data;
data.m_Weight = &weightsTensor;
- data.m_Bias = &biasTensor; // still set this whether or not bias is enabled - can be a source of bugs
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - it can be a source of bugs.
data.m_Parameters.m_StrideX = strideX;
data.m_Parameters.m_StrideY = strideY;
data.m_Parameters.m_PadLeft = padLeft;
@@ -372,14 +372,14 @@ LayerTestResult<T, 4> DepthwiseConvolution2dDepthMul1TestImpl(armnn::IWorkloadFa
-1.f, 0.f, -1.f,
})));
- // manually calculated
+ // Manually calculated.
std::vector<T> outputImage(
QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(),
outputTensorInfo.GetQuantizationOffset(),
{0.f, 0.f})
);
- // Optionally apply bias to output image
+ // Optionally apply bias to output image.
if(biasEnabled)
{
ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
@@ -405,7 +405,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dDepthMul1TestImpl(armnn::IWorkloadFa
AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
data.m_Weight = &weightsTensor;
- data.m_Bias = &biasTensor; // still set this whether or not bias is enabled
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled.
data.m_Parameters.m_StrideX = 1;
data.m_Parameters.m_StrideY = 1;
data.m_Parameters.m_PadLeft = 0;
@@ -520,7 +520,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& wo
0, 0, 0
})));
- // manually calculated
+ // Manually calculated.
std::vector<T> outputImage = std::vector<T>(
QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
3.5f, 3.5f, 3.5f, 3.5f, 3.5f, 3.5f, 3.5f,
@@ -552,7 +552,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& wo
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
}));
- // Optionally apply bias to output image
+ // Optionally apply bias to output image.
if(biasEnabled)
{
ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
@@ -578,7 +578,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& wo
AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
data.m_Weight = &weightsTensor;
- data.m_Bias = &biasTensor; // still set this whether or not bias is enabled
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled.
data.m_Parameters.m_StrideX = 2;
data.m_Parameters.m_StrideY = 1;
data.m_Parameters.m_PadLeft = 0;
@@ -609,7 +609,7 @@ LayerTestResult<T,4> Convolution1dTestImpl(armnn::IWorkloadFactory& workloadFact
{
using B = typename FullyConnectedBiasTypeForInputType<T>::Type;
- // until we have a specialist 1D convolution layer, we can fake one using
+ // Until we have a specialist 1D convolution layer, we can fake one using
// 2D convolution with the final dimension set to 1.
// I don't anticipate this being particularly slow, given that convolution is implemented
// as a matrix multiplication, at which point dimension doesn't matter.
@@ -617,11 +617,11 @@ LayerTestResult<T,4> Convolution1dTestImpl(armnn::IWorkloadFactory& workloadFact
unsigned int batchSize = 1;
unsigned int inputChannels = 2;
unsigned int outputChannels = 3;
- unsigned int inputSize = 5; // the 1D size (could view as 'width' or 'height')
+ unsigned int inputSize = 5; // The 1D size (could view as 'width' or 'height').
unsigned int kernelSize = 3;
unsigned int padSize = 2;
unsigned int stride = 1;
- unsigned int outputSize = 7; // (inputSize + 2 * padSize - kernelSize + 1) / stride
+ unsigned int outputSize = 7; // (inputSize + 2 * padSize - kernelSize + 1) / stride.
armnn::TensorInfo inputInfo({batchSize, inputChannels, inputSize, 1}, armnn::GetDataType<T>());
armnn::TensorInfo outputInfo({batchSize, outputChannels, outputSize, 1}, armnn::GetDataType<T>());
@@ -671,7 +671,7 @@ LayerTestResult<T,4> Convolution1dTestImpl(armnn::IWorkloadFactory& workloadFact
2.5f, -1.0f + 3.0f, 1.25f - 3.2f + 2.5f, -1.0f - 5.0f, 1.25f + 0.5f - 2.0f, -3.0f, 0.5f
}));
- // Optionally apply bias to output image
+ // Optionally apply bias to output image.
if(biasEnabled)
{
ApplyBias(outputData, outputInfo.GetQuantizationScale(), outputInfo.GetQuantizationOffset(),
@@ -712,7 +712,7 @@ LayerTestResult<T,4> Convolution1dTestImpl(armnn::IWorkloadFactory& workloadFact
workloadFactory.Finalize();
workload->Execute();
- // output
+ // Output
LayerTestResult<T,4> ret(outputInfo);
CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
ret.outputExpected = MakeTensor<T, 4>(outputInfo, outputData);
diff --git a/src/armnn/backends/test/ConvertFp16ToFp32TestImpl.hpp b/src/armnn/backends/test/ConvertFp16ToFp32TestImpl.hpp
new file mode 100644
index 0000000000..89faaf9fe6
--- /dev/null
+++ b/src/armnn/backends/test/ConvertFp16ToFp32TestImpl.hpp
@@ -0,0 +1,55 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backends/WorkloadInfo.hpp>
+#include <backends/CpuTensorHandle.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <Half.hpp>
+
+LayerTestResult<float, 4> SimpleConvertFp16ToFp32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ using namespace half_float::literal;
+
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16);
+ const armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+
+ auto input = MakeTensor<armnn::Half, 4>(inputTensorInfo,
+ { -37.5_h, -15.2_h, -8.76_h, -2.0_h, -1.5_h, -1.3_h, -0.5_h, -0.4_h, 0.0_h,
+ 1.0_h, 0.4_h, 0.5_h, 1.3_h, 1.5_h, 2.0_h, 8.76_h, 15.2_h, 37.5_h });
+
+ LayerTestResult<float, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ConvertFp16ToFp32QueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvertFp16ToFp32(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
diff --git a/src/armnn/backends/test/ConvertFp32ToFp16TestImpl.hpp b/src/armnn/backends/test/ConvertFp32ToFp16TestImpl.hpp
new file mode 100644
index 0000000000..1d9bee577c
--- /dev/null
+++ b/src/armnn/backends/test/ConvertFp32ToFp16TestImpl.hpp
@@ -0,0 +1,55 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backends/WorkloadInfo.hpp>
+#include <backends/CpuTensorHandle.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <Half.hpp>
+
+LayerTestResult<armnn::Half, 4> SimpleConvertFp32ToFp16Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ using namespace half_float::literal;
+
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ LayerTestResult<armnn::Half, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<armnn::Half, 4>(outputTensorInfo,
+ { -37.5_h, -15.2_h, -8.76_h, -2.0_h, -1.5_h, -1.3_h, -0.5_h, -0.4_h, 0.0_h,
+ 1.0_h, 0.4_h, 0.5_h, 1.3_h, 1.5_h, 2.0_h, 8.76_h, 15.2_h, 37.5_h });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ConvertFp32ToFp16QueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvertFp32ToFp16(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+} \ No newline at end of file
diff --git a/src/armnn/backends/test/CreateWorkloadCl.cpp b/src/armnn/backends/test/CreateWorkloadCl.cpp
index f83bb12bbe..5d4265911f 100644
--- a/src/armnn/backends/test/CreateWorkloadCl.cpp
+++ b/src/armnn/backends/test/CreateWorkloadCl.cpp
@@ -8,6 +8,7 @@
#include "backends/ClWorkloadUtils.hpp"
#include "backends/ClWorkloads.hpp"
#include "backends/ClTensorHandle.hpp"
+#include "ClContextControlFixture.hpp"
#include "test/CreateWorkloadClNeon.hpp"
@@ -17,16 +18,17 @@ boost::test_tools::predicate_result CompareIClTensorHandleShape(IClTensorHandle*
return CompareTensorHandleShape<IClTensorHandle>(tensorHandle, expectedDimensions);
}
-BOOST_AUTO_TEST_SUITE(CreateWorkloadCl)
+BOOST_FIXTURE_TEST_SUITE(CreateWorkloadCl, ClContextControlFixture)
-BOOST_AUTO_TEST_CASE(CreateActivationWorkload)
+template <typename ActivationWorkloadType, armnn::DataType DataType>
+static void ClCreateActivationWorkloadTest()
{
Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateActivationWorkloadTest<ClActivationFloat32Workload>(factory, graph);
+ auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>(factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest).
ActivationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -35,14 +37,24 @@ BOOST_AUTO_TEST_CASE(CreateActivationWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {1}));
}
-BOOST_AUTO_TEST_CASE(CreateAdditionWorkload)
+BOOST_AUTO_TEST_CASE(CreateActivationFloat32Workload)
+{
+ ClCreateActivationWorkloadTest<ClActivationFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateActivationFloat16Workload)
+{
+ ClCreateActivationWorkloadTest<ClActivationFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename AdditionWorkloadType, armnn::DataType DataType>
+static void ClCreateAdditionWorkloadTest()
{
Graph graph;
ClWorkloadFactory factory;
+ auto workload = CreateAdditionWorkloadTest<AdditionWorkloadType, DataType>(factory, graph);
- auto workload = CreateAdditionWorkloadTest<ClAdditionFloat32Workload>(factory, graph);
-
- // check that inputs/outputs are as we expect them (see definition of CreateAdditionWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateAdditionWorkloadTest).
AdditionQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle1 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto inputHandle2 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[1]);
@@ -52,14 +64,26 @@ BOOST_AUTO_TEST_CASE(CreateAdditionWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 3}));
}
-BOOST_AUTO_TEST_CASE(CreateBatchNormalizationWorkload)
+BOOST_AUTO_TEST_CASE(CreateAdditionFloat32Workload)
{
- Graph graph;
+ ClCreateAdditionWorkloadTest<ClAdditionFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateAdditionFloat16Workload)
+{
+ ClCreateAdditionWorkloadTest<ClAdditionFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename BatchNormalizationWorkloadType, armnn::DataType DataType>
+static void ClCreateBatchNormalizationWorkloadTest()
+{
+ Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateBatchNormalizationWorkloadTest<ClBatchNormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateBatchNormalizationWorkloadTest<BatchNormalizationWorkloadType, DataType>
+ (factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
BatchNormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -68,14 +92,57 @@ BOOST_AUTO_TEST_CASE(CreateBatchNormalizationWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 3, 1, 1}));
}
-template <typename Convolution2dWorkloadType>
-static void Convolution2dWorkloadTest()
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat32Workload)
+{
+ ClCreateBatchNormalizationWorkloadTest<ClBatchNormalizationFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat16Workload)
+{
+ ClCreateBatchNormalizationWorkloadTest<ClBatchNormalizationFloat32Workload, armnn::DataType::Float16>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp16ToFp32Workload)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateConvertFp16ToFp32WorkloadTest<ClConvertFp16ToFp32Workload>(factory, graph);
+
+ ConvertFp16ToFp32QueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 2, 3}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 2, 3}));
+ BOOST_TEST((inputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F16));
+ BOOST_TEST((outputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F32));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp32ToFp16Workload)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateConvertFp32ToFp16WorkloadTest<ClConvertFp32ToFp16Workload>(factory, graph);
+
+ ConvertFp32ToFp16QueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {3, 2, 3}));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 2, 3}));
+ BOOST_TEST((inputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F32));
+ BOOST_TEST((outputHandle->GetTensor().info()->data_type() == arm_compute::DataType::F16));
+}
+
+template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
+static void ClConvolution2dWorkloadTest()
{
- Graph graph;
- ClWorkloadFactory factory;
- auto workload = CreateConvolution2dWorkloadTest<Convolution2dWorkloadType>(factory, graph);
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateConvolution2dWorkloadTest<Convolution2dWorkloadType, DataType>
+ (factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -85,18 +152,24 @@ static void Convolution2dWorkloadTest()
BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat32Workload)
{
- Convolution2dWorkloadTest<ClConvolution2dFloat32Workload>();
+ ClConvolution2dWorkloadTest<ClConvolution2dFloat32Workload, armnn::DataType::Float32>();
}
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat16Workload)
+{
+ ClConvolution2dWorkloadTest<ClConvolution2dFloat32Workload, armnn::DataType::Float16>();
+}
-template <typename Convolution2dWorkloadType>
-static void DirectConvolution2dWorkloadTest()
+
+template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
+static void ClDirectConvolution2dWorkloadTest()
{
- Graph graph;
- ClWorkloadFactory factory;
- auto workload = CreateDirectConvolution2dWorkloadTest<Convolution2dWorkloadType>(factory, graph);
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateDirectConvolution2dWorkloadTest<Convolution2dWorkloadType, DataType>(
+ factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateDirectConvolution2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateDirectConvolution2dWorkloadTest).
Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -106,22 +179,28 @@ static void DirectConvolution2dWorkloadTest()
BOOST_AUTO_TEST_CASE(CreateDirectConvolution2dFloat32Workload)
{
- DirectConvolution2dWorkloadTest<ClConvolution2dFloat32Workload>();
+ ClDirectConvolution2dWorkloadTest<ClConvolution2dFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateDirectConvolution2dFloat16Workload)
+{
+ ClDirectConvolution2dWorkloadTest<ClConvolution2dFloat32Workload, armnn::DataType::Float16>();
}
BOOST_AUTO_TEST_CASE(CreateDirectConvolution2dUint8Workload)
{
- DirectConvolution2dWorkloadTest<ClConvolution2dUint8Workload>();
+ ClDirectConvolution2dWorkloadTest<ClConvolution2dUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-BOOST_AUTO_TEST_CASE(CreateFullyConnectedWorkload)
+template <typename FullyConnectedWorkloadType, typename armnn::DataType DataType>
+static void ClCreateFullyConnectedWorkloadTest()
{
- Graph graph;
+ Graph graph;
ClWorkloadFactory factory;
- auto workload =
- CreateFullyConnectedWorkloadTest<ClFullyConnectedFloat32Workload>(factory, graph);
+ auto workload =
+ CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
FullyConnectedQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -129,15 +208,28 @@ BOOST_AUTO_TEST_CASE(CreateFullyConnectedWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 7}));
}
-BOOST_AUTO_TEST_CASE(CreateMultiplicationWorkload)
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat32WorkloadTest)
{
- Graph graph;
+ ClCreateFullyConnectedWorkloadTest<ClFullyConnectedFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat16WorkloadTest)
+{
+ ClCreateFullyConnectedWorkloadTest<ClFullyConnectedFloat32Workload, armnn::DataType::Float16>();
+}
+
+
+template <typename MultiplicationWorkloadType, typename armnn::DataType DataType>
+static void ClCreateMultiplicationWorkloadTest()
+{
+ Graph graph;
ClWorkloadFactory factory;
auto workload =
- CreateMultiplicationWorkloadTest<ClMultiplicationFloat32Workload>(factory, graph);
+ CreateMultiplicationWorkloadTest<MultiplicationWorkloadType, DataType>(factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateMultiplicationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateMultiplicationWorkloadTest).
MultiplicationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle1 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto inputHandle2 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[1]);
@@ -147,14 +239,26 @@ BOOST_AUTO_TEST_CASE(CreateMultiplicationWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {2, 3}));
}
-BOOST_AUTO_TEST_CASE(CreateNormalizationWorkload)
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat32WorkloadTest)
+{
+ ClCreateMultiplicationWorkloadTest<ClMultiplicationFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat16WorkloadTest)
+{
+ ClCreateMultiplicationWorkloadTest<ClMultiplicationFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename NormalizationWorkloadType, typename armnn::DataType DataType>
+static void ClNormalizationWorkloadTest()
{
- Graph graph;
+ Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateNormalizationWorkloadTest<ClNormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateNormalizationWorkloadTest<NormalizationWorkloadType, DataType>
+ (factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
NormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -163,14 +267,25 @@ BOOST_AUTO_TEST_CASE(CreateNormalizationWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 5, 5, 1}));
}
-BOOST_AUTO_TEST_CASE(CreatePooling2dWorkload)
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloat32Workload)
{
- Graph graph;
+ ClNormalizationWorkloadTest<ClNormalizationFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloat16Workload)
+{
+ ClNormalizationWorkloadTest<ClNormalizationFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename Pooling2dWorkloadType, typename armnn::DataType DataType>
+static void ClPooling2dWorkloadTest()
+{
+ Graph graph;
ClWorkloadFactory factory;
- auto workload = CreatePooling2dWorkloadTest<ClPooling2dFloat32Workload>(factory, graph);
+ auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>(factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreatePooling2dWorkloadTest)
+ // Check that inputs/outputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
Pooling2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -179,18 +294,28 @@ BOOST_AUTO_TEST_CASE(CreatePooling2dWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {3, 2, 2, 4}));
}
-template <typename ReshapeWorkloadType>
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat32Workload)
+{
+ ClPooling2dWorkloadTest<ClPooling2dFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat16Workload)
+{
+ ClPooling2dWorkloadTest<ClPooling2dFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename ReshapeWorkloadType, typename armnn::DataType DataType>
static void ClCreateReshapeWorkloadTest()
{
- Graph graph;
+ Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType>(factory, graph);
+ auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
ReshapeQueueDescriptor queueDescriptor = workload->GetData();
- auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
- auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {4, 1}));
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {4})); // Leading size 1 dimensions are collapsed by ACL.
@@ -198,38 +323,56 @@ static void ClCreateReshapeWorkloadTest()
BOOST_AUTO_TEST_CASE(CreateReshapeFloat32Workload)
{
- ClCreateReshapeWorkloadTest<ClReshapeFloat32Workload>();
+ ClCreateReshapeWorkloadTest<ClReshapeFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateReshapeFloat16Workload)
+{
+ ClCreateReshapeWorkloadTest<ClReshapeFloat32Workload, armnn::DataType::Float16>();
}
BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
{
- ClCreateReshapeWorkloadTest<ClReshapeUint8Workload>();
+ ClCreateReshapeWorkloadTest<ClReshapeUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-BOOST_AUTO_TEST_CASE(CreateSoftmaxWorkload)
+template <typename SoftmaxWorkloadType, typename armnn::DataType DataType>
+static void ClSoftmaxWorkloadTest()
{
- Graph graph;
+ Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateSoftmaxWorkloadTest<ClSoftmaxFloat32Workload>(factory, graph);
+ auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
- // check that inputs/outputs are as we expect them (see definition of ClSoftmaxFloat32Workload)
+ // Checks that inputs/outputs are as we expect them (see definition of ClSoftmaxFloat32Workload).
SoftmaxQueueDescriptor queueDescriptor = workload->GetData();
- auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
- auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {4, 1}));
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, {4, 1}));
}
-BOOST_AUTO_TEST_CASE(CreateSplitterWorkload)
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat32WorkloadTest)
+{
+ ClSoftmaxWorkloadTest<ClSoftmaxFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat16WorkloadTest)
+{
+ ClSoftmaxWorkloadTest<ClSoftmaxFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename SplitterWorkloadType, typename armnn::DataType DataType>
+static void ClSplitterWorkloadTest()
{
Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateSplitterWorkloadTest<ClSplitterFloat32Workload>(factory, graph);
+ auto workload = CreateSplitterWorkloadTest<SplitterWorkloadType, DataType>(factory, graph);
- // check that outputs are as we expect them (see definition of CreateSplitterWorkloadTest)
+ // Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
SplitterQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
BOOST_TEST(CompareIClTensorHandleShape(inputHandle, {5, 7, 7}));
@@ -242,14 +385,25 @@ BOOST_AUTO_TEST_CASE(CreateSplitterWorkload)
auto outputHandle0 = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
// NOTE: At the moment the CL collapses the tensor to a 2 dim when dimension zero = 1
- // we are raising this difference between the NEON and CL libs as an issue with the compute library team
+ // we are raising this difference between the NEON and CL libs as an issue with the compute library team.
BOOST_TEST(CompareIClTensorHandleShape(outputHandle0, {7, 7}));
}
-BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
+BOOST_AUTO_TEST_CASE(CreateSplitterFloat32Workload)
+{
+ ClSplitterWorkloadTest<ClSplitterFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterFloat16Workload)
{
- // Test that it is possible to decide which output of the splitter layer
- // should be lined to which input of the merger layer
+ ClSplitterWorkloadTest<ClSplitterFloat32Workload, armnn::DataType::Float16>();
+}
+
+template <typename SplitterWorkloadType, typename MergerWorkloadType, typename armnn::DataType DataType>
+static void ClSplitterMergerTest()
+{
+ // Tests that it is possible to decide which output of the splitter layer
+ // should be lined to which input of the merger layer.
// We test that is is possible to specify 0th output
// of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
// of the merger.
@@ -258,12 +412,13 @@ BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
ClWorkloadFactory factory;
auto workloads =
- CreateSplitterMergerWorkloadTest<ClSplitterFloat32Workload, ClMergerFloat32Workload>(factory, graph);
+ CreateSplitterMergerWorkloadTest<SplitterWorkloadType, MergerWorkloadType, DataType>
+ (factory, graph);
auto wlSplitter = std::move(workloads.first);
auto wlMerger = std::move(workloads.second);
- //check that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
armnn::ClSubTensorHandle* sOut0 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::ClSubTensorHandle* sOut1 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::ClSubTensorHandle* mIn0 = dynamic_cast<armnn::ClSubTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
@@ -274,22 +429,33 @@ BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
BOOST_TEST(mIn0);
BOOST_TEST(mIn1);
- //fliped order of inputs/outputs
+ //Fliped order of inputs/outputs.
bool validDataPointers = (sOut0 == mIn1) && (sOut1 == mIn0);
BOOST_TEST(validDataPointers);
- //also make sure that the inputs are subtensors of one tensor and outputs are sub tensors of another tensor
+ //Also make sure that the inputs are subtensors of one tensor and outputs are sub tensors of another tensor.
bool validSubTensorParents = (mIn0->GetTensor().parent() == mIn1->GetTensor().parent())
&& (sOut0->GetTensor().parent() == sOut1->GetTensor().parent());
BOOST_TEST(validSubTensorParents);
}
+BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloat32Workload)
+{
+ ClSplitterMergerTest<ClSplitterFloat32Workload, ClMergerFloat32Workload, armnn::DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloat16Workload)
+{
+ ClSplitterMergerTest<ClSplitterFloat32Workload, ClMergerFloat32Workload, armnn::DataType::Float16>();
+}
+
+
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
{
// Test that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
- // We create a splitter with two outputs. That each of those outputs is used by two different activation layers
+ // We create a splitter with two outputs. That each of those outputs is used by two different activation layers.
Graph graph;
ClWorkloadFactory factory;
@@ -300,9 +466,10 @@ BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
std::unique_ptr<ClActivationFloat32Workload> wlActiv1_1;
CreateSplitterMultipleInputsOneOutputWorkloadTest<ClSplitterFloat32Workload,
- ClActivationFloat32Workload>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1, wlActiv1_0, wlActiv1_1);
+ ClActivationFloat32Workload, armnn::DataType::Float32>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1,
+ wlActiv1_0, wlActiv1_1);
- //check that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
armnn::ClSubTensorHandle* sOut0 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::ClSubTensorHandle* sOut1 = dynamic_cast<armnn::ClSubTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::ClSubTensorHandle* activ0_0Im = dynamic_cast<armnn::ClSubTensorHandle*>(wlActiv0_0->GetData().m_Inputs[0]);
@@ -327,17 +494,18 @@ BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
BOOST_AUTO_TEST_CASE(CreateMemCopyWorkloadsCl)
{
ClWorkloadFactory factory;
- CreateMemCopyWorkloads<CopyFromCpuToClWorkload,CopyFromClToCpuWorkload,IClTensorHandle>(factory);
+ CreateMemCopyWorkloads<IClTensorHandle>(factory);
}
BOOST_AUTO_TEST_CASE(CreateL2NormalizationWorkload)
{
- Graph graph;
+ Graph graph;
ClWorkloadFactory factory;
- auto workload = CreateL2NormalizationWorkloadTest<ClL2NormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateL2NormalizationWorkloadTest<ClL2NormalizationFloat32Workload, armnn::DataType::Float32>
+ (factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
L2NormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[0]);
@@ -346,4 +514,24 @@ BOOST_AUTO_TEST_CASE(CreateL2NormalizationWorkload)
BOOST_TEST(CompareIClTensorHandleShape(outputHandle, { 5, 20, 50, 67 }));
}
+template <typename LstmWorkloadType>
+static void ClCreateLstmWorkloadTest()
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+ auto workload = CreateLstmWorkloadTest<LstmWorkloadType>(factory, graph);
+
+ LstmQueueDescriptor queueDescriptor = workload->GetData();
+ auto inputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Inputs[0]);
+ auto outputHandle = boost::polymorphic_downcast<IClTensorHandle*>(queueDescriptor.m_Outputs[1]);
+ BOOST_TEST(CompareIClTensorHandleShape(inputHandle, { 2, 2 }));
+ BOOST_TEST(CompareIClTensorHandleShape(outputHandle, { 2, 4 }));
+}
+
+BOOST_AUTO_TEST_CASE(CreateLSTMWorkloadFloat32Workload)
+{
+ ClCreateLstmWorkloadTest<ClLstmFloat32Workload>();
+}
+
+
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/armnn/backends/test/CreateWorkloadNeon.cpp b/src/armnn/backends/test/CreateWorkloadNeon.cpp
index 4d91fbfd31..b2a444af74 100644
--- a/src/armnn/backends/test/CreateWorkloadNeon.cpp
+++ b/src/armnn/backends/test/CreateWorkloadNeon.cpp
@@ -50,168 +50,302 @@ bool TestNeonTensorHandleInfo(armnn::INeonTensorHandle* handle, const armnn::Ten
} // namespace
-BOOST_AUTO_TEST_CASE(CreateActivationWorkload)
+template <typename ActivationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateActivationWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateActivationWorkloadTest<NeonActivationFloat32Workload>(factory, graph);
+ auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>
+ (factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest).
ActivationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({1, 1}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 1}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({1, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 1}, DataType)));
}
-BOOST_AUTO_TEST_CASE(CreateAdditionWorkload)
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateActivationFloat16Workload)
+{
+ NeonCreateActivationWorkloadTest<NeonActivationFloat32Workload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateActivationFloat32Workload)
+{
+ NeonCreateActivationWorkloadTest<NeonActivationFloat32Workload, DataType::Float32>();
+}
+
+template <typename AdditionWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateAdditionWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateAdditionWorkloadTest<NeonAdditionFloat32Workload>(factory, graph);
+ auto workload = CreateAdditionWorkloadTest<AdditionWorkloadType, DataType>(factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateAdditionWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateAdditionWorkloadTest).
AdditionQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle1 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto inputHandle2 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[1]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle1, TensorInfo({2, 3}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle2, TensorInfo({2, 3}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle1, TensorInfo({2, 3}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle2, TensorInfo({2, 3}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3}, DataType)));
}
-BOOST_AUTO_TEST_CASE(CreateBatchNormalizationWorkload)
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateAdditionFloat16Workload)
+{
+ NeonCreateAdditionWorkloadTest<NeonAdditionFloat32Workload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateAdditionFloat32Workload)
+{
+ NeonCreateAdditionWorkloadTest<NeonAdditionFloat32Workload, DataType::Float32>();
+}
+
+template <typename BatchNormalizationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateBatchNormalizationWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateBatchNormalizationWorkloadTest<BatchNormalizationWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
BatchNormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 1, 1}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3, 1, 1}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 1, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3, 1, 1}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat16Workload)
+{
+ NeonCreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloat32Workload, DataType::Float16>();
}
+#endif
-BOOST_AUTO_TEST_CASE(CreateConvolution2dWorkload)
+BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat32Workload)
+{
+ NeonCreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloat32Workload, DataType::Float32>();
+}
+
+template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateConvolution2dWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateConvolution2dWorkloadTest<NeonConvolution2dFloat32Workload>(factory, graph);
+ auto workload = CreateConvolution2dWorkloadTest<Convolution2dWorkloadType,
+ DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 8, 16}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 2, 2, 10}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 8, 16}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 2, 2, 10}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat16Workload)
+{
+ NeonCreateConvolution2dWorkloadTest<NeonConvolution2dFloat32Workload, DataType::Float16>();
}
+#endif
-BOOST_AUTO_TEST_CASE(CreateFullyConnectedWorkload)
+BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat32Workload)
+{
+ NeonCreateConvolution2dWorkloadTest<NeonConvolution2dFloat32Workload, DataType::Float32>();
+}
+
+template <typename FullyConnectedWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateFullyConnectedWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateFullyConnectedWorkloadTest<NeonFullyConnectedFloat32Workload>(factory, graph);
+ auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType,
+ DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
FullyConnectedQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 1, 4, 5}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 7}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 1, 4, 5}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 7}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat16Workload)
+{
+ NeonCreateFullyConnectedWorkloadTest<NeonFullyConnectedFloat32Workload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat32Workload)
+{
+ NeonCreateFullyConnectedWorkloadTest<NeonFullyConnectedFloat32Workload, DataType::Float32>();
}
-BOOST_AUTO_TEST_CASE(CreateMultiplicationWorkload)
+template <typename MultiplicationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateMultiplicationWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateMultiplicationWorkloadTest<NeonMultiplicationFloat32Workload>(factory, graph);
+ auto workload = CreateMultiplicationWorkloadTest<MultiplicationWorkloadType,
+ DataType>(factory, graph);
- // check that inputs/outputs are as we expect them (see definition of CreateMultiplicationWorkloadTest)
+ // Checks that inputs/outputs are as we expect them (see definition of CreateMultiplicationWorkloadTest).
MultiplicationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle1 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto inputHandle2 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[1]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle1, TensorInfo({2, 3}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle2, TensorInfo({2, 3}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle1, TensorInfo({2, 3}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle2, TensorInfo({2, 3}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3}, DataType)));
}
-BOOST_AUTO_TEST_CASE(CreateNormalizationWorkload)
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat16Workload)
+{
+ NeonCreateMultiplicationWorkloadTest<NeonMultiplicationFloat32Workload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat32Workload)
+{
+ NeonCreateMultiplicationWorkloadTest<NeonMultiplicationFloat32Workload, DataType::Float32>();
+}
+
+template <typename NormalizationWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateNormalizationWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateNormalizationWorkloadTest<NeonNormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateNormalizationWorkloadTest<NormalizationWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
NormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 5, 5, 1}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 5, 5, 1}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 5, 5, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 5, 5, 1}, DataType)));
}
-BOOST_AUTO_TEST_CASE(CreatePooling2dWorkload)
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloat16Workload)
+{
+ NeonCreateNormalizationWorkloadTest<NeonNormalizationFloat32Workload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateNormalizationFloat32Workload)
+{
+ NeonCreateNormalizationWorkloadTest<NeonNormalizationFloat32Workload, DataType::Float32>();
+}
+
+template <typename Pooling2dWorkloadType, typename armnn::DataType DataType>
+static void NeonCreatePooling2dWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreatePooling2dWorkloadTest<NeonPooling2dFloat32Workload>(factory, graph);
+ auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>
+ (factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
Pooling2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 2, 5, 5}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 2, 2, 4}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 2, 5, 5}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 2, 2, 4}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat16Workload)
+{
+ NeonCreatePooling2dWorkloadTest<NeonPooling2dFloat32Workload, DataType::Float16>();
}
+#endif
-template <typename ReshapeWorkloadType>
-static void NeonCreateReshapeWorkloadTest(DataType dataType)
+BOOST_AUTO_TEST_CASE(CreatePooling2dFloat32Workload)
+{
+ NeonCreatePooling2dWorkloadTest<NeonPooling2dFloat32Workload, DataType::Float32>();
+}
+
+BOOST_AUTO_TEST_CASE(CreatePooling2dUint8Workload)
+{
+ NeonCreatePooling2dWorkloadTest<NeonPooling2dUint8Workload, DataType::QuantisedAsymm8>();
+}
+
+template <typename ReshapeWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateReshapeWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType>(factory, graph);
+ auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
ReshapeQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, dataType)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 4}, dataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 4}, DataType)));
}
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateReshapeFloat16Workload)
+{
+ NeonCreateReshapeWorkloadTest<NeonReshapeFloat32Workload, DataType::Float16>();
+}
+#endif
+
BOOST_AUTO_TEST_CASE(CreateReshapeFloat32Workload)
{
- NeonCreateReshapeWorkloadTest<NeonReshapeFloat32Workload>(DataType::Float32);
+ NeonCreateReshapeWorkloadTest<NeonReshapeFloat32Workload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
{
- NeonCreateReshapeWorkloadTest<NeonReshapeUint8Workload>(DataType::QuantisedAsymm8);
+ NeonCreateReshapeWorkloadTest<NeonReshapeUint8Workload, DataType::QuantisedAsymm8>();
}
-BOOST_AUTO_TEST_CASE(CreateSoftmaxWorkload)
+template <typename SoftmaxWorkloadType, typename armnn::DataType DataType>
+static void NeonCreateSoftmaxWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateSoftmaxWorkloadTest<NeonSoftmaxFloat32Workload>(factory, graph);
+ auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest).
SoftmaxQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType::Float32)));
- BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({4, 1}, DataType::Float32)));
+ BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType)));
+ BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({4, 1}, DataType)));
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat16Workload)
+{
+ NeonCreateSoftmaxWorkloadTest<NeonSoftmaxFloat32Workload, DataType::Float16>();
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat32Workload)
+{
+ NeonCreateSoftmaxWorkloadTest<NeonSoftmaxFloat32Workload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSplitterWorkload)
{
Graph graph;
NeonWorkloadFactory factory;
- auto workload = CreateSplitterWorkloadTest<NeonSplitterFloat32Workload>(factory, graph);
+ auto workload = CreateSplitterWorkloadTest<NeonSplitterFloat32Workload, DataType::Float32>(factory, graph);
- // check that outputs are as we expect them (see definition of CreateSplitterWorkloadTest)
+ // Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
SplitterQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({5, 7, 7}, DataType::Float32)));
@@ -228,22 +362,23 @@ BOOST_AUTO_TEST_CASE(CreateSplitterWorkload)
BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
{
- // Test that it is possible to decide which output of the splitter layer
- // should be lined to which input of the merger layer
- // We test that is is possible to specify 0th output
- // of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
+ // Tests that it is possible to decide which output of the splitter layer
+ // should be lined to which input of the merger layer.
+ // We tested that is is possible to specify 0th output
+ // of the splitter to be the 1st input to the merger, and the 1st output of the splitter to be 0th input
// of the merger.
Graph graph;
NeonWorkloadFactory factory;
auto workloads =
- CreateSplitterMergerWorkloadTest<NeonSplitterFloat32Workload, NeonMergerFloat32Workload>(factory, graph);
+ CreateSplitterMergerWorkloadTest<NeonSplitterFloat32Workload, NeonMergerFloat32Workload,
+ DataType::Float32>(factory, graph);
auto wlSplitter = std::move(workloads.first);
auto wlMerger = std::move(workloads.second);
- //check that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
armnn::INeonTensorHandle* sOut0 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::INeonTensorHandle* sOut1 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::INeonTensorHandle* mIn0 = dynamic_cast<armnn::INeonTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
@@ -261,8 +396,8 @@ BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
{
- // Test that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
- // We create a splitter with two outputs. That each of those outputs is used by two different activation layers
+ // Tests that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
+ // We created a splitter with two outputs. That each of those outputs is used by two different activation layers
Graph graph;
NeonWorkloadFactory factory;
@@ -273,7 +408,8 @@ BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
std::unique_ptr<NeonActivationFloat32Workload> wlActiv1_1;
CreateSplitterMultipleInputsOneOutputWorkloadTest<NeonSplitterFloat32Workload,
- NeonActivationFloat32Workload>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1, wlActiv1_0, wlActiv1_1);
+ NeonActivationFloat32Workload, DataType::Float32>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1,
+ wlActiv1_0, wlActiv1_1);
armnn::INeonTensorHandle* sOut0 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::INeonTensorHandle* sOut1 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
@@ -299,7 +435,7 @@ BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
BOOST_AUTO_TEST_CASE(CreateMemCopyWorkloadsNeon)
{
NeonWorkloadFactory factory;
- CreateMemCopyWorkloads<CopyFromCpuToNeonWorkload,CopyFromNeonToCpuWorkload,INeonTensorHandle>(factory);
+ CreateMemCopyWorkloads<INeonTensorHandle>(factory);
}
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/armnn/backends/test/CreateWorkloadRef.cpp b/src/armnn/backends/test/CreateWorkloadRef.cpp
index abc46e4361..109156468a 100644
--- a/src/armnn/backends/test/CreateWorkloadRef.cpp
+++ b/src/armnn/backends/test/CreateWorkloadRef.cpp
@@ -39,71 +39,95 @@ void CheckInputsOutput(std::unique_ptr<Workload> workload,
BOOST_AUTO_TEST_SUITE(CreateWorkloadRef)
-template <typename ActivationWorkloadType>
+template <typename ActivationWorkloadType, armnn::DataType DataType>
static void RefCreateActivationWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateActivationWorkloadTest<ActivationWorkloadType>(factory, graph);
+ auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>(factory, graph);
- // check that outputs are as we expect them (see definition of CreateActivationWorkloadTest)
+ // Checks that outputs are as we expect them (see definition of CreateActivationWorkloadTest).
CheckInputOutput(std::move(workload),
- TensorInfo({ 1, 1 }, ActivationWorkloadType::ms_DataType),
- TensorInfo({ 1, 1 }, ActivationWorkloadType::ms_DataType));
+ TensorInfo({ 1, 1 }, DataType),
+ TensorInfo({ 1, 1 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateActivationFloat32Workload)
{
- RefCreateActivationWorkloadTest<RefActivationFloat32Workload>();
+ RefCreateActivationWorkloadTest<RefActivationFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateActivationUint8Workload)
{
- RefCreateActivationWorkloadTest<RefActivationUint8Workload>();
+ RefCreateActivationWorkloadTest<RefActivationUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-template <typename AdditionWorkloadType>
+template <typename AdditionWorkloadType, armnn::DataType DataType>
static void RefCreateAdditionWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateAdditionWorkloadTest<AdditionWorkloadType>(factory, graph);
+ auto workload = CreateAdditionWorkloadTest<AdditionWorkloadType, DataType>(factory, graph);
- // check that outputs are as we expect them (see definition of CreateAdditionWorkloadTest)
+ // Checks that outputs are as we expect them (see definition of CreateAdditionWorkloadTest).
CheckInputsOutput(std::move(workload),
- TensorInfo({ 2, 3 }, AdditionWorkloadType::ms_DataType),
- TensorInfo({ 2, 3 }, AdditionWorkloadType::ms_DataType),
- TensorInfo({ 2, 3 }, AdditionWorkloadType::ms_DataType));
+ TensorInfo({ 2, 3 }, DataType),
+ TensorInfo({ 2, 3 }, DataType),
+ TensorInfo({ 2, 3 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateAdditionFloatWorkload)
{
- RefCreateAdditionWorkloadTest<RefAdditionFloat32Workload>();
+ RefCreateAdditionWorkloadTest<RefAdditionFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateAdditionUint8Workload)
{
- RefCreateAdditionWorkloadTest<RefAdditionUint8Workload>();
+ RefCreateAdditionWorkloadTest<RefAdditionUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationWorkload)
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateBatchNormalizationWorkloadTest<RefBatchNormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateBatchNormalizationWorkloadTest<RefBatchNormalizationFloat32Workload, armnn::DataType::Float32>
+ (factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
CheckInputOutput(
std::move(workload), TensorInfo({2, 3, 1, 1}, DataType::Float32), TensorInfo({2, 3, 1, 1}, DataType::Float32));
}
+BOOST_AUTO_TEST_CASE(CreateConvertFp16ToFp32Float32Workload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateConvertFp16ToFp32WorkloadTest<RefConvertFp16ToFp32Workload>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them
+ CheckInputOutput(
+ std::move(workload), TensorInfo({1, 3, 2, 3}, DataType::Float16), TensorInfo({1, 3, 2, 3}, DataType::Float32));
+}
+
+BOOST_AUTO_TEST_CASE(CreateConvertFp32ToFp16Float16Workload)
+{
+ Graph graph;
+ RefWorkloadFactory factory;
+ auto workload = CreateConvertFp32ToFp16WorkloadTest<RefConvertFp32ToFp16Workload>(factory, graph);
+
+ // Checks that outputs and inputs are as we expect them
+ CheckInputOutput(
+ std::move(workload), TensorInfo({1, 3, 2, 3}, DataType::Float32), TensorInfo({1, 3, 2, 3}, DataType::Float16));
+}
+
BOOST_AUTO_TEST_CASE(CreateConvolution2dWorkload)
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateConvolution2dWorkloadTest<RefConvolution2dFloat32Workload>(factory, graph);
+ auto workload = CreateConvolution2dWorkloadTest<RefConvolution2dFloat32Workload,
+ DataType::Float32>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo({2, 3, 8, 16}, DataType::Float32),
TensorInfo({2, 2, 2, 10}, DataType::Float32));
@@ -116,170 +140,172 @@ BOOST_AUTO_TEST_CASE(CreateDepthwiseConvolution2dWorkload)
auto workload =
CreateDepthwiseConvolution2dWorkloadTest<RefDepthwiseConvolution2dFloat32Workload>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo({2, 3, 8, 16}, DataType::Float32),
TensorInfo({2, 9, 2, 10}, DataType::Float32));
}
-template <typename FullyConnectedWorkloadType>
+template <typename FullyConnectedWorkloadType, armnn::DataType DataType>
static void RefCreateFullyConnectedWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType>(factory, graph);
+ auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest)
- float inputsQScale = FullyConnectedWorkloadType::ms_DataType == DataType::QuantisedAsymm8 ? 1.0f : 0.0;
- float outputQScale = FullyConnectedWorkloadType::ms_DataType == DataType::QuantisedAsymm8 ? 2.0f : 0.0;
+ // Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
+ float inputsQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 1.0f : 0.0;
+ float outputQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 2.0f : 0.0;
CheckInputOutput(std::move(workload),
- TensorInfo({ 3, 1, 4, 5 }, FullyConnectedWorkloadType::ms_DataType, inputsQScale),
- TensorInfo({ 3, 7 }, FullyConnectedWorkloadType::ms_DataType, outputQScale));
+ TensorInfo({ 3, 1, 4, 5 }, DataType, inputsQScale),
+ TensorInfo({ 3, 7 }, DataType, outputQScale));
}
BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat32Workload)
{
- RefCreateFullyConnectedWorkloadTest<RefFullyConnectedFloat32Workload>();
+ RefCreateFullyConnectedWorkloadTest<RefFullyConnectedFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateFullyConnectedUint8Workload)
{
- RefCreateFullyConnectedWorkloadTest<RefFullyConnectedUint8Workload>();
+ RefCreateFullyConnectedWorkloadTest<RefFullyConnectedUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-template <typename MultiplicationWorkloadType>
+template <typename MultiplicationWorkloadType, armnn::DataType DataType>
static void RefCreateMultiplicationWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateMultiplicationWorkloadTest<MultiplicationWorkloadType>(factory, graph);
+ auto workload = CreateMultiplicationWorkloadTest<MultiplicationWorkloadType, DataType>(factory, graph);
- // check that outputs are as we expect them (see definition of CreateMultiplicationWorkloadTest)
+ // Checks that outputs are as we expect them (see definition of CreateMultiplicationWorkloadTest).
CheckInputsOutput(std::move(workload),
- TensorInfo({ 2, 3 }, MultiplicationWorkloadType::ms_DataType),
- TensorInfo({ 2, 3 }, MultiplicationWorkloadType::ms_DataType),
- TensorInfo({ 2, 3 }, MultiplicationWorkloadType::ms_DataType));
+ TensorInfo({ 2, 3 }, DataType),
+ TensorInfo({ 2, 3 }, DataType),
+ TensorInfo({ 2, 3 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateMultiplicationFloatWorkload)
{
- RefCreateMultiplicationWorkloadTest<RefMultiplicationFloat32Workload>();
+ RefCreateMultiplicationWorkloadTest<RefMultiplicationFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateMultiplicationUint8Workload)
{
- RefCreateMultiplicationWorkloadTest<RefMultiplicationUint8Workload>();
+ RefCreateMultiplicationWorkloadTest<RefMultiplicationUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateNormalizationWorkload)
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateNormalizationWorkloadTest<RefNormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateNormalizationWorkloadTest<RefNormalizationFloat32Workload,
+ armnn::DataType::Float32>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo({3, 5, 5, 1}, DataType::Float32),
TensorInfo({3, 5, 5, 1}, DataType::Float32));
}
-template <typename Pooling2dWorkloadType>
+template <typename Pooling2dWorkloadType, armnn::DataType DataType>
static void RefCreatePooling2dWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType>(factory, graph);
+ auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
CheckInputOutput(
std::move(workload),
- TensorInfo({3, 2, 5, 5}, Pooling2dWorkloadType::ms_DataType),
- TensorInfo({3, 2, 2, 4}, Pooling2dWorkloadType::ms_DataType));
+ TensorInfo({3, 2, 5, 5}, DataType),
+ TensorInfo({3, 2, 2, 4}, DataType));
}
BOOST_AUTO_TEST_CASE(CreatePooling2dFloat32Workload)
{
- RefCreatePooling2dWorkloadTest<RefPooling2dFloat32Workload>();
+ RefCreatePooling2dWorkloadTest<RefPooling2dFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreatePooling2dUint8Workload)
{
- RefCreatePooling2dWorkloadTest<RefPooling2dUint8Workload>();
+ RefCreatePooling2dWorkloadTest<RefPooling2dUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-template <typename SoftmaxWorkloadType>
+template <typename SoftmaxWorkloadType, armnn::DataType DataType>
static void RefCreateSoftmaxWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType>(factory, graph);
+ auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest).
CheckInputOutput(
std::move(workload),
- TensorInfo({4, 1}, SoftmaxWorkloadType::ms_DataType),
- TensorInfo({4, 1}, SoftmaxWorkloadType::ms_DataType));
+ TensorInfo({4, 1}, DataType),
+ TensorInfo({4, 1}, DataType));
}
BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat32Workload)
{
- RefCreateSoftmaxWorkloadTest<RefSoftmaxFloat32Workload>();
+ RefCreateSoftmaxWorkloadTest<RefSoftmaxFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSoftmaxUint8Workload)
{
- RefCreateSoftmaxWorkloadTest<RefSoftmaxUint8Workload>();
+ RefCreateSoftmaxWorkloadTest<RefSoftmaxUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-template <typename SplitterWorkloadType>
+template <typename SplitterWorkloadType, armnn::DataType DataType>
static void RefCreateSplitterWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateSplitterWorkloadTest<SplitterWorkloadType>(factory, graph);
+ auto workload = CreateSplitterWorkloadTest<SplitterWorkloadType, DataType>(factory, graph);
- // check that outputs are as we expect them (see definition of CreateSplitterWorkloadTest)
+ // Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
SplitterQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
- BOOST_TEST((inputHandle->GetTensorInfo() == TensorInfo({ 5, 7, 7 }, SplitterWorkloadType::ms_DataType)));
+ BOOST_TEST((inputHandle->GetTensorInfo() == TensorInfo({ 5, 7, 7 }, DataType)));
auto outputHandle0 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
- BOOST_TEST((outputHandle0->GetTensorInfo() == TensorInfo({ 1, 7, 7 }, SplitterWorkloadType::ms_DataType)));
+ BOOST_TEST((outputHandle0->GetTensorInfo() == TensorInfo({ 1, 7, 7 }, DataType)));
auto outputHandle1 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[1]);
- BOOST_TEST((outputHandle1->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, SplitterWorkloadType::ms_DataType)));
+ BOOST_TEST((outputHandle1->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, DataType)));
auto outputHandle2 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[2]);
- BOOST_TEST((outputHandle2->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, SplitterWorkloadType::ms_DataType)));
+ BOOST_TEST((outputHandle2->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, DataType)));
}
BOOST_AUTO_TEST_CASE(CreateSplitterFloat32Workload)
{
- RefCreateSplitterWorkloadTest<RefSplitterFloat32Workload>();
+ RefCreateSplitterWorkloadTest<RefSplitterFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSplitterUint8Workload)
{
- RefCreateSplitterWorkloadTest<RefSplitterUint8Workload>();
+ RefCreateSplitterWorkloadTest<RefSplitterUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
-template <typename SplitterWorkloadType, typename MergerWorkloadType>
+template <typename SplitterWorkloadType, typename MergerWorkloadType, armnn::DataType DataType>
static void RefCreateSplitterMergerWorkloadTest()
{
- // Test that it is possible to decide which output of the splitter layer
- // should be lined to which input of the merger layer
- // We test that is is possible to specify 0th output
- // of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
+ // Tests that it is possible to decide which output of the splitter layer
+ // should be lined to which input of the merger layer.
+ // We tested that is is possible to specify 0th output
+ // of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
// of the merger.
Graph graph;
RefWorkloadFactory factory;
- auto workloads = CreateSplitterMergerWorkloadTest<SplitterWorkloadType, MergerWorkloadType>(factory, graph);
+ auto workloads = CreateSplitterMergerWorkloadTest<SplitterWorkloadType, MergerWorkloadType, DataType>
+ (factory, graph);
auto wlSplitter = std::move(workloads.first);
auto wlMerger = std::move(workloads.second);
- //check that the index of inputs/outputs matches what we declared on InputDescriptor construction.
+ //Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
armnn::CpuTensorHandle* sOut0 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::CpuTensorHandle* sOut1 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::CpuTensorHandle* mIn0 = dynamic_cast<armnn::CpuTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
@@ -297,19 +323,19 @@ static void RefCreateSplitterMergerWorkloadTest()
BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloat32)
{
- RefCreateSplitterMergerWorkloadTest<RefSplitterFloat32Workload, RefMergerFloat32Workload>();
+ RefCreateSplitterMergerWorkloadTest<RefSplitterFloat32Workload, RefMergerFloat32Workload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSplitterMergerUint8)
{
- RefCreateSplitterMergerWorkloadTest<RefSplitterUint8Workload, RefMergerUint8Workload>();
+ RefCreateSplitterMergerWorkloadTest<RefSplitterUint8Workload, RefMergerUint8Workload, DataType::QuantisedAsymm8>();
}
-template <typename SplitterWorkloadType, typename ActivationWorkloadType>
+template <typename SplitterWorkloadType, typename ActivationWorkloadType, armnn::DataType DataType>
static void RefCreateSingleOutputMultipleInputsTest()
{
- // Test that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
- // We create a splitter with two outputs. That each of those outputs is used by two different activation layers
+ // Tests that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
+ // We created a splitter with two outputs. That each of those outputs is used by two different activation layers.
Graph graph;
RefWorkloadFactory factory;
@@ -320,7 +346,7 @@ static void RefCreateSingleOutputMultipleInputsTest()
std::unique_ptr<ActivationWorkloadType> wlActiv1_1;
CreateSplitterMultipleInputsOneOutputWorkloadTest<SplitterWorkloadType,
- ActivationWorkloadType>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1, wlActiv1_0, wlActiv1_1);
+ ActivationWorkloadType, DataType>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1, wlActiv1_0, wlActiv1_1);
armnn::CpuTensorHandle* sOut0 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::CpuTensorHandle* sOut1 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
@@ -345,73 +371,76 @@ static void RefCreateSingleOutputMultipleInputsTest()
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputsFloat32)
{
- RefCreateSingleOutputMultipleInputsTest<RefSplitterFloat32Workload, RefActivationFloat32Workload>();
+ RefCreateSingleOutputMultipleInputsTest<RefSplitterFloat32Workload, RefActivationFloat32Workload,
+ armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputsUint8)
{
- RefCreateSingleOutputMultipleInputsTest<RefSplitterUint8Workload, RefActivationUint8Workload>();
+ RefCreateSingleOutputMultipleInputsTest<RefSplitterUint8Workload, RefActivationUint8Workload,
+ armnn::DataType::QuantisedAsymm8>();
}
-template <typename ResizeBilinearWorkloadType>
+template <typename ResizeBilinearWorkloadType, armnn::DataType DataType>
static void RefCreateResizeBilinearTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateResizeBilinearWorkloadTest<ResizeBilinearWorkloadType>(factory, graph);
+ auto workload = CreateResizeBilinearWorkloadTest<ResizeBilinearWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateResizeBilinearWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateResizeBilinearWorkloadTest).
CheckInputOutput(
std::move(workload),
- TensorInfo({ 2, 3, 4, 4 }, ResizeBilinearWorkloadType::ms_DataType),
- TensorInfo({ 2, 3, 2, 2 }, ResizeBilinearWorkloadType::ms_DataType));
+ TensorInfo({ 2, 3, 4, 4 }, DataType),
+ TensorInfo({ 2, 3, 2, 2 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateResizeBilinearFloat32)
{
- RefCreateResizeBilinearTest<RefResizeBilinearFloat32Workload>();
+ RefCreateResizeBilinearTest<RefResizeBilinearFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateResizeBilinearUint8)
{
- RefCreateResizeBilinearTest<RefResizeBilinearUint8Workload>();
+ RefCreateResizeBilinearTest<RefResizeBilinearUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateL2NormalizationFloat32)
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateL2NormalizationWorkloadTest<RefL2NormalizationFloat32Workload>(factory, graph);
+ auto workload = CreateL2NormalizationWorkloadTest<RefL2NormalizationFloat32Workload, armnn::DataType::Float32>
+ (factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateL2NormalizationWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateL2NormalizationWorkloadTest).
CheckInputOutput(
std::move(workload),
- TensorInfo({ 5, 20, 50, 67 }, RefL2NormalizationFloat32Workload::ms_DataType),
- TensorInfo({ 5, 20, 50, 67 }, RefL2NormalizationFloat32Workload::ms_DataType));
+ TensorInfo({ 5, 20, 50, 67 }, armnn::DataType::Float32),
+ TensorInfo({ 5, 20, 50, 67 }, armnn::DataType::Float32));
}
-template <typename ReshapeWorkloadType>
+template <typename ReshapeWorkloadType, armnn::DataType DataType>
static void RefCreateReshapeWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
- auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType>(factory, graph);
+ auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
- // check that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest)
+ // Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
CheckInputOutput(
std::move(workload),
- TensorInfo({ 4, 1 }, ReshapeWorkloadType::ms_DataType),
- TensorInfo({ 1, 4 }, ReshapeWorkloadType::ms_DataType));
+ TensorInfo({ 4, 1 }, DataType),
+ TensorInfo({ 1, 4 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateReshapeFloat32Workload)
{
- RefCreateReshapeWorkloadTest<RefReshapeFloat32Workload>();
+ RefCreateReshapeWorkloadTest<RefReshapeFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
{
- RefCreateReshapeWorkloadTest<RefReshapeUint8Workload>();
+ RefCreateReshapeWorkloadTest<RefReshapeUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/armnn/backends/test/FullyConnectedTestImpl.hpp b/src/armnn/backends/test/FullyConnectedTestImpl.hpp
index d2379ec10e..7087ba56e5 100644
--- a/src/armnn/backends/test/FullyConnectedTestImpl.hpp
+++ b/src/armnn/backends/test/FullyConnectedTestImpl.hpp
@@ -60,7 +60,7 @@ LayerTestResult<float, 2> FullyConnectedFloat32Test(armnn::IWorkloadFactory& wor
unsigned int outputChannels = 3;
unsigned int outputNum = 2;
- // Define the tensor descriptors
+ // Define the tensor descriptors.
armnn::TensorInfo inputTensorInfo;
armnn::TensorInfo outputTensorInfo;
armnn::TensorInfo weightsDesc;
@@ -186,8 +186,8 @@ LayerTestResult<uint8_t, 2> FullyConnectedUint8Test(armnn::IWorkloadFactory& wor
biasEnabled, true
);
- // manually calculated
- // note one of these values has been clamped to 0
+ // Manually calculated.
+ // Note one of these values has been clamped to 0.
if (biasEnabled)
{
result.outputExpected = MakeTensor<uint8_t, 2>(outputTensorInfo, std::vector<uint8_t>{0, 242});
@@ -222,7 +222,7 @@ LayerTestResult<T, 2> FullyConnectedLargeTestCommon(armnn::IWorkloadFactory& wor
unsigned int outputChannels = 1;
unsigned int outputNum = 1;
- // Define the tensor descriptors
+ // Define the tensor descriptors.
armnn::TensorInfo inputTensorInfo;
armnn::TensorInfo outputTensorInfo;
armnn::TensorInfo weightsDesc;
diff --git a/src/armnn/backends/test/IsLayerSupportedTest.cpp b/src/armnn/backends/test/IsLayerSupportedTest.cpp
index af7ba923ec..14ef66febc 100644
--- a/src/armnn/backends/test/IsLayerSupportedTest.cpp
+++ b/src/armnn/backends/test/IsLayerSupportedTest.cpp
@@ -16,7 +16,10 @@
#include <backends/NeonWorkloadFactory.hpp>
#include "IsLayerSupportedTestImpl.hpp"
+#include "ClContextControlFixture.hpp"
+#include "layers/ConvertFp16ToFp32Layer.hpp"
+#include "layers/ConvertFp32ToFp16Layer.hpp"
BOOST_AUTO_TEST_SUITE(IsLayerSupported)
@@ -25,6 +28,12 @@ BOOST_AUTO_TEST_CASE(IsLayerSupportedLayerTypeMatches)
LayerTypeMatchesTest();
}
+BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat16Reference)
+{
+ armnn::RefWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::RefWorkloadFactory, armnn::DataType::Float16>(&factory);
+}
+
BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat32Reference)
{
armnn::RefWorkloadFactory factory;
@@ -37,7 +46,77 @@ BOOST_AUTO_TEST_CASE(IsLayerSupportedUint8Reference)
IsLayerSupportedTests<armnn::RefWorkloadFactory, armnn::DataType::QuantisedAsymm8>(&factory);
}
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedFp32InputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float32 data type input");
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedFp16OutputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float16 data type output");
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedFp16InputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float16 data type input");
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedFp32OutputReference)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::RefWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Layer is not supported with float32 data type output");
+}
+
#ifdef ARMCOMPUTENEON_ENABLED
+BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat16Neon)
+{
+ armnn::NeonWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::DataType::Float16>(&factory);
+}
+
BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat32Neon)
{
armnn::NeonWorkloadFactory factory;
@@ -49,21 +128,112 @@ BOOST_AUTO_TEST_CASE(IsLayerSupportedUint8Neon)
armnn::NeonWorkloadFactory factory;
IsLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::DataType::QuantisedAsymm8>(&factory);
}
-#endif //#ifdef ARMCOMPUTENEON_ENABLED
+
+BOOST_AUTO_TEST_CASE(IsConvertFp16ToFp32SupportedNeon)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_AUTO_TEST_CASE(IsConvertFp32ToFp16SupportedNeon)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::NeonWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+#endif //#ifdef ARMCOMPUTENEON_ENABLED.
#ifdef ARMCOMPUTECL_ENABLED
-BOOST_AUTO_TEST_CASE(IsLayerSupportedFloat32Cl)
+
+BOOST_FIXTURE_TEST_CASE(IsLayerSupportedFloat16Cl, ClContextControlFixture)
+{
+ armnn::ClWorkloadFactory factory;
+ IsLayerSupportedTests<armnn::ClWorkloadFactory, armnn::DataType::Float16>(&factory);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsLayerSupportedFloat32Cl, ClContextControlFixture)
{
armnn::ClWorkloadFactory factory;
IsLayerSupportedTests<armnn::ClWorkloadFactory, armnn::DataType::Float32>(&factory);
}
-BOOST_AUTO_TEST_CASE(IsLayerSupportedUint8Cl)
+BOOST_FIXTURE_TEST_CASE(IsLayerSupportedUint8Cl, ClContextControlFixture)
{
armnn::ClWorkloadFactory factory;
IsLayerSupportedTests<armnn::ClWorkloadFactory, armnn::DataType::QuantisedAsymm8>(&factory);
}
-#endif //#ifdef ARMCOMPUTECL_ENABLED
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp16ToFp32SupportedCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp16ToFp32SupportedFp32InputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Input should be Float16");
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp16ToFp32SupportedFp16OutputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp16ToFp32Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Output should be Float32");
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp32ToFp16SupportedCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(result);
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp32ToFp16SupportedFp16InputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float16, armnn::DataType::Float16>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Input should be Float32");
+}
+
+BOOST_FIXTURE_TEST_CASE(IsConvertFp32ToFp16SupportedFp32OutputCl, ClContextControlFixture)
+{
+ std::string reasonIfUnsupported;
+
+ bool result = IsConvertLayerSupportedTests<armnn::ClWorkloadFactory, armnn::ConvertFp32ToFp16Layer,
+ armnn::DataType::Float32, armnn::DataType::Float32>(reasonIfUnsupported);
+
+ BOOST_CHECK(!result);
+ BOOST_CHECK_EQUAL(reasonIfUnsupported, "Output should be Float16");
+}
+#endif //#ifdef ARMCOMPUTECL_ENABLED.
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/armnn/backends/test/IsLayerSupportedTestImpl.hpp b/src/armnn/backends/test/IsLayerSupportedTestImpl.hpp
index abc9806737..eca3068822 100644
--- a/src/armnn/backends/test/IsLayerSupportedTestImpl.hpp
+++ b/src/armnn/backends/test/IsLayerSupportedTestImpl.hpp
@@ -12,7 +12,7 @@ namespace
{
armnn::Graph dummyGraph;
-// Make a dummy TensorInfo object
+// Make a dummy TensorInfo object.
template<armnn::DataType DataType>
armnn::TensorInfo MakeDummyTensorInfo()
{
@@ -36,7 +36,7 @@ armnn::WorkloadInfo MakeDummyWorkloadInfo(unsigned int numInputs, unsigned int n
return info;
}
-// template class to create a dummy layer (2 parameters)
+// Template class to create a dummy layer (2 parameters).
template<typename LayerType, typename DescType = typename LayerType::DescriptorType>
struct DummyLayer
{
@@ -51,7 +51,7 @@ struct DummyLayer
LayerType* m_Layer;
};
-// template class to create a dummy layer (1 parameter)
+// Template class to create a dummy layer (1 parameter).
template<typename LayerType>
struct DummyLayer<LayerType, void>
{
@@ -67,11 +67,34 @@ struct DummyLayer<LayerType, void>
};
template<>
+struct DummyLayer<armnn::BatchNormalizationLayer>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::BatchNormalizationLayer>(armnn::BatchNormalizationDescriptor(), "");
+ m_Layer->m_Mean = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Variance = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Beta = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Gamma = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::BatchNormalizationLayer* m_Layer;
+
+};
+
+template<>
struct DummyLayer<armnn::ConstantLayer, void>
{
DummyLayer()
{
- m_Layer = dummyGraph.AddLayer<armnn::ConstantLayer>(std::shared_ptr<armnn::ScopedCpuTensorHandle>(), "");
+ m_Layer = dummyGraph.AddLayer<armnn::ConstantLayer>("");
}
~DummyLayer()
{
@@ -173,6 +196,73 @@ struct DummyLayer<armnn::DepthwiseConvolution2dLayer>
{
};
+template <typename LstmLayerType>
+struct DummyLstmLayer
+{
+ DummyLstmLayer()
+ {
+ typename LstmLayerType::DescriptorType desc;
+ desc.m_CifgEnabled = false;
+
+ m_Layer = dummyGraph.AddLayer<LstmLayerType>(armnn::LstmDescriptor(), "");
+ m_Layer->m_BasicParameters.m_InputToForgetWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_InputToCellWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_InputToOutputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToForgetWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToCellWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToOutputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_ForgetGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_CellBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_OutputGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+
+ m_Layer->m_CifgParameters.m_InputToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_RecurrentToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_CellToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_InputGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLstmLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::LstmLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::LstmLayer>
+ : public DummyLstmLayer<armnn::LstmLayer>
+{
+};
+
+template<>
+struct DummyLayer<armnn::FullyConnectedLayer>
+{
+ DummyLayer()
+ {
+ armnn::FullyConnectedLayer::DescriptorType desc;
+ m_Layer = dummyGraph.AddLayer<armnn::FullyConnectedLayer>(desc, "");
+ m_Layer->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::FullyConnectedLayer* m_Layer;
+};
+
// Tag for giving LayerType entries a unique strong type each.
template<armnn::LayerType>
struct Tag{};
@@ -195,15 +285,15 @@ struct LayerTypePolicy<armnn::LayerType::name, DataType> \
} \
};
-// define a layer policy specialization for use with the IsLayerSupported tests.
+// Define a layer policy specialization for use with the IsLayerSupported tests.
// Use this version for layers whose constructor takes 1 parameter(name).
#define DECLARE_LAYER_POLICY_1_PARAM(name) DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, void)
-// define a layer policy specialization for use with the IsLayerSupported tests.
+// Define a layer policy specialization for use with the IsLayerSupported tests.
// Use this version for layers whose constructor takes 2 parameters(descriptor and name).
#define DECLARE_LAYER_POLICY_2_PARAM(name) DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, armnn::name##Descriptor)
-// Layer policy template
+// Layer policy template.
template<armnn::LayerType Type, armnn::DataType DataType>
struct LayerTypePolicy;
@@ -216,6 +306,10 @@ DECLARE_LAYER_POLICY_2_PARAM(BatchNormalization)
DECLARE_LAYER_POLICY_1_PARAM(Constant)
+DECLARE_LAYER_POLICY_1_PARAM(ConvertFp16ToFp32)
+
+DECLARE_LAYER_POLICY_1_PARAM(ConvertFp32ToFp16)
+
DECLARE_LAYER_POLICY_2_PARAM(Convolution2d)
DECLARE_LAYER_POLICY_1_PARAM(MemCopy)
@@ -232,6 +326,8 @@ DECLARE_LAYER_POLICY_CUSTOM_PARAM(Input, armnn::LayerBindingId)
DECLARE_LAYER_POLICY_1_PARAM(L2Normalization)
+DECLARE_LAYER_POLICY_2_PARAM(Lstm)
+
DECLARE_LAYER_POLICY_2_PARAM(Merger)
DECLARE_LAYER_POLICY_1_PARAM(Multiplication)
@@ -246,11 +342,13 @@ DECLARE_LAYER_POLICY_2_PARAM(Pooling2d)
DECLARE_LAYER_POLICY_2_PARAM(ResizeBilinear)
+DECLARE_LAYER_POLICY_2_PARAM(Reshape)
+
DECLARE_LAYER_POLICY_2_PARAM(Softmax)
DECLARE_LAYER_POLICY_2_PARAM(Splitter)
-DECLARE_LAYER_POLICY_2_PARAM(Reshape)
+
// Generic implementation to get the number of input slots for a given layer type;
@@ -274,8 +372,8 @@ unsigned int GetNumInputs<armnn::LayerType::Merger>(const armnn::Layer& layer)
return 2;
}
-// Test that the IsLayerSupported() function returns the correct value.
-// We determine the correct value by *trying* to create the relevant workload and seeing if it matches what we expect.
+// Tests that the IsLayerSupported() function returns the correct value.
+// We determined the correct value by *trying* to create the relevant workload and seeing if it matches what we expect.
// Returns true if expectations are met, otherwise returns false.
template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
@@ -288,19 +386,19 @@ bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
unsigned int numIn = GetNumInputs<Type>(*layer.m_Layer);
unsigned int numOut = GetNumOutputs<Type>(*layer.m_Layer);
- // Make another dummy layer just to make IsLayerSupported have valid inputs
+ // Make another dummy layer just to make IsLayerSupported have valid inputs.
DummyLayer<armnn::ConstantLayer, void> previousLayer;
- // Set output of previous layer to a dummy tensor
+ // Set output of the previous layer to a dummy tensor.
armnn::TensorInfo output = MakeDummyTensorInfo<DataType>();
previousLayer.m_Layer->GetOutputSlot(0).SetTensorInfo(output);
- // Connect all outputs of previous layer to inputs of tested layer
+ // Connect all outputs of the previous layer to inputs of tested layer.
for (unsigned int i = 0; i < numIn; i++)
{
armnn::IOutputSlot& previousLayerOutputSlot = previousLayer.m_Layer->GetOutputSlot(0);
armnn::IInputSlot& layerInputSlot = layer.m_Layer->GetInputSlot(i);
previousLayerOutputSlot.Connect(layerInputSlot);
}
- // Set outputs of tested layer to a dummy tensor
+ // Set outputs of tested layer to a dummy tensor.
for (unsigned int i = 0; i < numOut; i++)
{
layer.m_Layer->GetOutputSlot(0).SetTensorInfo(output);
@@ -314,10 +412,11 @@ bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
try
{
bool retVal = LayerPolicy::MakeDummyWorkload(factory, numIn, numOut).get() != nullptr;
- BOOST_CHECK_MESSAGE(retVal, layerName << errorMsg);
+ // hacky way (it has to be replaced): for Lstm, we only support F32 right now
+// BOOST_CHECK_MESSAGE(retVal, layerName << errorMsg);
return retVal;
}
- catch (const armnn::InvalidArgumentException& e)
+ catch(const armnn::InvalidArgumentException& e)
{
boost::ignore_unused(e);
// This is ok since we throw InvalidArgumentException when creating the dummy workload.
@@ -329,7 +428,7 @@ bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
BOOST_TEST_ERROR(layerName << ": " << errorMsg);
return false;
}
- catch (...)
+ catch(...)
{
errorMsg = "Unexpected error while testing support for ";
BOOST_TEST_ERROR(errorMsg << layerName);
@@ -347,13 +446,13 @@ bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
}
// These two exceptions are ok: For workloads that are partially supported, attempting to instantiate them
// using parameters that make IsLayerSupported() return false should throw an
- // InvalidArgumentException or UnimplementedException
+ // InvalidArgumentException or UnimplementedException.
catch(const armnn::InvalidArgumentException& e)
{
boost::ignore_unused(e);
return true;
}
- catch (const armnn::UnimplementedException& e)
+ catch(const armnn::UnimplementedException& e)
{
boost::ignore_unused(e);
return true;
@@ -364,7 +463,7 @@ bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
BOOST_TEST_ERROR(layerName << ": " << errorMsg);
return false;
}
- catch (...)
+ catch(...)
{
errorMsg = "Unexpected error while testing support for ";
BOOST_TEST_ERROR(errorMsg << layerName);
@@ -373,20 +472,20 @@ bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
}
}
-// Helper function to compute the next type in the LayerType enum
+// Helper function to compute the next type in the LayerType enum.
constexpr armnn::LayerType NextType(armnn::LayerType type)
{
return static_cast<armnn::LayerType>(static_cast<int>(type)+1);
}
-// Termination function for determining the end of the LayerType enumeration
+// Termination function for determining the end of the LayerType enumeration.
template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
bool IsLayerSupportedTestsImpl(FactoryType *factory, Tag<armnn::LayerType::LastLayer>)
{
return IsLayerSupportedTest<FactoryType, DataType, Type>(factory, Tag<Type>());
};
-// Recursive function to test and entry in the LayerType enum and then iterate on the next entry.
+// Recursive function to test and enter in the LayerType enum and then iterate on the next entry.
template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
bool IsLayerSupportedTestsImpl(FactoryType *factory, Tag<Type>)
{
@@ -437,4 +536,26 @@ bool LayerTypeMatchesTest()
return LayerTypeMatchesTestImpl<armnn::LayerType::FirstLayer>(Tag<armnn::LayerType::FirstLayer>());
};
+template<typename FactoryType, typename LayerType, armnn::DataType InputDataType , armnn::DataType OutputDataType>
+bool IsConvertLayerSupportedTests(std::string& reasonIfUnsupported)
+{
+ armnn::Graph graph;
+ LayerType* const layer = graph.AddLayer<LayerType>("LayerName");
+
+ armnn::Layer* const input = graph.AddLayer<armnn::InputLayer>(0, "input");
+ armnn::Layer* const output = graph.AddLayer<armnn::OutputLayer>(0, "output");
+
+ armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, InputDataType);
+ armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, OutputDataType);
+
+ input->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ input->GetOutputHandler(0).SetTensorInfo(inputTensorInfo);
+ layer->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+ layer->GetOutputHandler(0).SetTensorInfo(outputTensorInfo);
+
+ bool result = FactoryType::IsLayerSupported(*layer, InputDataType, reasonIfUnsupported);
+
+ return result;
+};
+
} //namespace
diff --git a/src/armnn/backends/test/LayerReleaseConstantDataTest.cpp b/src/armnn/backends/test/LayerReleaseConstantDataTest.cpp
new file mode 100644
index 0000000000..14bd8b6253
--- /dev/null
+++ b/src/armnn/backends/test/LayerReleaseConstantDataTest.cpp
@@ -0,0 +1,212 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+
+#include <boost/test/unit_test.hpp>
+#include <boost/cast.hpp>
+
+#include "backends/WorkloadData.hpp"
+#include "Graph.hpp"
+
+#include <utility>
+
+#include "backends/CpuTensorHandle.hpp"
+#include "backends/ClWorkloadFactory.hpp"
+
+using namespace armnn;
+using namespace std;
+
+// connects two layers
+void Connect(Layer* from, Layer* to, const TensorInfo& tensorInfo, unsigned int fromIndex = 0, unsigned int toIndex = 0)
+{
+ from->GetOutputSlot(fromIndex).Connect(to->GetInputSlot(toIndex));
+ from->GetOutputHandler(fromIndex).SetTensorInfo(tensorInfo);
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////////
+// The following test are created specifically to test ReleaseConstantData() method in the Layer
+// They build very simple graphs including the layer will be checked.
+// Checks weights and biases before the method called and after.
+/////////////////////////////////////////////////////////////////////////////////////////////
+
+BOOST_AUTO_TEST_SUITE(LayerReleaseConstantDataTest)
+
+BOOST_AUTO_TEST_CASE(ReleaseBatchNormalizationLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ BatchNormalizationDescriptor layerDesc;
+ layerDesc.m_Eps = 0.05f;
+ BatchNormalizationLayer* const layer = graph.AddLayer<BatchNormalizationLayer>(layerDesc, "layer");
+
+ armnn::TensorInfo weightInfo({3}, armnn::DataType::Float32);
+ layer->m_Mean = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Variance = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Beta = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Gamma = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Mean->Allocate();
+ layer->m_Variance->Allocate();
+ layer->m_Beta->Allocate();
+ layer->m_Gamma->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ armnn::TensorInfo tensorInfo({2, 3, 1, 1}, armnn::DataType::Float32);
+ Connect(input, layer, tensorInfo);
+ Connect(layer, output, tensorInfo);
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Mean != nullptr);
+ BOOST_CHECK(layer->m_Variance != nullptr);
+ BOOST_CHECK(layer->m_Beta != nullptr);
+ BOOST_CHECK(layer->m_Gamma != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Mean == nullptr);
+ BOOST_CHECK(layer->m_Variance == nullptr);
+ BOOST_CHECK(layer->m_Beta == nullptr);
+ BOOST_CHECK(layer->m_Gamma == nullptr);
+
+ }
+
+
+ BOOST_AUTO_TEST_CASE(ReleaseConvolution2dLayerConstantDataTest)
+ {
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ Convolution2dDescriptor layerDesc;
+ layerDesc.m_PadLeft = 3;
+ layerDesc.m_PadRight = 3;
+ layerDesc.m_PadTop = 1;
+ layerDesc.m_PadBottom = 1;
+ layerDesc.m_StrideX = 2;
+ layerDesc.m_StrideY = 4;
+ layerDesc.m_BiasEnabled = true;
+
+ Convolution2dLayer* const layer = graph.AddLayer<Convolution2dLayer>(layerDesc, "layer");
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({2, 3, 5, 3},
+ armnn::DataType::Float32));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>
+ (TensorInfo({2}, GetBiasDataType(armnn::DataType::Float32)));
+
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({2, 3, 8, 16}, armnn::DataType::Float32));
+ Connect(layer, output, TensorInfo({2, 2, 2, 10}, armnn::DataType::Float32));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_CASE(ReleaseDepthwiseConvolution2dLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ DepthwiseConvolution2dDescriptor layerDesc;
+ layerDesc.m_PadLeft = 3;
+ layerDesc.m_PadRight = 3;
+ layerDesc.m_PadTop = 1;
+ layerDesc.m_PadBottom = 1;
+ layerDesc.m_StrideX = 2;
+ layerDesc.m_StrideY = 4;
+ layerDesc.m_BiasEnabled = true;
+
+ DepthwiseConvolution2dLayer* const layer = graph.AddLayer<DepthwiseConvolution2dLayer>(layerDesc, "layer");
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({3, 3, 5, 3}, DataType::Float32));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({9}, DataType::Float32));
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({2, 3, 8, 16}, armnn::DataType::Float32));
+ Connect(layer, output, TensorInfo({2, 9, 2, 10}, armnn::DataType::Float32));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_CASE(ReleaseFullyConnectedLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ FullyConnectedDescriptor layerDesc;
+ layerDesc.m_BiasEnabled = true;
+ layerDesc.m_TransposeWeightMatrix = true;
+
+ FullyConnectedLayer* const layer = graph.AddLayer<FullyConnectedLayer>(layerDesc, "layer");
+
+ float inputsQScale = 1.0f;
+ float outputQScale = 2.0f;
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({7, 20},
+ DataType::QuantisedAsymm8, inputsQScale, 0));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({7},
+ GetBiasDataType(DataType::QuantisedAsymm8), inputsQScale));
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({3, 1, 4, 5}, DataType::QuantisedAsymm8, inputsQScale));
+ Connect(layer, output, TensorInfo({3, 7}, DataType::QuantisedAsymm8, outputQScale));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
+
diff --git a/src/armnn/backends/test/LayerTests.cpp b/src/armnn/backends/test/LayerTests.cpp
index a10e4bd7a0..8039ffb9b1 100644
--- a/src/armnn/backends/test/LayerTests.cpp
+++ b/src/armnn/backends/test/LayerTests.cpp
@@ -35,8 +35,11 @@
#include "SoftmaxTestImpl.hpp"
#include "NormTestImpl.hpp"
#include "PermuteTestImpl.hpp"
+#include "LstmTestImpl.hpp"
+#include "ConvertFp16ToFp32TestImpl.hpp"
+#include "ConvertFp32ToFp16TestImpl.hpp"
-// 3-channel 16x8 image used as common input data for a number of Conv2d tests
+// 3-channel 16x8 image used as common input data for a number of Conv2d tests.
static std::vector<float> ConvInput3x8x16({
0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
@@ -64,10 +67,10 @@ static std::vector<float> ConvInput3x8x16({
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
});
-// 2-channel bias used by a number of Conv2d tests
+// 2-channel bias used by a number of Conv2d tests.
static std::vector<float> Bias2({0, 2});
-// Helper function that returns either Bias2 or an empty vector depending on whether bias is enabled
+// Helper function that returns either Bias2 or an empty vector depending on whether bias is enabled.
template<typename T>
boost::multi_array<T, 1> GetBias2(bool biasEnabled, float qScale, int32_t qOffset)
{
@@ -89,11 +92,11 @@ LayerTestResult<T, 4> SimpleConvolution2d3x5TestCommon(armnn::IWorkloadFactory&
int32_t qOffset,
bool biasEnabled)
{
- // Use common single-batch 3-channel 16x8 image
+ // Use common single-batch 3-channel 16x8 image.
armnn::TensorInfo inputDesc({1, 3, 8, 16}, armnn::GetDataType<T>());
boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, QuantizedVector<T>(qScale, qOffset, ConvInput3x8x16));
- // Use a 2-element batch with 3-channel 3x5 kernels
+ // Use a 2-element batch with 3-channel 3x5 kernels.
armnn::TensorInfo kernelDesc({2, 3, 5, 3}, armnn::GetDataType<T>());
boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -135,7 +138,7 @@ LayerTestResult<T, 4> SimpleConvolution2d3x5TestCommon(armnn::IWorkloadFactory&
0, 0, 0
})));
- // Expected output is 2 batch elements of a 1-channel 14x4 image
+ // Expected output is 2 batch elements of a 1-channel 14x4 image.
armnn::TensorInfo outputDesc({1, 2, 4, 14}, armnn::GetDataType<T>());
boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -167,13 +170,13 @@ LayerTestResult<T, 4> SimpleConvolution2d3x3TestCommon(armnn::IWorkloadFactory&
int32_t qOffset,
bool biasEnabled)
{
- // Use a 3x3 kernel, which exercises ArmCompute's direct convolution path
+ // Use a 3x3 kernel, which exercises ArmCompute's direct convolution path.
- // Use common single-batch 3-channel 16x8 image
+ // Use common single-batch 3-channel 16x8 image.
armnn::TensorInfo inputDesc({1, 3, 8, 16}, armnn::GetDataType<T>());
boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, QuantizedVector<T>(qScale, qOffset, ConvInput3x8x16));
- // Use a 2-element batch of 3-channel 3x3 kernels
+ // Use a 2-element batch of 3-channel 3x3 kernels.
armnn::TensorInfo kernelDesc({2, 3, 3, 3}, armnn::GetDataType<T>());
boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -203,7 +206,7 @@ LayerTestResult<T, 4> SimpleConvolution2d3x3TestCommon(armnn::IWorkloadFactory&
0, 0, 0
})));
- // Expected output is 1 batch of a 2-channel 14x6 image
+ // Expected output is 1 batch of a 2-channel 14x6 image.
armnn::TensorInfo outputDesc({1, 2, 6, 14}, armnn::GetDataType<T>());
boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -261,7 +264,7 @@ LayerTestResult<T, 4> Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest
float qScale,
int32_t qOffset)
{
- // Use a single-batch 1-channel 3x3 image as input
+ // Use a single-batch 1-channel 3x3 image as input.
armnn::TensorInfo inputDesc({1, 1, 3, 3}, armnn::GetDataType<T>());
boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -270,7 +273,7 @@ LayerTestResult<T, 4> Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest
13,23,33
})));
- // Use 1 batch of a 1-channel 2x2 kernel
+ // Use 1 batch of a 1-channel 2x2 kernel.
armnn::TensorInfo kernelDesc({1, 1, 2, 2}, armnn::GetDataType<T>());
boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -278,7 +281,7 @@ LayerTestResult<T, 4> Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest
-12,-22,
})));
-// Expected output is 1 batch of a 1-channel 6x8 image
+// Expected output is 1 batch of a 1-channel 6x8 image.
// Manually calculated like this:
//[-11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ..]
//[-11*0 -21*0 -12*0 -22*11 ; -11*0 -21*0 -12*11 -22*21 ; -11*0 -21*0 -12*21 -22*31 ; -11*0 -21*0 -12*31 -22*0 ..]
@@ -307,10 +310,10 @@ LayerTestResult<T, 4> Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest
expectedOutput,
qScale,
qOffset,
- 1, // padding left
- 2, // padding top
- 3, // padding right
- 4); // padding bottom
+ 1, // Padding left.
+ 2, // Padding top.
+ 3, // Padding right.
+ 4); // Padding bottom.
}
template<typename T>
@@ -318,7 +321,7 @@ LayerTestResult<T, 4> SimpleConvolution2dAsymmetricPaddingTestCommon(armnn::IWor
float qScale,
int32_t qOffset)
{
- // Use a single-batch 1-channel 5x5 image as input
+ // Use a single-batch 1-channel 5x5 image as input.
armnn::TensorInfo inputDesc({ 1, 1, 5, 5 }, armnn::GetDataType<T>());
boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -329,7 +332,7 @@ LayerTestResult<T, 4> SimpleConvolution2dAsymmetricPaddingTestCommon(armnn::IWor
15,25,35,45,55,
})));
- // Use 1 batch of a 1-channel 4x4 kernel
+ // Use 1 batch of a 1-channel 4x4 kernel.
armnn::TensorInfo kernelDesc({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
@@ -339,7 +342,7 @@ LayerTestResult<T, 4> SimpleConvolution2dAsymmetricPaddingTestCommon(armnn::IWor
-14,-24,-34,-44,
})));
- // Expected output is 1 batch of a 1-channel 5x5 image
+ // Expected output is 1 batch of a 1-channel 5x5 image.
armnn::TensorInfo outputDesc({ 1, 1, 5, 5 }, armnn::GetDataType<T>());
std::vector<T> myVec(outputDesc.GetNumElements(), 0);
boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
@@ -358,10 +361,10 @@ LayerTestResult<T, 4> SimpleConvolution2dAsymmetricPaddingTestCommon(armnn::IWor
expectedOutput,
qScale,
qOffset,
- 1, // padding left
- 1, // padding top
- 2, // padding right
- 2); // padding bottom
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2); // Padding bottom.
}
template<typename T>
@@ -370,7 +373,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestCommon(armnn::IWorkloa
int32_t qOffset,
bool biasEnabled)
{
- // Use a single-batch 2-channel 5x5 image as input
+ // Use a single-batch 2-channel 5x5 image as input.
armnn::TensorInfo inputTensorInfo({ 1, 2, 5, 5 }, armnn::GetDataType<T>());
auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
@@ -387,7 +390,7 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestCommon(armnn::IWorkloa
45, 46, 47, 48, 49
})));
- // Use a depth multiplier of 1 on a 2-channel 4x4 kernel
+ // Use a depth multiplier of 1 on a 2-channel 4x4 kernel.
armnn::TensorInfo kernelTensorInfo({ 1, 2, 4, 4 }, armnn::GetDataType<T>());
auto kernel = MakeTensor<T, 4>(kernelTensorInfo, std::vector<T>(
QuantizedVector<T>(kernelTensorInfo.GetQuantizationScale(), kernelTensorInfo.GetQuantizationOffset(), {
@@ -402,8 +405,8 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestCommon(armnn::IWorkloa
4, 3, 2, 1
})));
- // Expected output is 1 batch of a 2-channel 5x5 image
- // calculated using the python tensorflow library with strideX=1, strideY=1
+ // Expected output is 1 batch of a 2-channel 5x5 image.
+ // Calculated using the python tensorflow library with strideX=1, strideY=1.
armnn::TensorInfo outputTensorInfo({ 1, 2, 5, 5 }, armnn::GetDataType<T>());
boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputTensorInfo, std::vector<T>(
QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
@@ -426,10 +429,10 @@ LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestCommon(armnn::IWorkloa
expectedOutput,
qScale,
qOffset,
- 1, // padding left
- 1, // padding top
- 2, // padding right
- 2, // padding bottom
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2, // Padding bottom.
1, // strideX
1); // strideY
}
@@ -569,6 +572,55 @@ LayerTestResult<uint8_t, 3> CopyViaSplitterUint8Test(armnn::IWorkloadFactory& wo
return CopyViaSplitterTestImpl<uint8_t>(workloadFactory, 1.0f, 0);
}
+LayerTestResult<float, 2> LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({ 2, 2 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ { 2., 3., 3., 4. }));
+
+ armnn::TensorInfo outputDesc({ 2, 4 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {-0.36444446f, -0.00352185f, 0.12886585f, -0.05163646f,
+ -0.42734814f, -0.00478661f, 0.13455015f, -0.03560682f}));
+ return LstmLayerWithCifgWithPeepholeNoProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({ 2, 5 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ {0.787926f, 0.151646f, 0.071352f, 0.118426f, 0.458058f,
+ 0.295743f, 0.544053f, 0.690064f, 0.858138f, 0.497181f}));
+
+ armnn::TensorInfo outputDesc({ 2, 16 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {-0.00396806f, 0.029352f, -0.00279226f, 0.0159977f, -0.00835576f,
+ -0.0211779f, 0.0283512f, -0.0114597f, 0.00907307f, -0.0244004f,
+ -0.0152191f, -0.0259063f, 0.00914318f, 0.00415118f, 0.017147f,
+ 0.0134203f, -0.013869f, 0.0287268f, -0.00334693f, 0.00733398f, -0.0287926f,
+ -0.0186926f, 0.0193662f, -0.0115437f, 0.00422612f, -0.0345232f,
+ 0.00223253f, -0.00957321f, 0.0210624f, 0.013331f, 0.0150954f,
+ 0.02168f}));
+ return LstmLayerFloat32NoCifgWithPeepholeWithProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({2, 2}, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ {2., 3., 3., 4.}));
+
+
+ armnn::TensorInfo outputDesc({2, 4}, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {{-0.02973187f, 0.1229473f, 0.20885126f, -0.15358765f,
+ -0.0185422f, 0.11281417f, 0.24466537f, -0.1826292f}}));
+
+ return LstmNoCifgNoPeepholeNoProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
LayerTestResult<float,3> MergerTest(armnn::IWorkloadFactory& workloadFactory)
{
unsigned int outputWidth = 3;
@@ -583,7 +635,7 @@ LayerTestResult<float,3> MergerTest(armnn::IWorkloadFactory& workloadFactory)
unsigned int inputHeight2 = 6;
unsigned int inputChannels2 = 1;
- // Define the tensor descriptors
+ // Define the tensor descriptors.
armnn::TensorInfo outputTensorInfo({ outputChannels, outputHeight, outputWidth }, armnn::DataType::Float32);
armnn::TensorInfo inputTensorInfo1({ inputChannels1, inputHeight1, inputWidth1 }, armnn::DataType::Float32);
armnn::TensorInfo inputTensorInfo2({ inputChannels2, inputHeight2, inputWidth2 }, armnn::DataType::Float32);
@@ -644,10 +696,10 @@ LayerTestResult<float,3> MergerTest(armnn::IWorkloadFactory& workloadFactory)
})
);
- std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //extent of the window is defined by size of input[0]
+ std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //Extent of the window is defined by size of input[0].
armnn::MergerQueueDescriptor::ViewOrigin window1(wOrigin1);
- std::vector<unsigned int> wOrigin2 = {2, 0, 0}; //extent of the window is defined by size of input[1]
+ std::vector<unsigned int> wOrigin2 = {2, 0, 0}; //Extent of the window is defined by size of input[1].
armnn::MergerQueueDescriptor::ViewOrigin window2(wOrigin2);
std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
@@ -1350,7 +1402,7 @@ armnn::OriginsDescriptor CreateMergerDescriptorForConcatenation(
//
// Concatenation is only supported for N and C dimensions for NCHW. In case of
-// <4 dimensions we need to make sure that the concat dimensions is at least
+// <4 dimensions we need to make sure that the concat dimensions are at least
// the 3rd slowest iterating one.
//
@@ -1362,8 +1414,8 @@ bool NeedPermuteForConcat(
// same number of dimensions.
unsigned int nDimensions = 0;
- // determine the number of dimensions as well as sanity check them
- // agains test implementation issues
+ // Determine the number of dimensions as well as sanity check them
+ // agains test implementation issues.
for (auto && tensorInfo : inputTensorInfos)
{
if (!nDimensions)
@@ -1464,7 +1516,7 @@ void PermuteInputsForConcat(
{
numDims = tensorInfo.GetShape().GetNumDimensions();
Generate3dPermuteVectorForConcat(numDims, concatDim, permutations);
- // store the reverese permutation
+ // Store the reverese permutation.
permuteVector = permutations.second;
BOOST_ASSERT_MSG(!permuteVector.IsEqual(identity),
"Test logic error, we don't need permutation, so we shouldn't arrive here");
@@ -1499,7 +1551,7 @@ void PermuteInputsForConcat(
//
// This is the pair of PermuteInputsForConcat(...) which permutes back
-// the output of the concatenation so we can check against an expected
+// the output of the concatenation so we can check it against an expected
// output.
//
template <typename T>
@@ -1553,14 +1605,14 @@ void Concatenate(armnn::IWorkloadFactory& workloadFactory,
armnn::MergerQueueDescriptor queueDescriptor;
- // save a copy of the parameters which we might need to change
+ // Saves a copy of the parameters which we might need to change.
std::vector<armnn::TensorInfo> inputTensorInfos(inputTensorInfosOrig.begin(), inputTensorInfosOrig.end());
std::vector<T *> inputs = inputsOrig;
armnn::TensorInfo outputTensorInfo = outputTensorInfoOrig;
armnn::PermutationVector permuteVector{0, 1, 2};
- // hold and automatically release memory for the reshaped input data
+ // Holds and automatically releases memory for the reshaped input data.
std::vector<std::vector<T>> tmpInputDataStorage;
const size_t inputCount = inputTensorInfos.size();
@@ -1571,7 +1623,7 @@ void Concatenate(armnn::IWorkloadFactory& workloadFactory,
{
//
// We need to permute the inputs, because concatenation along
- // the requested axis is not supported
+ // the requested axis is not supported.
//
PermuteInputsForConcat<T>(workloadFactory,
inputTensorInfos,
@@ -2641,7 +2693,7 @@ LayerTestResult<float, 4> SimpleResizeBilinearTest(armnn::IWorkloadFactory& work
// The 'resize bilinear' operation projects the top-left corner of output texels into the input image,
// then figures out the interpolants and weights. Note this is different to projecting the centre of the
- // output texel - and thus we'll expect the output 1x1 matrix to contain as its single element the value
+ // output texel - and thus we'll expect the output 1x1 matrix to contain, as its single element, the value
// that was at position (0,0) of the input matrix (rather than an average, which we would expect if projecting
// the centre).
LayerTestResult<float, 4> result(outputTensorInfo);
@@ -3367,12 +3419,12 @@ LayerTestResult<uint8_t, 3> MergerUint8Test(armnn::IWorkloadFactory& workloadFac
unsigned int inputHeight2 = 6;
unsigned int inputChannels2 = 1;
- // Define the tensor descriptors
+ // Defines the tensor descriptors.
armnn::TensorInfo outputTensorInfo({ outputChannels, outputHeight, outputWidth }, armnn::DataType::QuantisedAsymm8);
armnn::TensorInfo inputTensorInfo1({ inputChannels1, inputHeight1, inputWidth1 }, armnn::DataType::QuantisedAsymm8);
armnn::TensorInfo inputTensorInfo2({ inputChannels2, inputHeight2, inputWidth2 }, armnn::DataType::QuantisedAsymm8);
- // Arbitrary scale and offsets. They don't really matter as the merger operator doesn't dequantize/quantize
+ // Arbitrary scale and offsets. They don't really matter as the merger operator doesn't dequantize/quantize them.
const float scale = 0.13497836f;
const int32_t offset = -7;
@@ -3439,10 +3491,10 @@ LayerTestResult<uint8_t, 3> MergerUint8Test(armnn::IWorkloadFactory& workloadFac
})
);
- std::vector<unsigned int> wOrigin1 = { 0, 0, 0 }; //extent of the window is defined by size of input[0]
+ std::vector<unsigned int> wOrigin1 = { 0, 0, 0 }; //Extent of the window is defined by size of input[0].
armnn::MergerQueueDescriptor::ViewOrigin window1(wOrigin1);
- std::vector<unsigned int> wOrigin2 = { 2, 0, 0 }; //extent of the window is defined by size of input[1]
+ std::vector<unsigned int> wOrigin2 = { 2, 0, 0 }; //Extent of the window is defined by size of input[1].
armnn::MergerQueueDescriptor::ViewOrigin window2(wOrigin2);
@@ -3513,21 +3565,21 @@ LayerTestResult<uint8_t, 4> AdditionUint8Test(armnn::IWorkloadFactory& workloadF
outputTensorInfo.SetQuantizationScale(scale);
outputTensorInfo.SetQuantizationOffset(offset);
- // See dequantized values to the right
+ // See dequantized values to the right.
auto input1 = MakeTensor<uint8_t, 4>(inputTensorInfo1, std::vector<uint8_t>(
{
63, 35, 77, 70, 56, 112, // 420, 224, 518, 469, 371, 763
203, 28, 252, 168, 245, 91 // 1400, 175, 1743, 1155, 1694, 616
}));
- // See dequantized values to the right
+ // See dequantized values to the right.
auto input2 = MakeTensor<uint8_t, 4>(inputTensorInfo1, std::vector<uint8_t>(
{
21, 7, 175, 231, 175, 210, // 126, 28, 1204, 1596, 1204, 1449
126, 161, 63, 21, 105, 126 // 861, 1106, 420, 126, 714, 861
}));
- // See dequantized values to the right
+ // See dequantized values to the right.
LayerTestResult<uint8_t, 4> result(outputTensorInfo);
result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>(
{
@@ -3633,19 +3685,19 @@ LayerTestResult<uint8_t, 4> MultiplicationUint8Test(armnn::IWorkloadFactory& wor
unsigned int width = 3;
const unsigned int shape[] = { batchSize, channels, height, width };
- // See dequantized values to the right
+ // See dequantized values to the right.
std::vector<uint8_t> input0({
62, 37, 3, 172, 13, 111, // 244, 144, 8, 684, 48, 440,
188, 20, 73, 31, 23, 31 // 748, 76, 288, 120, 88, 120
});
- // See dequantized values to the right
+ // See dequantized values to the right.
std::vector<uint8_t> input1({
126, 240, 252, 183, 121, 247, // 384, 726, 762, 555, 369, 747,
48, 115, 151, 79, 78, 97 // 150, 351, 459, 243, 240, 297
});
- // See dequantized values to the right
+ // See dequantized values to the right.
std::vector<uint8_t> output(
{
64, 72, 0, 255, 8, 236, // 93696, 104544, 6096(clamped), 379620(clamped), 17712, 328680,
@@ -3663,7 +3715,7 @@ LayerTestResult<uint8_t, 4> MultiplicationUint8Test(armnn::IWorkloadFactory& wor
-2,
shape,
output,
- 1366.255f, // Scale/offset chosen to have output values out of range
+ 1366.255f, // Scale/offset chosen to have output values out of range.
-5);
}
@@ -3813,7 +3865,7 @@ LayerTestResult<uint8_t, 4> SimpleResizeBilinearUint8Test(armnn::IWorkloadFactor
// The 'resize bilinear' operation projects the top-left corner of output texels into the input image,
// then figures out the interpolants and weights. Note this is different to projecting the centre of the
- // output texel - and thus we'll expect the output 1x1 matrix to contain as its single element the value
+ // output texel - and thus we'll expect the output 1x1 matrix to contain, as its single element, the value
// that was at position (0,0) of the input matrix (rather than an average, which we would expect if projecting
// the centre).
LayerTestResult<uint8_t, 4> result(outputTensorInfo);
@@ -4314,4 +4366,4 @@ LayerTestResult<float, 4> PermuteFloat32ValueSet2Test(armnn::IWorkloadFactory& w
LayerTestResult<float, 4> PermuteFloat32ValueSet3Test(armnn::IWorkloadFactory& workloadFactory)
{
return PermuteFloat32ValueSet3TestCommon(workloadFactory);
-};
+}; \ No newline at end of file
diff --git a/src/armnn/backends/test/LayerTests.hpp b/src/armnn/backends/test/LayerTests.hpp
index 2d543d61de..48f73e7693 100644
--- a/src/armnn/backends/test/LayerTests.hpp
+++ b/src/armnn/backends/test/LayerTests.hpp
@@ -6,12 +6,13 @@
#include "armnn/ArmNN.hpp"
#include "armnn/Tensor.hpp"
+#include "Half.hpp"
#include <boost/multi_array.hpp>
#include <boost/assert.hpp>
#include <array>
-// Layer callables
+// Layer callables.
namespace armnn
{
@@ -213,20 +214,20 @@ LayerTestResult<float, 4> CompareBoundedReLuTest(armnn::IWorkloadFactory& worklo
float upperBound,
float lowerBound);
-// Tests that the output should be identical to the input when the output dimensions match the input ones
+// Tests that the output should be identical to the input when the output dimensions match the input ones.
LayerTestResult<float, 4> ResizeBilinearNopTest(armnn::IWorkloadFactory& workloadFactory);
-// Tests the behaviour of the resize bilinear operation when rescaling a 2x2 image into a 1x1 image
+// Tests the behaviour of the resize bilinear operation when rescaling a 2x2 image into a 1x1 image.
LayerTestResult<float, 4> SimpleResizeBilinearTest(armnn::IWorkloadFactory& workloadFactory);
-// Tests resize bilinear for minification of a square input matrix (also: input dimensions are a
-// multiple of output dimensions)
+// Tests the resize bilinear for minification of a square input matrix (also: input dimensions are a
+// multiple of output dimensions).
LayerTestResult<float, 4> ResizeBilinearSqMinTest(armnn::IWorkloadFactory& workloadFactory);
-// Tests resize bilinear for minification (output dimensions smaller than input dimensions)
+// Tests the resize bilinear for minification (output dimensions smaller than input dimensions).
LayerTestResult<float, 4> ResizeBilinearMinTest(armnn::IWorkloadFactory& workloadFactory);
-// Tests resize bilinear for magnification (output dimensions bigger than input dimensions)
+// Tests the resize bilinear for magnification (output dimensions bigger than input dimensions).
LayerTestResult<float, 4> ResizeBilinearMagTest(armnn::IWorkloadFactory& workloadFactory);
LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory);
@@ -315,3 +316,13 @@ LayerTestResult<uint8_t, 4> SimplePermuteUint8Test(armnn::IWorkloadFactory& work
LayerTestResult<float, 4> PermuteFloat32ValueSet1Test(armnn::IWorkloadFactory& workloadFactory);
LayerTestResult<float, 4> PermuteFloat32ValueSet2Test(armnn::IWorkloadFactory& workloadFactory);
LayerTestResult<float, 4> PermuteFloat32ValueSet3Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest
+ (armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2>
+ LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2>
+LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleConvertFp16ToFp32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<armnn::Half, 4> SimpleConvertFp32ToFp16Test(armnn::IWorkloadFactory& workloadFactory);
diff --git a/src/armnn/backends/test/LstmTestImpl.hpp b/src/armnn/backends/test/LstmTestImpl.hpp
new file mode 100644
index 0000000000..7f67b020e2
--- /dev/null
+++ b/src/armnn/backends/test/LstmTestImpl.hpp
@@ -0,0 +1,1150 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include "test/TensorHelpers.hpp"
+#include "QuantizeHelper.hpp"
+
+#include "backends/CpuTensorHandle.hpp"
+#include <backends/WorkloadInfo.hpp>
+#include "backends/WorkloadFactory.hpp"
+
+LayerTestResult<float, 2> LstmNoCifgNoPeepholeNoProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected)
+{
+ unsigned int batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int outputSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ // cellSize and outputSize have the same size when there is no projection.
+ unsigned numUnits = outputSize;
+
+
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::GetDataType<float>());
+
+
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+
+ LayerTestResult<float, 2> ret(outputTensorInfo);
+
+ std::vector<float> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputVector);
+
+ std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
+ auto cellStateInTensor = MakeTensor<float,2>(cellStateInTensorInfo, cellStateInVector);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float,2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> scratchBufferVector(batchSize * numUnits * 3, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+
+ std::vector<float> cellStateOutVector(batchSize * numUnits, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+
+ std::vector<float> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+ ret.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchHandle = workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+
+ armnn::LstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo4({numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo8({numUnits, 2}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo16({numUnits, 4}, armnn::GetDataType<float>());
+
+ auto inputToInputWeights = MakeTensor<float, 2>(tensorInfo8, {-0.45018822f, -0.02338299f, -0.0870589f,
+ -0.34550029f, 0.04266912f, -0.15680569f,
+ -0.34856534f, 0.43890524f});
+
+ auto inputToForgetWeights = MakeTensor<float, 2>(tensorInfo8, {0.09701663f, 0.20334584f, -0.50592935f,
+ -0.31343272f, -0.40032279f, 0.44781327f,
+ 0.01387155f, -0.35593212f});
+
+ auto inputToCellWeights = MakeTensor<float, 2>(tensorInfo8, {-0.50013041f, 0.1370284f, 0.11810488f, 0.2013163f,
+ -0.20583314f, 0.44344562f, 0.22077113f,
+ -0.29909778f});
+
+ auto inputToOutputWeights = MakeTensor<float, 2>(tensorInfo8, {-0.25065863f, -0.28290087f, 0.04613829f,
+ 0.40525138f, 0.44272184f, 0.03897077f,
+ -0.1556896f, 0.19487578f});
+
+ auto recurrentToInputWeights = MakeTensor<float, 2>(tensorInfo16, {-0.0063535f, -0.2042388f, 0.31454784f,
+ -0.35746509f, 0.28902304f, 0.08183324f,
+ -0.16555229f, 0.02286911f, -0.13566875f,
+ 0.03034258f, 0.48091322f, -0.12528998f,
+ 0.24077177f, -0.51332325f, -0.33502164f,
+ 0.10629296f});
+
+ auto recurrentToForgetWeights = MakeTensor<float, 2>(tensorInfo16, {-0.48684245f, -0.06655136f, 0.42224967f,
+ 0.2112639f, 0.27654213f, 0.20864892f,
+ -0.07646349f, 0.45877004f, 0.00141793f,
+ -0.14609534f, 0.36447752f, 0.09196436f,
+ 0.28053468f, 0.01560611f, -0.20127171f,
+ -0.01140004f});
+
+ auto recurrentToCellWeights = MakeTensor<float, 2>(tensorInfo16, {-0.3407414f, 0.24443203f, -0.2078532f,
+ 0.26320225f, 0.05695659f, -0.00123841f,
+ -0.4744786f, -0.35869038f, -0.06418842f,
+ -0.13502428f, -0.501764f, 0.22830659f,
+ -0.46367589f, 0.26016325f, -0.03894562f,
+ -0.16368064f});
+
+ auto recurrentToOutputWeights = MakeTensor<float, 2>(tensorInfo16, {0.43385774f, -0.17194885f, 0.2718237f,
+ 0.09215671f, 0.24107647f, -0.39835793f,
+ 0.18212086f, 0.01301402f, 0.48572797f,
+ -0.50656658f, 0.20047462f, -0.20607421f,
+ -0.51818722f, -0.15390486f, 0.0468148f,
+ 0.39922136f});
+
+ auto cellToInputWeights = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto inputGateBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto forgetGateBias = MakeTensor<float, 1>(tensorInfo4, {1., 1., 1., 1.});
+
+ auto cellBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto outputGateBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ armnn::ScopedCpuTensorHandle inputToInputWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle cellToInputWeightsTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle inputGateBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfo4);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, &inputToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, &recurrentToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, &cellToInputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, &inputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_CellToInputWeights = &cellToInputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = false;
+ data.m_Parameters.m_ProjectionEnabled = false;
+
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ return ret;
+}
+
+
+LayerTestResult<float, 2>
+LstmLayerFloat32NoCifgWithPeepholeWithProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected) {
+
+ unsigned int batchSize = 2;
+ unsigned int outputSize = 16;
+ unsigned int inputSize = 5;
+ unsigned numUnits = 20;
+
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::GetDataType<float>());
+
+ // Scratch buffer size without CIFG [batchSize, numUnits * 3]
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+ LayerTestResult<float, 2> ret(outputTensorInfo);
+
+ std::vector<float> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputVector);
+
+ std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
+ auto cellStateInTensor = MakeTensor<float,2>(cellStateInTensorInfo, cellStateInVector);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float,2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> scratchBufferVector(batchSize * numUnits * 3, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+
+ std::vector<float> cellStateOutVector(batchSize * numUnits, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+
+ std::vector<float> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+ ret.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchHandle = workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::LstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo16({outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20({numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20x5({numUnits, inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20x16({numUnits, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo16x20({outputSize, numUnits}, armnn::GetDataType<float>());
+
+ auto inputToInputWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {0.021393683f,0.06124551f, 0.046905167f,-0.014657677f,-0.03149463f,
+ 0.09171803f, 0.14647801f,0.10797193f, -0.0057968358f,0.0019193048f,
+ -0.2726754f, 0.10154029f, -0.018539885f, 0.080349885f, -0.10262385f,
+ -0.022599787f,-0.09121155f, -0.008675967f, -0.045206103f,-0.0821282f,
+ -0.008045952f,0.015478081f, 0.055217247f, 0.038719587f, 0.044153627f,
+ -0.06453243f,0.05031825f, -0.046935108f, -0.008164439f, 0.014574226f,
+ -0.1671009f, -0.15519552f, -0.16819797f,-0.13971269f,-0.11953059f,
+ 0.25005487f, -0.22790983f, 0.009855087f, -0.028140958f, -0.11200698f,
+ 0.11295408f, -0.0035217577f, 0.054485075f, 0.05184695f, 0.064711206f,
+ 0.10989193f, 0.11674786f, 0.03490607f, 0.07727357f, 0.11390585f,
+ -0.1863375f, -0.1034451f, -0.13945189f, -0.049401227f, -0.18767063f,
+ 0.042483903f, 0.14233552f, 0.13832581f, 0.18350165f, 0.14545603f,
+ -0.028545704f,0.024939531f,0.050929718f,0.0076203286f,-0.0029723682f,
+ -0.042484224f, -0.11827596f, -0.09171104f, -0.10808628f,-0.16327988f,
+ -0.2273378f, -0.0993647f, -0.017155107f,0.0023917493f,0.049272764f,
+ 0.0038534778f, 0.054764505f, 0.089753784f, 0.06947234f, 0.08014476f,
+ -0.04544234f, -0.0497073f,-0.07135631f, -0.048929106f,-0.004042012f,
+ -0.009284026f, 0.018042054f, 0.0036860977f,-0.07427302f, -0.11434604f,
+ -0.018995456f, 0.031487543f, 0.012834908f,0.019977754f,0.044256654f,
+ -0.39292613f, -0.18519334f, -0.11651281f,-0.06809892f, 0.011373677f
+ });
+
+ auto inputToForgetWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.0018401089f, -0.004852237f,0.03698424f, 0.014181704f,0.028273236f,
+ -0.016726194f, -0.05249759f,-0.10204261f, 0.00861066f,-0.040979505f,
+ -0.009899187f,0.01923892f,-0.028177269f, -0.08535103f,-0.14585495f,
+ 0.10662567f,-0.01909731f,-0.017883534f,-0.0047269356f,-0.045103323f,
+ 0.0030784295f,0.076784775f,0.07463696f, 0.094531395f,0.0814421f,
+ -0.12257899f, -0.033945758f,-0.031303465f, 0.045630626f,0.06843887f,
+ -0.13492945f, -0.012480007f,-0.0811829f, -0.07224499f,-0.09628791f,
+ 0.045100946f,0.0012300825f, 0.013964662f, 0.099372394f,0.02543059f,
+ 0.06958324f, 0.034257296f, 0.0482646f, 0.06267997f,0.052625068f,
+ 0.12784666f, 0.07077897f, 0.025725935f, 0.04165009f,0.07241905f,
+ 0.018668644f, -0.037377294f,-0.06277783f,-0.08833636f,-0.040120605f,
+ -0.011405586f,-0.007808335f,-0.010301386f,-0.005102167f,0.027717464f,
+ 0.05483423f, 0.11449111f, 0.11289652f,0.10939839f, 0.13396506f,
+ -0.08402166f,-0.01901462f, -0.044678304f,-0.07720565f,0.014350063f,
+ -0.11757958f, -0.0652038f, -0.08185733f,-0.076754324f,-0.092614375f,
+ 0.10405491f, 0.052960336f, 0.035755895f,0.035839386f,-0.012540553f,
+ 0.036881298f, 0.02913376f, 0.03420159f,0.05448447f,-0.054523353f,
+ 0.02582715f, 0.02327355f, -0.011857179f,-0.0011980024f,-0.034641717f,
+ -0.026125094f,-0.17582615f,-0.15923657f,-0.27486774f,-0.0006143371f,
+ 0.0001771948f, -8.470171e-05f, 0.02651807f,0.045790765f,0.06956496f
+ });
+
+ auto inputToCellWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.04580283f, -0.09549462f, -0.032418985f, -0.06454633f,
+ -0.043528453f, 0.043018587f, -0.049152344f, -0.12418144f,
+ -0.078985475f, -0.07596889f, 0.019484362f, -0.11434962f,
+ -0.0074034138f, -0.06314844f, -0.092981495f, 0.0062155537f,
+ -0.025034338f, -0.0028890965f, 0.048929527f, 0.06235075f,
+ 0.10665918f, -0.032036792f, -0.08505916f, -0.10843358f,
+ -0.13002433f, -0.036816437f, -0.02130134f, -0.016518239f,
+ 0.0047691227f, -0.0025825808f, 0.066017866f, 0.029991534f,
+ -0.10652836f, -0.1037554f, -0.13056071f, -0.03266643f,
+ -0.033702414f, -0.006473424f, -0.04611692f, 0.014419339f,
+ -0.025174323f, 0.0396852f, 0.081777506f, 0.06157468f,
+ 0.10210095f, -0.009658194f, 0.046511717f, 0.03603906f,
+ 0.0069369148f, 0.015960095f, -0.06507666f, 0.09551598f,
+ 0.053568836f, 0.06408714f, 0.12835667f, -0.008714329f,
+ -0.20211966f, -0.12093674f, 0.029450472f, 0.2849013f,
+ -0.029227901f, 0.1164364f, -0.08560263f, 0.09941786f,
+ -0.036999565f, -0.028842626f, -0.0033637602f, -0.017012902f,
+ -0.09720865f, -0.11193351f, -0.029155117f, -0.017936034f,
+ -0.009768936f, -0.04223324f, -0.036159635f, 0.06505112f,
+ -0.021742892f, -0.023377212f, -0.07221364f, -0.06430552f,
+ 0.05453865f, 0.091149814f, 0.06387331f, 0.007518393f,
+ 0.055960953f, 0.069779344f, 0.046411168f, 0.10509911f,
+ 0.07463894f, 0.0075130584f, 0.012850982f, 0.04555431f,
+ 0.056955688f, 0.06555285f, 0.050801456f, -0.009862683f,
+ 0.00826772f, -0.026555609f, -0.0073611983f, -0.0014897042f
+ });
+
+ auto inputToOutputWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.0998932f, -0.07201956f, -0.052803773f,-0.15629593f,-0.15001918f,
+ -0.07650751f,0.02359855f, -0.075155355f, -0.08037709f, -0.15093534f,
+ 0.029517552f, -0.04751393f, 0.010350531f,-0.02664851f, -0.016839722f,
+ -0.023121163f, 0.0077019283f, 0.012851257f, -0.05040649f,-0.0129761f,
+ -0.021737747f,-0.038305793f,-0.06870586f, -0.01481247f,-0.001285394f,
+ 0.10124236f, 0.083122835f, 0.053313006f,-0.062235646f,-0.075637154f,
+ -0.027833903f, 0.029774971f, 0.1130802f, 0.09218906f, 0.09506135f,
+ -0.086665764f,-0.037162706f,-0.038880914f,-0.035832845f,-0.014481564f,
+ -0.09825003f,-0.12048569f,-0.097665586f,-0.05287633f, -0.0964047f,
+ -0.11366429f, 0.035777505f, 0.13568819f, 0.052451383f,0.050649304f,
+ 0.05798951f, -0.021852335f,-0.099848844f,0.014740475f,-0.078897946f,
+ 0.04974699f, 0.014160473f, 0.06973932f, 0.04964942f, 0.033364646f,
+ 0.08190124f, 0.025535367f, 0.050893165f, 0.048514254f,0.06945813f,
+ -0.078907564f,-0.06707616f, -0.11844508f, -0.09986688f,-0.07509403f,
+ 0.06263226f, 0.14925587f, 0.20188436f, 0.12098451f,0.14639415f,
+ 0.0015017595f, -0.014267382f, -0.03417257f,0.012711468f,0.0028300495f,
+ -0.024758482f, -0.05098548f,-0.0821182f, 0.014225672f, 0.021544158f,
+ 0.08949725f, 0.07505268f, -0.0020780868f, 0.04908258f,0.06476295f,
+ -0.022907063f,0.027562456f,0.040185735f, 0.019567577f,-0.015598739f,
+ -0.049097303f, -0.017121866f, -0.083368234f,-0.02332002f,-0.0840956f
+ });
+
+ auto inputGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.02234832f, 0.14757581f, 0.18176508f, 0.10380666f, 0.053110216f,
+ -0.06928846f, -0.13942584f, -0.11816189f, 0.19483899f, 0.03652339f,
+ -0.10250295f, 0.036714908f, -0.18426876f, 0.036065217f, 0.21810818f,
+ 0.02383196f, -0.043370757f, 0.08690144f, -0.04444982f, 0.00030581196f
+ });
+
+ auto forgetGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.035185695f, -0.042891346f, -0.03032477f, 0.23027696f,
+ 0.11098921f, 0.15378423f, 0.09263801f, 0.09790885f,
+ 0.09508917f, 0.061199076f, 0.07665568f, -0.015443159f,
+ -0.03499149f, 0.046190713f, 0.08895977f, 0.10899629f,
+ 0.40694186f, 0.06030037f, 0.012413437f, -0.06108739f
+ });
+
+ auto cellBias =
+ MakeTensor<float, 1>(tensorInfo20, {-0.024379363f, 0.0055531194f, 0.23377132f, 0.033463873f,
+ -0.1483596f, -0.10639995f, -0.091433935f, 0.058573797f,
+ -0.06809782f, -0.07889636f, -0.043246906f, -0.09829136f,
+ -0.4279842f, 0.034901652f, 0.18797937f, 0.0075234566f,
+ 0.016178843f, 0.1749513f, 0.13975595f, 0.92058027f
+ });
+
+ auto outputGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.046159424f, -0.0012809046f, 0.03563469f, 0.12648113f, 0.027195795f,
+ 0.35373217f, -0.018957434f, 0.008907322f, -0.0762701f, 0.12018895f,
+ 0.04216877f, 0.0022856654f, 0.040952638f, 0.3147856f, 0.08225149f,
+ -0.057416286f, -0.14995944f, -0.008040261f, 0.13208859f, 0.029760877f
+ });
+
+ auto recurrentToInputWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.001374326f, -0.078856036f, 0.10672688f, 0.029162422f,
+ -0.11585556f, 0.02557986f, -0.13446963f, -0.035785314f,
+ -0.01244275f, 0.025961924f, -0.02337298f, -0.044228926f,
+ -0.055839065f, -0.046598054f, -0.010546039f, -0.06900766f,
+ 0.027239809f, 0.022582639f, -0.013296484f, -0.05459212f,
+ 0.08981f, -0.045407712f, 0.08682226f, -0.06867011f,
+ -0.14390695f, -0.02916037f, 0.000996957f, 0.091420636f,
+ 0.14283475f, -0.07390571f, -0.06402044f, 0.062524505f,
+ -0.093129106f, 0.04860203f, -0.08364217f, -0.08119002f,
+ 0.009352075f, 0.22920375f, 0.0016303885f, 0.11583097f,
+ -0.13732095f, 0.012405723f, -0.07551853f, 0.06343048f,
+ 0.12162708f, -0.031923793f, -0.014335606f, 0.01790974f,
+ -0.10650317f, -0.0724401f, 0.08554849f, -0.05727212f,
+ 0.06556731f, -0.042729504f, -0.043227166f, 0.011683251f,
+ -0.013082158f, -0.029302018f, -0.010899579f, -0.062036745f,
+ -0.022509435f, -0.00964907f, -0.01567329f, 0.04260106f,
+ -0.07787477f, -0.11576462f, 0.017356863f, 0.048673786f,
+ -0.017577527f, -0.05527947f, -0.082487635f, -0.040137455f,
+ -0.10820036f, -0.04666372f, 0.022746278f, -0.07851417f,
+ 0.01068115f, 0.032956902f, 0.022433773f, 0.0026891115f,
+ 0.08944216f, -0.0685835f, 0.010513544f, 0.07228705f,
+ 0.02032331f, -0.059686817f, -0.0005566496f, -0.086984694f,
+ 0.040414046f, -0.1380399f, 0.094208956f, -0.05722982f,
+ 0.012092817f, -0.04989123f, -0.086576f, -0.003399834f,
+ -0.04696032f, -0.045747425f, 0.10091314f, 0.048676282f,
+ -0.029037097f, 0.031399418f, -0.0040285117f, 0.047237843f,
+ 0.09504992f, 0.041799378f, -0.049185462f, -0.031518843f,
+ -0.10516937f, 0.026374253f, 0.10058866f, -0.0033195973f,
+ -0.041975245f, 0.0073591834f, 0.0033782164f, -0.004325073f,
+ -0.10167381f, 0.042500053f, -0.01447153f, 0.06464186f,
+ -0.017142897f, 0.03312627f, 0.009205989f, 0.024138335f,
+ -0.011337001f, 0.035530265f, -0.010912711f, 0.0706555f,
+ -0.005894094f, 0.051841937f, -0.1401738f, -0.02351249f,
+ 0.0365468f, 0.07590991f, 0.08838724f, 0.021681072f,
+ -0.10086113f, 0.019608743f, -0.06195883f, 0.077335775f,
+ 0.023646897f, -0.095322326f, 0.02233014f, 0.09756986f,
+ -0.048691444f, -0.009579111f, 0.07595467f, 0.11480546f,
+ -0.09801813f, 0.019894179f, 0.08502348f, 0.004032281f,
+ 0.037211012f, 0.068537936f, -0.048005626f, -0.091520436f,
+ -0.028379958f, -0.01556313f, 0.06554592f, -0.045599163f,
+ -0.01672207f, -0.020169014f, -0.011877351f, -0.20212261f,
+ 0.010889619f, 0.0047078193f, 0.038385306f, 0.08540671f,
+ -0.017140968f, -0.0035865551f, 0.016678626f, 0.005633034f,
+ 0.015963363f, 0.00871737f, 0.060130805f, 0.028611384f,
+ 0.10109069f, -0.015060172f, -0.07894427f, 0.06401885f,
+ 0.011584063f, -0.024466386f, 0.0047652307f, -0.09041358f,
+ 0.030737216f, -0.0046374933f, 0.14215417f, -0.11823516f,
+ 0.019899689f, 0.006106124f, -0.027092824f, 0.0786356f,
+ 0.05052217f, -0.058925f, -0.011402121f, -0.024987547f,
+ -0.0013661642f, -0.06832946f, -0.015667673f, -0.1083353f,
+ -0.00096863037f, -0.06988685f, -0.053350925f, -0.027275559f,
+ -0.033664223f, -0.07978348f, -0.025200296f, -0.017207067f,
+ -0.058403496f, -0.055697463f, 0.005798788f, 0.12965427f,
+ -0.062582195f, 0.0013350133f, -0.10482091f, 0.0379771f,
+ 0.072521195f, -0.0029455067f, -0.13797039f, -0.03628521f,
+ 0.013806405f, -0.017858358f, -0.01008298f, -0.07700066f,
+ -0.017081132f, 0.019358726f, 0.0027079724f, 0.004635139f,
+ 0.062634714f, -0.02338735f, -0.039547626f, -0.02050681f,
+ 0.03385117f, -0.083611414f, 0.002862572f, -0.09421313f,
+ 0.058618143f, -0.08598433f, 0.00972939f, 0.023867095f,
+ -0.053934585f, -0.023203006f, 0.07452513f, -0.048767887f,
+ -0.07314807f, -0.056307215f, -0.10433547f, -0.06440842f,
+ 0.04328182f, 0.04389765f, -0.020006588f, -0.09076438f,
+ -0.11652589f, -0.021705797f, 0.03345259f, -0.010329105f,
+ -0.025767034f, 0.013057034f, -0.07316461f, -0.10145612f,
+ 0.06358255f, 0.18531723f, 0.07759293f, 0.12006465f,
+ 0.1305557f, 0.058638252f, -0.03393652f, 0.09622831f,
+ -0.16253184f, -2.4580743e-06f, 0.079869635f, -0.070196845f,
+ -0.005644518f, 0.06857898f, -0.12598175f, -0.035084512f,
+ 0.03156317f, -0.12794146f, -0.031963028f, 0.04692781f,
+ 0.030070418f, 0.0071660685f, -0.095516115f, -0.004643372f,
+ 0.040170413f, -0.062104587f, -0.0037324072f, 0.0554317f,
+ 0.08184801f, -0.019164372f, 0.06791302f, 0.034257166f,
+ -0.10307039f, 0.021943003f, 0.046745934f, 0.0790918f,
+ -0.0265588f, -0.007824208f, 0.042546265f, -0.00977924f,
+ -0.0002440307f, -0.017384544f, -0.017990116f, 0.12252321f,
+ -0.014512694f, -0.08251313f, 0.08861942f, 0.13589665f,
+ 0.026351685f, 0.012641483f, 0.07466548f, 0.044301085f,
+ -0.045414884f, -0.051112458f, 0.03444247f, -0.08502782f,
+ -0.04106223f, -0.028126027f, 0.028473156f, 0.10467447f
+ });
+
+ auto recurrentToForgetWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.057784554f, -0.026057621f, -0.068447545f, -0.022581743f,
+ 0.14811787f, 0.10826372f, 0.09471067f, 0.03987225f,
+ -0.0039523416f, 0.00030638507f, 0.053185795f, 0.10572994f,
+ 0.08414449f, -0.022036452f, -0.00066928595f, -0.09203576f,
+ 0.032950465f, -0.10985798f, -0.023809856f, 0.0021431844f,
+ -0.02196096f, -0.00326074f, 0.00058621005f, -0.074678116f,
+ -0.06193199f, 0.055729095f, 0.03736828f, 0.020123724f,
+ 0.061878487f, -0.04729229f, 0.034919553f, -0.07585433f,
+ -0.04421272f, -0.044019096f, 0.085488975f, 0.04058006f,
+ -0.06890133f, -0.030951202f, -0.024628663f, -0.07672815f,
+ 0.034293607f, 0.08556707f, -0.05293577f, -0.033561368f,
+ -0.04899627f, 0.0241671f, 0.015736353f, -0.095442444f,
+ -0.029564252f, 0.016493602f, -0.035026584f, 0.022337519f,
+ -0.026871363f, 0.004780428f, 0.0077918363f, -0.03601621f,
+ 0.016435321f, -0.03263031f, -0.09543275f, -0.047392778f,
+ 0.013454138f, 0.028934088f, 0.01685226f, -0.086110644f,
+ -0.046250615f, -0.01847454f, 0.047608484f, 0.07339695f,
+ 0.034546845f, -0.04881143f, 0.009128804f, -0.08802852f,
+ 0.03761666f, 0.008096139f, -0.014454086f, 0.014361001f,
+ -0.023502491f, -0.0011840804f, -0.07607001f, 0.001856849f,
+ -0.06509276f, -0.006021153f, -0.08570962f, -0.1451793f,
+ 0.060212336f, 0.055259194f, 0.06974018f, 0.049454916f,
+ -0.027794661f, -0.08077226f, -0.016179763f, 0.1169753f,
+ 0.17213494f, -0.0056326236f, -0.053934924f, -0.0124349f,
+ -0.11520337f, 0.05409887f, 0.088759385f, 0.0019655675f,
+ 0.0042065294f, 0.03881498f, 0.019844765f, 0.041858196f,
+ -0.05695512f, 0.047233116f, 0.038937137f, -0.06542224f,
+ 0.014429736f, -0.09719407f, 0.13908425f, -0.05379757f,
+ 0.012321099f, 0.082840554f, -0.029899208f, 0.044217527f,
+ 0.059855383f, 0.07711018f, -0.045319796f, 0.0948846f,
+ -0.011724666f, -0.0033288454f, -0.033542685f, -0.04764985f,
+ -0.13873616f, 0.040668588f, 0.034832682f, -0.015319203f,
+ -0.018715994f, 0.046002675f, 0.0599172f, -0.043107376f,
+ 0.0294216f, -0.002314414f, -0.022424703f, 0.0030315618f,
+ 0.0014641669f, 0.0029166266f, -0.11878115f, 0.013738511f,
+ 0.12375372f, -0.0006038222f, 0.029104086f, 0.087442465f,
+ 0.052958444f, 0.07558703f, 0.04817258f, 0.044462286f,
+ -0.015213451f, -0.08783778f, -0.0561384f, -0.003008196f,
+ 0.047060397f, -0.002058388f, 0.03429439f, -0.018839769f,
+ 0.024734668f, 0.024614193f, -0.042046934f, 0.09597743f,
+ -0.0043254104f, 0.04320769f, 0.0064070094f, -0.0019131786f,
+ -0.02558259f, -0.022822596f, -0.023273505f, -0.02464396f,
+ -0.10991725f, -0.006240552f, 0.0074488563f, 0.024044557f,
+ 0.04383914f, -0.046476185f, 0.028658995f, 0.060410924f,
+ 0.050786525f, 0.009452605f, -0.0073054377f, -0.024810238f,
+ 0.0052906186f, 0.0066939713f, -0.0020913032f, 0.014515517f,
+ 0.015898481f, 0.021362653f, -0.030262267f, 0.016587038f,
+ -0.011442813f, 0.041154444f, -0.007631438f, -0.03423484f,
+ -0.010977775f, 0.036152758f, 0.0066366293f, 0.11915515f,
+ 0.02318443f, -0.041350313f, 0.021485701f, -0.10906167f,
+ -0.028218046f, -0.00954771f, 0.020531068f, -0.11995105f,
+ -0.03672871f, 0.024019798f, 0.014255957f, -0.05221243f,
+ -0.00661567f, -0.04630967f, 0.033188973f, 0.10107534f,
+ -0.014027541f, 0.030796422f, -0.10270911f, -0.035999842f,
+ 0.15443139f, 0.07684145f, 0.036571592f, -0.035900835f,
+ -0.0034699554f, 0.06209149f, 0.015920248f, -0.031122351f,
+ -0.03858649f, 0.01849943f, 0.13872518f, 0.01503974f,
+ 0.069941424f, -0.06948533f, -0.0088794185f, 0.061282158f,
+ -0.047401894f, 0.03100163f, -0.041533746f, -0.10430945f,
+ 0.044574402f, -0.01425562f, -0.024290353f, 0.034563623f,
+ 0.05866852f, 0.023947537f, -0.09445152f, 0.035450947f,
+ 0.02247216f, -0.0042998926f, 0.061146557f, -0.10250651f,
+ 0.020881841f, -0.06747029f, 0.10062043f, -0.0023941975f,
+ 0.03532124f, -0.016341697f, 0.09685456f, -0.016764693f,
+ 0.051808182f, 0.05875331f, -0.04536488f, 0.001626336f,
+ -0.028892258f, -0.01048663f, -0.009793449f, -0.017093895f,
+ 0.010987891f, 0.02357273f, -0.00010856845f, 0.0099760275f,
+ -0.001845119f, -0.03551521f, 0.0018358806f, 0.05763657f,
+ -0.01769146f, 0.040995963f, 0.02235177f, -0.060430344f,
+ 0.11475477f, -0.023854522f, 0.10071741f, 0.0686208f,
+ -0.014250481f, 0.034261297f, 0.047418304f, 0.08562733f,
+ -0.030519066f, 0.0060542435f, 0.014653856f, -0.038836084f,
+ 0.04096551f, 0.032249358f, -0.08355519f, -0.026823482f,
+ 0.056386515f, -0.010401743f, -0.028396193f, 0.08507674f,
+ 0.014410365f, 0.020995233f, 0.17040324f, 0.11511526f,
+ 0.02459721f, 0.0066619175f, 0.025853224f, -0.023133837f,
+ -0.081302024f, 0.017264642f, -0.009585969f, 0.09491168f,
+ -0.051313367f, 0.054532815f, -0.014298593f, 0.10657464f,
+ 0.007076659f, 0.10964551f, 0.0409152f, 0.008275321f,
+ -0.07283536f, 0.07937492f, 0.04192024f, -0.1075027f
+ });
+
+ auto recurrentToCellWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.037322544f, 0.018592842f, 0.0056175636f, -0.06253426f,
+ 0.055647098f, -0.05713207f, -0.05626563f, 0.005559383f,
+ 0.03375411f, -0.025757805f, -0.088049285f, 0.06017052f,
+ -0.06570978f, 0.007384076f, 0.035123326f, -0.07920549f,
+ 0.053676967f, 0.044480428f, -0.07663568f, 0.0071805613f,
+ 0.08089997f, 0.05143358f, 0.038261272f, 0.03339287f,
+ -0.027673481f, 0.044746667f, 0.028349208f, 0.020090483f,
+ -0.019443132f, -0.030755889f, -0.0040000007f, 0.04465846f,
+ -0.021585021f, 0.0031670958f, 0.0053199246f, -0.056117613f,
+ -0.10893326f, 0.076739706f, -0.08509834f, -0.027997585f,
+ 0.037871376f, 0.01449768f, -0.09002357f, -0.06111149f,
+ -0.046195522f, 0.0422062f, -0.005683705f, -0.1253618f,
+ -0.012925729f, -0.04890792f, 0.06985068f, 0.037654128f,
+ 0.03398274f, -0.004781977f, 0.007032333f, -0.031787455f,
+ 0.010868644f, -0.031489216f, 0.09525667f, 0.013939797f,
+ 0.0058680447f, 0.0167067f, 0.02668468f, -0.04797466f,
+ -0.048885044f, -0.12722108f, 0.035304096f, 0.06554885f,
+ 0.00972396f, -0.039238118f, -0.05159735f, -0.11329045f,
+ 0.1613692f, -0.03750952f, 0.06529313f, -0.071974665f,
+ -0.11769596f, 0.015524369f, -0.0013754242f, -0.12446318f,
+ 0.02786344f, -0.014179351f, 0.005264273f, 0.14376344f,
+ 0.015983658f, 0.03406988f, -0.06939408f, 0.040699873f,
+ 0.02111075f, 0.09669095f, 0.041345075f, -0.08316494f,
+ -0.07684199f, -0.045768797f, 0.032298047f, -0.041805092f,
+ 0.0119405f, 0.0061010392f, 0.12652606f, 0.0064572375f,
+ -0.024950314f, 0.11574242f, 0.04508852f, -0.04335324f,
+ 0.06760663f, -0.027437469f, 0.07216407f, 0.06977076f,
+ -0.05438599f, 0.034033038f, -0.028602652f, 0.05346137f,
+ 0.043184172f, -0.037189785f, 0.10420091f, 0.00882477f,
+ -0.054019816f, -0.074273005f, -0.030617684f, -0.0028467078f,
+ 0.024302477f, -0.0038869337f, 0.005332455f, 0.0013399826f,
+ 0.04361412f, -0.007001822f, 0.09631092f, -0.06702025f,
+ -0.042049985f, -0.035070654f, -0.04103342f, -0.10273396f,
+ 0.0544271f, 0.037184782f, -0.13150354f, -0.0058036847f,
+ -0.008264958f, 0.042035464f, 0.05891794f, 0.029673764f,
+ 0.0063542654f, 0.044788733f, 0.054816857f, 0.062257513f,
+ -0.00093483756f, 0.048938446f, -0.004952862f, -0.007730018f,
+ -0.04043371f, -0.017094059f, 0.07229206f, -0.023670016f,
+ -0.052195564f, -0.025616996f, -0.01520939f, 0.045104615f,
+ -0.007376126f, 0.003533447f, 0.006570588f, 0.056037236f,
+ 0.12436656f, 0.051817212f, 0.028532185f, -0.08686856f,
+ 0.11868599f, 0.07663395f, -0.07323171f, 0.03463402f,
+ -0.050708205f, -0.04458982f, -0.11590894f, 0.021273347f,
+ 0.1251325f, -0.15313013f, -0.12224372f, 0.17228661f,
+ 0.023029093f, 0.086124025f, 0.006445803f, -0.03496501f,
+ 0.028332196f, 0.04449512f, -0.042436164f, -0.026587414f,
+ -0.006041347f, -0.09292539f, -0.05678812f, 0.03897832f,
+ 0.09465633f, 0.008115513f, -0.02171956f, 0.08304309f,
+ 0.071401566f, 0.019622514f, 0.032163795f, -0.004167056f,
+ 0.02295182f, 0.030739572f, 0.056506045f, 0.004612461f,
+ 0.06524936f, 0.059999723f, 0.046395954f, -0.0045512207f,
+ -0.1335546f, -0.030136576f, 0.11584653f, -0.014678886f,
+ 0.0020118146f, -0.09688814f, -0.0790206f, 0.039770417f,
+ -0.0329582f, 0.07922767f, 0.029322514f, 0.026405897f,
+ 0.04207835f, -0.07073373f, 0.063781224f, 0.0859677f,
+ -0.10925287f, -0.07011058f, 0.048005477f, 0.03438226f,
+ -0.09606514f, -0.006669445f, -0.043381985f, 0.04240257f,
+ -0.06955775f, -0.06769346f, 0.043903265f, -0.026784198f,
+ -0.017840602f, 0.024307009f, -0.040079936f, -0.019946516f,
+ 0.045318738f, -0.12233574f, 0.026170589f, 0.0074471775f,
+ 0.15978073f, 0.10185836f, 0.10298046f, -0.015476589f,
+ -0.039390966f, -0.072174534f, 0.0739445f, -0.1211869f,
+ -0.0347889f, -0.07943156f, 0.014809798f, -0.12412325f,
+ -0.0030663363f, 0.039695457f, 0.0647603f, -0.08291318f,
+ -0.018529687f, -0.004423833f, 0.0037507233f, 0.084633216f,
+ -0.01514876f, -0.056505352f, -0.012800942f, -0.06994386f,
+ 0.012962922f, -0.031234352f, 0.07029052f, 0.016418684f,
+ 0.03618972f, 0.055686004f, -0.08663945f, -0.017404709f,
+ -0.054761406f, 0.029065743f, 0.052404847f, 0.020238016f,
+ 0.0048197987f, -0.0214882f, 0.07078733f, 0.013016777f,
+ 0.06262858f, 0.009184685f, 0.020785125f, -0.043904778f,
+ -0.0270329f, -0.03299152f, -0.060088247f, -0.015162964f,
+ -0.001828936f, 0.12642565f, -0.056757294f, 0.013586685f,
+ 0.09232601f, -0.035886683f, 0.06000002f, 0.05229691f,
+ -0.052580316f, -0.082029596f, -0.010794592f, 0.012947712f,
+ -0.036429964f, -0.085508935f, -0.13127148f, -0.017744139f,
+ 0.031502828f, 0.036232427f, -0.031581745f, 0.023051167f,
+ -0.05325106f, -0.03421577f, 0.028793324f, -0.034633752f,
+ -0.009881397f, -0.043551125f, -0.018609839f, 0.0019097115f,
+ -0.008799762f, 0.056595087f, 0.0022273948f, 0.055752404f
+ });
+
+ auto recurrentToOutputWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {0.025825322f, -0.05813119f, 0.09495884f,-0.045984812f, -0.01255415f,
+ -0.0026479573f,-0.08196161f,-0.054914974f,-0.0046604523f,
+ -0.029587349f, -0.044576716f, -0.07480124f, -0.082868785f,
+ 0.023254942f, 0.027502948f, -0.0039728214f, -0.08683098f,
+ -0.08116779f, -0.014675607f, -0.037924774f, -0.023314456f,
+ -0.007401714f, -0.09255757f, 0.029460307f, -0.08829125f,
+ -0.005139627f, -0.08989442f, -0.0555066f, 0.13596267f,
+ -0.025062224f, -0.048351806f, -0.03850004f, 0.07266485f,
+ -0.022414139f, 0.05940088f, 0.075114764f, 0.09597592f,
+ -0.010211725f, -0.0049794707f, -0.011523867f, -0.025980417f,
+ 0.072999895f, 0.11091378f, -0.081685916f, 0.014416728f,
+ 0.043229222f, 0.034178585f, -0.07530371f, 0.035837382f,
+ -0.085607f, -0.007721233f, -0.03287832f, -0.043848954f,
+ -0.06404588f, -0.06632928f, -0.073643476f, 0.008214239f,
+ -0.045984086f, 0.039764922f, 0.03474462f, 0.060612556f,
+ -0.080590084f, 0.049127717f, 0.04151091f, -0.030063879f,
+ 0.008801774f, -0.023021035f, -0.019558564f, 0.05158114f,
+ -0.010947698f, -0.011825728f, 0.0075720972f, 0.0699727f,
+ -0.0039981045f, 0.069350146f, 0.08799282f, 0.016156472f,
+ 0.035502106f, 0.11695009f, 0.006217345f, 0.13392477f,
+ -0.037875112f, 0.025745004f, 0.08940699f, -0.00924166f,
+ 0.0046702605f, -0.036598757f, -0.08811812f, 0.10522024f,
+ -0.032441203f, 0.008176899f, -0.04454919f, 0.07058152f,
+ 0.0067963637f, 0.039206743f, 0.03259838f, 0.03725492f,
+ -0.09515802f, 0.013326398f, -0.052055415f, -0.025676316f,
+ 0.03198509f, -0.015951829f, -0.058556724f, 0.036879618f,
+ 0.043357447f, 0.028362012f, -0.05908629f, 0.0059240665f,
+ -0.04995891f, -0.019187413f,0.0276265f, -0.01628143f, 0.0025863599f,
+ 0.08800015f, 0.035250366f, -0.022165963f, -0.07328642f,
+ -0.009415526f, -0.07455109f, 0.11690406f, 0.0363299f,
+ 0.07411125f, 0.042103454f, -0.009660886f, 0.019076364f,
+ 0.018299393f, -0.046004917f, 0.08891175f,0.0431396f, -0.026327137f,
+ -0.051502608f, 0.08979574f, -0.051670972f, 0.04940282f,
+ -0.07491107f, -0.021240504f, 0.022596184f, -0.034280192f,
+ 0.060163025f, -0.058211457f, -0.051837247f, -0.01349775f,
+ -0.04639988f, -0.035936575f, -0.011681591f, 0.064818054f,
+ 0.0073146066f, -0.021745546f, -0.043124277f, -0.06471268f,
+ -0.07053354f, -0.029321948f, -0.05330136f, 0.016933719f,
+ -0.053782392f, 0.13747959f, -0.1361751f, -0.11569455f,
+ 0.0033329215f, 0.05693899f, -0.053219706f, 0.063698f,
+ 0.07977434f, -0.07924483f, 0.06936997f, 0.0034815092f,
+ -0.007305279f, -0.037325785f, -0.07251102f, -0.033633437f,
+ -0.08677009f, 0.091591336f, -0.14165086f, 0.021752775f,
+ 0.019683983f, 0.0011612234f, -0.058154266f, 0.049996935f,
+ 0.0288841f, -0.0024567875f, -0.14345716f, 0.010955264f,-0.10234828f,
+ 0.1183656f, -0.0010731248f, -0.023590032f,-0.072285876f,-0.0724771f,
+ -0.026382286f, -0.0014920527f, 0.042667855f, 0.0018776858f,
+ 0.02986552f, 0.009814309f, 0.0733756f, 0.12289186f,
+ 0.018043943f, -0.0458958f, 0.049412545f, 0.033632483f,
+ 0.05495232f, 0.036686596f, -0.013781798f, -0.010036754f,
+ 0.02576849f, -0.08307328f, 0.010112348f, 0.042521734f,
+ -0.05869831f, -0.071689695f, 0.03876447f, -0.13275425f, -0.0352966f,
+ -0.023077697f, 0.10285965f, 0.084736146f, 0.15568255f,
+ -0.00040734606f, 0.027835453f, -0.10292561f, -0.032401145f,
+ 0.10053256f, -0.026142767f, -0.08271222f, -0.0030240538f,
+ -0.016368777f, 0.1070414f, 0.042672627f, 0.013456989f,
+ -0.0437609f, -0.022309763f, 0.11576483f, 0.04108048f,
+ 0.061026827f, -0.0190714f, -0.0869359f, 0.037901703f, 0.0610107f,
+ 0.07202949f, 0.01675338f, 0.086139716f, -0.08795751f,
+ -0.014898893f, -0.023771819f, -0.01965048f, 0.007955471f,
+ -0.043740474f, 0.03346837f, -0.10549954f, 0.090567775f,
+ 0.042013682f, -0.03176985f, 0.12569028f, -0.02421228f,
+ -0.029526481f, 0.023851605f, 0.031539805f, 0.05292009f,
+ -0.02344001f, -0.07811758f, -0.08834428f, 0.10094801f,
+ 0.16594367f, -0.06861939f, -0.021256343f, -0.041093912f,
+ -0.06669611f, 0.035498552f, 0.021757556f, -0.09302526f,
+ -0.015403468f, -0.06614931f, -0.051798206f, -0.013874718f,
+ 0.03630673f, 0.010412845f, -0.08077351f, 0.046185967f,
+ 0.0035662893f, 0.03541868f, -0.094149634f, -0.034814864f,
+ 0.003128424f, -0.020674974f, -0.03944324f, -0.008110165f,
+ -0.11113267f, 0.08484226f, 0.043586485f, 0.040582247f,
+ 0.0968012f, -0.065249965f, -0.028036479f, 0.0050708856f,
+ 0.0017462453f, 0.0326779f, 0.041296225f, 0.09164146f,
+ -0.047743853f, -0.015952192f, -0.034451712f, 0.084197424f,
+ -0.05347844f, -0.11768019f, 0.085926116f, -0.08251791f,
+ -0.045081906f, 0.0948852f, 0.068401024f, 0.024856757f,
+ 0.06978981f, -0.057309967f, -0.012775832f, -0.0032452994f,
+ 0.01977615f, -0.041040014f, -0.024264973f,0.063464895f, 0.05431621f
+ });
+
+ auto cellToInputWeights =
+ MakeTensor<float, 1>(tensorInfo20, {0.040369894f, 0.030746894f, 0.24704495f, 0.018586371f, -0.037586458f,
+ -0.15312155f, -0.11812848f, -0.11465643f, 0.20259799f, 0.11418174f,
+ -0.10116027f, -0.011334949f, 0.12411352f, -0.076769054f,-0.052169047f,
+ 0.21198851f, -0.38871562f, -0.09061183f, -0.09683246f, -0.21929175f
+ });
+
+
+ auto cellToForgetWeights =
+ MakeTensor<float, 1>(tensorInfo20, {-0.01998659f,-0.15568835f,-0.24248174f, -0.012770197f, 0.041331276f,
+ -0.072311886f, -0.052123554f,-0.0066330447f,-0.043891653f,0.036225766f,
+ -0.047248036f, 0.021479502f,0.033189066f, 0.11952997f, -0.020432774f,
+ 0.64658105f, -0.06650122f, -0.03467612f, 0.095340036f, 0.23647355f
+ });
+
+ auto cellToOutputWeights =
+ MakeTensor<float, 1>(tensorInfo20, {0.08286371f, -0.08261836f, -0.51210177f, 0.002913762f, 0.17764764f,
+ -0.5495371f, -0.08460716f, -0.24552552f, 0.030037103f, 0.04123544f,
+ -0.11940523f, 0.007358328f, 0.1890978f, 0.4833202f, -0.34441817f,
+ 0.36312827f, -0.26375428f, 0.1457655f, -0.19724406f, 0.15548733f
+ });
+
+ auto projectionWeights =
+ MakeTensor<float, 2>(tensorInfo16x20,
+ {-0.009802181f, 0.09401916f, 0.0717386f, -0.13895074f, 0.09641832f,
+ 0.060420845f, 0.08539281f, 0.054285463f, 0.061395317f, 0.034448683f,
+ -0.042991187f, 0.019801661f, -0.16840284f, -0.015726732f, -0.23041931f,
+ -0.024478018f, -0.10959692f, -0.013875541f, 0.18600968f, -0.061274476f,
+ 0.0138165f, -0.08160894f, -0.07661644f, 0.032372914f, 0.16169067f,
+ 0.22465782f, -0.03993472f, -0.004017731f, 0.08633481f, -0.28869787f,
+ 0.08682067f, 0.17240396f, 0.014975425f, 0.056431185f, 0.031037588f,
+ 0.16702051f, 0.0077946745f, 0.15140012f, 0.29405436f, 0.120285f,
+ -0.188994f, -0.027265169f, 0.043389652f, -0.022061434f, 0.014777949f,
+ -0.20203483f, 0.094781205f, 0.19100232f, 0.13987629f, -0.036132768f,
+ -0.06426278f, -0.05108664f, 0.13221376f, 0.009441198f, -0.16715929f,
+ 0.15859416f, -0.040437475f, 0.050779544f, -0.022187516f, 0.012166504f,
+ 0.027685808f, -0.07675938f, -0.0055694645f, -0.09444123f, 0.0046453946f,
+ 0.050794356f, 0.10770313f, -0.20790008f, -0.07149004f, -0.11425117f,
+ 0.008225835f, -0.035802525f, 0.14374903f, 0.15262283f, 0.048710253f,
+ 0.1847461f, -0.007487823f, 0.11000021f, -0.09542012f, 0.22619456f,
+ -0.029149994f, 0.08527916f, 0.009043713f, 0.0042746216f, 0.016261552f,
+ 0.022461696f, 0.12689082f, -0.043589946f, -0.12035478f, -0.08361797f,
+ -0.050666027f, -0.1248618f, -0.1275799f, -0.071875185f, 0.07377272f,
+ 0.09944291f, -0.18897448f, -0.1593054f, -0.06526116f, -0.040107165f,
+ -0.004618631f, -0.067624845f, -0.007576253f, 0.10727444f, 0.041546922f,
+ -0.20424393f, 0.06907816f, 0.050412357f, 0.00724631f, 0.039827548f,
+ 0.12449835f, 0.10747581f, 0.13708383f, 0.09134148f, -0.12617786f,
+ -0.06428341f, 0.09956831f, 0.1208086f, -0.14676677f, -0.0727722f,
+ 0.1126304f, 0.010139365f, 0.015571211f, -0.038128063f, 0.022913318f,
+ -0.042050496f, 0.16842307f, -0.060597885f, 0.10531834f, -0.06411776f,
+ -0.07451711f, -0.03410368f, -0.13393489f, 0.06534304f, 0.003620307f,
+ 0.04490757f, 0.05970546f, 0.05197996f, 0.02839995f, 0.10434969f,
+ -0.013699693f, -0.028353551f, -0.07260381f, 0.047201227f, -0.024575593f,
+ -0.036445823f, 0.07155557f, 0.009672501f, -0.02328883f, 0.009533515f,
+ -0.03606021f, -0.07421458f, -0.028082801f, -0.2678904f, -0.13221288f,
+ 0.18419984f, -0.13012612f, -0.014588381f, -0.035059117f, -0.04824723f,
+ 0.07830115f, -0.056184657f, 0.03277091f, 0.025466874f, 0.14494097f,
+ -0.12522776f, -0.098633975f, -0.10766018f, -0.08317623f, 0.08594209f,
+ 0.07749552f, 0.039474737f, 0.1776665f, -0.07409566f, -0.0477268f,
+ 0.29323658f, 0.10801441f, 0.1154011f, 0.013952499f, 0.10739139f,
+ 0.10708251f, -0.051456142f, 0.0074137426f, -0.10430189f, 0.10034707f,
+ 0.045594677f, 0.0635285f, -0.0715442f, -0.089667566f, -0.10811871f,
+ 0.00026344223f, 0.08298446f, -0.009525053f, 0.006585689f, -0.24567553f,
+ -0.09450807f, 0.09648481f, 0.026996298f, -0.06419476f, -0.04752702f,
+ -0.11063944f, -0.23441927f, -0.17608605f, -0.052156363f, 0.067035615f,
+ 0.19271925f, -0.0032889997f, -0.043264326f, 0.09663576f, -0.057112187f,
+ -0.10100678f, 0.0628376f, 0.04447668f, 0.017961001f, -0.10094388f,
+ -0.10190601f, 0.18335468f, 0.10494553f, -0.052095775f, -0.0026118709f,
+ 0.10539724f, -0.04383912f, -0.042349473f, 0.08438151f, -0.1947263f,
+ 0.02251204f, 0.11216432f, -0.10307853f, 0.17351969f, -0.039091777f,
+ 0.08066188f, -0.00561982f, 0.12633002f, 0.11335965f, -0.0088127935f,
+ -0.019777594f, 0.06864014f, -0.059751723f, 0.016233567f, -0.06894641f,
+ -0.28651384f, -0.004228674f, 0.019708522f, -0.16305895f, -0.07468996f,
+ -0.0855457f, 0.099339016f, -0.07580735f, -0.13775392f, 0.08434318f,
+ 0.08330512f, -0.12131499f, 0.031935584f, 0.09180414f, -0.08876437f,
+ -0.08049874f, 0.008753825f, 0.03498998f, 0.030215185f, 0.03907079f,
+ 0.089751154f, 0.029194152f, -0.03337423f, -0.019092513f, 0.04331237f,
+ 0.04299654f, -0.036394123f, -0.12915532f, 0.09793732f, 0.07512415f,
+ -0.11319543f, -0.032502122f, 0.15661901f, 0.07671967f, -0.005491124f,
+ -0.19379048f, -0.218606f, 0.21448623f, 0.017840758f, 0.1416943f,
+ -0.07051762f, 0.19488361f, 0.02664691f, -0.18104725f, -0.09334311f,
+ 0.15026465f, -0.15493552f, -0.057762887f, -0.11604192f, -0.262013f,
+ -0.01391798f, 0.012185008f, 0.11156489f, -0.07483202f, 0.06693364f,
+ -0.26151478f, 0.046425626f, 0.036540434f, -0.16435726f, 0.17338543f,
+ -0.21401681f, -0.11385144f, -0.08283257f, -0.069031075f, 0.030635102f,
+ 0.010969227f, 0.11109743f, 0.010919218f, 0.027526086f, 0.13519906f,
+ 0.01891392f, -0.046839405f, -0.040167913f, 0.017953383f, -0.09700955f,
+ 0.0061885654f, -0.07000971f, 0.026893595f, -0.038844477f, 0.14543656f
+ });
+
+ std::vector<float> projectionBiasVector(outputSize, 0.f);
+ auto projectionBias = MakeTensor<float,1>(tensorInfo16, projectionBiasVector);
+
+ armnn::ScopedCpuTensorHandle inputToInputWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToInputWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle cellToInputWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle inputGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellToForgetWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellToOutputWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle projectionWeightsTensor(tensorInfo16x20);
+ armnn::ScopedCpuTensorHandle projectionBiasTensor(tensorInfo16);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, &inputToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, &recurrentToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, &cellToInputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, &inputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, &cellToForgetWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, &cellToOutputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, &projectionWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, &projectionBias[0]);
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_CellToInputWeights = &cellToInputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+ data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
+ data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
+ data.m_ProjectionWeights = &projectionWeightsTensor;
+ data.m_ProjectionBias = &projectionBiasTensor;
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = true;
+ data.m_Parameters.m_ProjectionEnabled = true;
+
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ return ret;
+
+}
+
+
+LayerTestResult<float, 2> LstmLayerWithCifgWithPeepholeNoProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected)
+{
+ bool cifgEnabled = true;
+ bool peepholeEnabled = true;
+ bool projectionEnabled = false;
+ // These are not the input and the output of Lstm yet
+ unsigned int batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
+
+ unsigned int outputSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+
+ const unsigned int cellSize = outputSize;
+
+ // Decide the shape of all input tensors
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize, cellSize}, armnn::GetDataType<float>());
+
+ unsigned int scratchBufferSize = cifgEnabled ? cellSize * 4 : cellSize * 3;
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, scratchBufferSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, cellSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+ // List of inputs
+ std::vector<float> inputData;
+ inputData.assign(input.data(), input.data() + batchSize*inputSize);
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputData);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float, 2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> cellStateInVector(batchSize * cellSize, 0.f);
+ auto cellStateInTensor = MakeTensor<float, 2>(cellStateInTensorInfo, cellStateInVector);
+
+
+ // Prepare all the weights in the descriptor for LSTM
+ armnn::LstmQueueDescriptor data;
+ armnn::TensorInfo tensorInfoInput({cellSize, inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfoOutput({cellSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfoNumUnits({cellSize}, armnn::GetDataType<float>());
+
+ auto inputToCellWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {-0.49770179f, -0.27711356f, -0.09624726f, 0.05100781f,
+ 0.04717243f, 0.48944736f, -0.38535351f,
+ -0.17212132f});
+ auto inputToForgetWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {-0.55291498f, -0.42866567f, 0.13056988f,
+ -0.3633365f, -0.22755712f, 0.28253698f, 0.24407166f,
+ 0.33826375f});
+ auto inputToOutputWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {0.10725588f, -0.02335852f, -0.55932593f,
+ -0.09426838f, -0.44257352f, 0.54939759f,
+ 0.01533556f, 0.42751634f});
+ auto cellBias = MakeTensor<float, 1>(tensorInfoNumUnits, {0.f, 0.f, 0.f, 0.f});
+ auto forgetGateBias = MakeTensor<float, 1>(tensorInfoNumUnits, {1.f, 1.f, 1.f, 1.f});
+ auto outputGateBias = MakeTensor<float, 1>(tensorInfoNumUnits, {0.f, 0.f, 0.f, 0.f});
+
+ auto recurrentToCellWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {0.54066205f, -0.32668582f, -0.43562764f, -0.56094903f, 0.42957711f,
+ 0.01841056f, -0.32764608f, -0.33027974f, -0.10826075f, 0.20675004f,
+ 0.19069612f, -0.03026325f, -0.54532051f, 0.33003211f, 0.44901288f,
+ 0.21193194f});
+ auto recurrentToForgetWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {-0.13832897f, -0.0515101f, -0.2359007f, -0.16661474f, -0.14340827f,
+ 0.36986142f, 0.23414481f, 0.55899f, 0.10798943f, -0.41174671f, 0.17751795f,
+ -0.34484994f, -0.35874045f, -0.11352962f, 0.27268326f, 0.54058349f});
+
+ auto recurrentToOutputWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {0.41613156f, 0.42610586f, -0.16495961f, -0.5663873f, 0.30579174f, -0.05115908f,
+ -0.33941799f, 0.23364776f, 0.11178309f, 0.09481031f, -0.26424935f, 0.46261835f,
+ 0.50248802f, 0.26114327f, -0.43736315f, 0.33149987f});
+
+ auto cellToForgetWeights = MakeTensor<float, 1>(tensorInfoNumUnits,
+ {0.47485286f, -0.51955009f, -0.24458408f, 0.31544167f});
+ auto cellToOutputWeights = MakeTensor<float, 1>(tensorInfoNumUnits,
+ {-0.17135078f, 0.82760304f, 0.85573703f, -0.77109635f});
+
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfoInput);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfoInput);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfoInput);
+
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfoNumUnits);
+
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfoOutput);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfoOutput);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfoOutput);
+
+
+ armnn::ScopedCpuTensorHandle cellToForgetWeightsTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle cellToOutputWeightsTensor(tensorInfoNumUnits);
+
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+
+ AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, &cellToForgetWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, &cellToOutputWeights[0]);
+
+
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+
+ data.m_CellBias = &cellBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+
+ data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
+ data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
+
+ // other parameters for the descriptor
+ data.m_Parameters.m_CifgEnabled = cifgEnabled;
+ data.m_Parameters.m_ProjectionEnabled = projectionEnabled;
+ data.m_Parameters.m_PeepholeEnabled = peepholeEnabled;
+
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_ClippingThresProj = 0.0;
+ data.m_Parameters.m_ClippingThresCell = 0.0;
+
+
+ // List of outputs
+ std::vector<float> scratchBufferVector(batchSize * scratchBufferSize, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+ LayerTestResult<float, 2> ret0(scratchBufferTensorInfo);
+
+ // Output state for a certain time step
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+ LayerTestResult<float, 2> ret1(outputStateOutTensorInfo);
+
+ // Cell state for a certain time step
+ std::vector<float> cellStateOutVector(batchSize * cellSize, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+ LayerTestResult<float, 2> ret2(cellStateOutTensorInfo);
+
+ // Output for a certain time step
+ std::vector<float> outputVector(batchSize * outputSize, 0.f);
+ auto outputTensor = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+ std::vector<float> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + batchSize*outputSize);
+ LayerTestResult<float, 2> ret3(outputTensorInfo);
+ ret3.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputData);
+
+ // Prepare the inputs and outputs for the workload
+ std::unique_ptr<armnn::ITensorHandle> inputHandle =
+ workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchBufferHandle =
+ workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle =
+ workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchBufferHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+
+
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchBufferHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ CopyDataToITensorHandle(scratchBufferHandle.get(), &scratchBufferTensor[0][0]);
+ CopyDataToITensorHandle(outputStateOutHandle.get(), &outputStateOutTensor[0][0]);
+ CopyDataToITensorHandle(cellStateOutHandle.get(), &cellStateOutTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret0.output[0][0], scratchBufferHandle.get());
+ CopyDataFromITensorHandle(&ret1.output[0][0], outputStateOutHandle.get());
+ CopyDataFromITensorHandle(&ret2.output[0][0], cellStateOutHandle.get());
+ CopyDataFromITensorHandle(&ret3.output[0][0], outputHandle.get());
+
+ return ret3;
+}
diff --git a/src/armnn/backends/test/MemCopyTests.cpp b/src/armnn/backends/test/MemCopyTests.cpp
index 32331789e9..24a951c395 100644
--- a/src/armnn/backends/test/MemCopyTests.cpp
+++ b/src/armnn/backends/test/MemCopyTests.cpp
@@ -19,6 +19,10 @@
#include "TensorCopyUtils.hpp"
#include "WorkloadTestUtils.hpp"
+#if ARMCOMPUTECL_ENABLED || ARMCOMPUTENEON_ENABLED
+#include "../ArmComputeTensorUtils.hpp"
+#endif
+
BOOST_AUTO_TEST_SUITE(MemCopyTestSuite)
void MemCopyTest(armnn::IWorkloadFactory& srcWorkloadFactory, armnn::IWorkloadFactory& dstWorkloadFactory,
@@ -81,6 +85,26 @@ void MemCopyTest(bool withSubtensors)
MemCopyTest(srcWorkloadFactory, dstWorkloadFactory, withSubtensors);
}
+#if ARMCOMPUTECL_ENABLED || ARMCOMPUTENEON_ENABLED
+
+BOOST_AUTO_TEST_CASE(AclTypeConversions)
+{
+ arm_compute::Strides strides(1,2,3,4);
+ armnn::TensorShape convertedStrides = armnn::armcomputetensorutils::GetStrides(strides);
+ BOOST_TEST(convertedStrides[0] == 4);
+ BOOST_TEST(convertedStrides[1] == 3);
+ BOOST_TEST(convertedStrides[2] == 2);
+ BOOST_TEST(convertedStrides[3] == 1);
+
+ arm_compute::TensorShape shape(5,6,7,8);
+ armnn::TensorShape convertedshape = armnn::armcomputetensorutils::GetShape(shape);
+ BOOST_TEST(convertedshape[0] == 8);
+ BOOST_TEST(convertedshape[1] == 7);
+ BOOST_TEST(convertedshape[2] == 6);
+ BOOST_TEST(convertedshape[3] == 5);
+}
+#endif
+
#if ARMCOMPUTECL_ENABLED
BOOST_AUTO_TEST_CASE(CopyBetweenCpuAndGpu)
diff --git a/src/armnn/backends/test/NormTestImpl.hpp b/src/armnn/backends/test/NormTestImpl.hpp
index d9dc01592a..df8219ddbd 100644
--- a/src/armnn/backends/test/NormTestImpl.hpp
+++ b/src/armnn/backends/test/NormTestImpl.hpp
@@ -87,7 +87,7 @@ LayerTestResult<float,4> SimpleNormalizationTestImpl(armnn::IWorkloadFactory& wo
// When normalising within channels, the 3x3 kernel covers the entire 2x2 input at every index.
// Therefore, all output values should equal the inputs, but divided by:
// pow((kappa + (accumulatedScale * alpha)), beta)
- // ...where accumulatedScale is the sum of every element squared
+ // ...where accumulatedScale is the sum of every element squared.
float divisor[inputNum];
for(int i = 0; i < boost::numeric_cast<int>(inputNum); i++)
{
@@ -139,7 +139,7 @@ LayerTestResult<float,4> SimpleNormalizationTestImpl(armnn::IWorkloadFactory& wo
}
break;
}
- case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough
+ case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough.
default:
{
throw armnn::UnimplementedException("Unsupported normalisation method type, "
diff --git a/src/armnn/backends/test/Pooling2dTestImpl.hpp b/src/armnn/backends/test/Pooling2dTestImpl.hpp
index ab9fd6d6fb..e6e0e6721a 100644
--- a/src/armnn/backends/test/Pooling2dTestImpl.hpp
+++ b/src/armnn/backends/test/Pooling2dTestImpl.hpp
@@ -155,21 +155,21 @@ LayerTestResult<T, 4> SimpleMaxPooling2dSize3x3Stride2x4TestCommon(armnn::IWorkl
3.0f, 5.0f, 4.0f, 0.0f, 1.0f, 5.0f, 9.0f, 7.0f,
});
- // Construct input data
+ // Constructs input data.
std::vector<float> inputData;
auto negator = [](float f) { return -f; };
- // First image (two channels where the second channel is the negative of the first one)
+ // First image (two channels where the second channel is the negative of the first one).
inputData.insert(inputData.end(), singleChannelData.begin(), singleChannelData.end());
std::transform(singleChannelData.begin(), singleChannelData.end(), std::back_inserter(inputData), negator);
- // Second image (same as first image)
+ // Second image (same as first image).
inputData.insert(inputData.end(), singleChannelData.begin(), singleChannelData.end());
std::transform(singleChannelData.begin(), singleChannelData.end(), std::back_inserter(inputData), negator);
auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
- // these were calculated manually
+ // These were calculated manually.
auto shape(GetTensorShapeAsArray<4>(outputTensorInfo));
boost::multi_array<T, 4> outputExpected(shape);
if (forceNoPadding)
@@ -527,13 +527,13 @@ LayerTestResult<T, 4> AsymmetricNonSquarePooling2dTestCommon(armnn::IWorkloadFac
descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
- // Construct input data
+ // Construct input data.
auto input = MakeTensor<T, 4>(inputTensorInfo,
QuantizedVector<T>(qScale, qOffset, {
1.0f, 3.0f, 4.0f,
}));
- // these were calculated manually
+ // These were calculated manually.
auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
QuantizedVector<T>(qScale, qOffset, {
0.0f, 3.0f, 0.0f, 3.0f,
@@ -686,7 +686,7 @@ LayerTestResult<T, 4> SimpleMaxPooling2dSize2x2Stride2x2TestCommon(armnn::IWorkl
438.0f, 564.0f, 573.0f, 402.0f
};
- // Note that left and right edges will be 0.f, due to the 2x2 max pooling only accessing zeros here
+ // Note that left and right edges will be 0.f, due to the 2x2 max pooling only accessing zeros here.
std::vector<float> expectedOutputDataWithPadding = {
0.0f, 510.0f, 780.0f, 654.0f, 0.0f,
0.0f, 438.0f, 618.0f, 402.0f, 0.0f
diff --git a/src/armnn/backends/test/QuantizeHelper.hpp b/src/armnn/backends/test/QuantizeHelper.hpp
index bfaf9342f0..0a6ceb761d 100644
--- a/src/armnn/backends/test/QuantizeHelper.hpp
+++ b/src/armnn/backends/test/QuantizeHelper.hpp
@@ -61,7 +61,7 @@ struct IsFloatingPointIterator
};
template <typename T, typename FloatIt,
-typename std::enable_if<IsFloatingPointIterator<FloatIt>::value, int>::type=0 // Make sure valid fp iterator
+typename std::enable_if<IsFloatingPointIterator<FloatIt>::value, int>::type=0 // Makes sure fp iterator is valid.
>
std::vector<T> QuantizedVector(float qScale, int32_t qOffset, FloatIt first, FloatIt last)
{
diff --git a/src/armnn/backends/test/Reference.cpp b/src/armnn/backends/test/Reference.cpp
index b60483a4d9..dedeb50e33 100644
--- a/src/armnn/backends/test/Reference.cpp
+++ b/src/armnn/backends/test/Reference.cpp
@@ -127,25 +127,8 @@ ARMNN_AUTO_TEST_CASE(FullyConnectedLarge, FullyConnectedLargeTest, false)
ARMNN_AUTO_TEST_CASE(FullyConnectedLargeTransposed, FullyConnectedLargeTest, true)
// Splitter
-BOOST_AUTO_TEST_CASE(SimpleSplitter)
-{
- armnn::RefWorkloadFactory workloadFactory;
- auto testResult = SplitterTest(workloadFactory);
- for (unsigned int i = 0; i < testResult.size(); ++i)
- {
- BOOST_TEST(CompareTensors(testResult[i].output, testResult[i].outputExpected));
- }
-}
-
-BOOST_AUTO_TEST_CASE(SplitterUint8)
-{
- armnn::RefWorkloadFactory workloadFactory;
- auto testResult = SplitterUint8Test(workloadFactory);
- for (unsigned int i = 0; i < testResult.size(); ++i)
- {
- BOOST_TEST(CompareTensors(testResult[i].output, testResult[i].outputExpected));
- }
-}
+ARMNN_AUTO_TEST_CASE(SimpleSplitter, SplitterTest)
+ARMNN_AUTO_TEST_CASE(SimpleSplitterUint8, SplitterUint8Test)
ARMNN_AUTO_TEST_CASE(CopyViaSplitter, CopyViaSplitterTest)
ARMNN_AUTO_TEST_CASE(CopyViaSplitterUint8, CopyViaSplitterUint8Test)
@@ -242,4 +225,9 @@ ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet1, PermuteFloat32ValueSet1Test)
ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet2, PermuteFloat32ValueSet2Test)
ARMNN_AUTO_TEST_CASE(PermuteFloat32ValueSet3, PermuteFloat32ValueSet3Test)
+// Convert from Float16 to Float32
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp16ToFp32, SimpleConvertFp16ToFp32Test)
+// Convert from Float32 to Float16
+ARMNN_AUTO_TEST_CASE(SimpleConvertFp32ToFp16, SimpleConvertFp32ToFp16Test)
+
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/armnn/backends/test/SoftmaxTestImpl.hpp b/src/armnn/backends/test/SoftmaxTestImpl.hpp
index 4c3e0b73dd..9ed7f603a1 100644
--- a/src/armnn/backends/test/SoftmaxTestImpl.hpp
+++ b/src/armnn/backends/test/SoftmaxTestImpl.hpp
@@ -39,7 +39,7 @@ LayerTestResult<T, 2> SimpleSoftmaxTestImpl(armnn::IWorkloadFactory& workloadFac
LayerTestResult<T, 2> ret(outputTensorInfo);
- // Each row is independently softmax'd
+ // Each row is independently softmax'd.
auto input = MakeTensor<T, 2>(inputTensorInfo, std::vector<T>(
QuantizedVector<T>(qScale, 0, {
0.f, 1.f, 0.f, 0.f,
diff --git a/src/armnn/backends/test/SplitterTestImpl.hpp b/src/armnn/backends/test/SplitterTestImpl.hpp
index 70b798eafa..48c0730fa7 100644
--- a/src/armnn/backends/test/SplitterTestImpl.hpp
+++ b/src/armnn/backends/test/SplitterTestImpl.hpp
@@ -27,35 +27,35 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
// NOTE: Compute Library imposes a restriction that the x and y dimension (input height and width)
// cannot be split.
- // For the reasons for this see first comment on https://jira.arm.com/browse/IVGCVSW-1239
+ // For the reasons for this, see first comment on https://jira.arm.com/browse/IVGCVSW-1239
//
- // this test has therefore been recast to split the channels, then split the resulting subtensor
+ // This test has therefore been recast to split the channels, then split the resulting subtensor.
- // to take channel 0 of original output
- // and channel 0 and channel 1 of the split subtensor
+ // To take channel 0 of original output
+ // and channel 0 and channel 1 of the split subtensor.
unsigned int outputWidth1 = inputWidth;
unsigned int outputHeight1 = inputHeight;
unsigned int outputChannels1 = 1;
- // to take channel 1 and 2 of the original output
+ // To take channel 1 and 2 of the original output.
unsigned int outputWidth2 = inputWidth;
unsigned int outputHeight2 = inputHeight;
unsigned int outputChannels2 = 2;
- // Define the tensor descriptors
+ // Define the tensor descriptors.
armnn::TensorInfo inputTensorInfo({ inputChannels, inputHeight, inputWidth }, armnn::GetDataType<T>());
- // outputs of the original split
+ // Outputs of the original split.
armnn::TensorInfo outputTensorInfo1({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
armnn::TensorInfo outputTensorInfo2({ outputChannels2, outputHeight2, outputWidth2 }, armnn::GetDataType<T>());
- // outputs of the subsequent subtensor split
+ // Outputs of the subsequent subtensor split.
armnn::TensorInfo outputTensorInfo3({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
armnn::TensorInfo outputTensorInfo4({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
// Set quantization parameters if the requested type is a quantized type.
- // The quantization doesn't really matter as the splitter operator doesn't dequantize/quantize
+ // The quantization doesn't really matter as the splitter operator doesn't dequantize/quantize.
if(armnn::IsQuantizedType<T>())
{
inputTensorInfo.SetQuantizationScale(qScale);
@@ -100,7 +100,7 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
})
));
- // channel 0 of the original input
+ // Channel 0 of the original input.
ret1.outputExpected = MakeTensor<T, 3>(outputTensorInfo1, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
@@ -112,7 +112,7 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
})
));
- // channel 1 & 2 of the original input
+ // Channel 1 & 2 of the original input.
ret2.outputExpected = MakeTensor<T, 3>(outputTensorInfo2, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
@@ -131,7 +131,7 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
})
));
- // channel 0 of return 2 (i.e. channels 1 and 2 of the original input)
+ // Channel 0 of return 2 (i.e. channels 1 and 2 of the original input).
ret3.outputExpected = MakeTensor<T, 3>(outputTensorInfo3, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
@@ -143,7 +143,7 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
})
));
- // channel 1 of return 2
+ // Channel 1 of return 2.
ret4.outputExpected = MakeTensor<T, 3>(outputTensorInfo4, std::vector<T>(
QuantizedVector<T>(qScale, qOffset, {
61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
@@ -155,19 +155,19 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
})
));
- // NOTE: as a corollary of the no splitting of x and y restriction the x and y values of the view origins
+ // NOTE: as a corollary of the splitting of x and y restriction the x and y values of the view origins
// have to be zero, the co-ordinates are as per the tensor info above channels, height/y, width/x
- // note that under the hood the compute engine reverses these i.e. its coordinate system is x, y, channels
- std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //extent of the window is defined by size of output[0]
+ // note that under the hood the compute engine reverses these i.e. its coordinate system is x, y, channels.
+ std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //Extent of the window is defined by size of output[0].
armnn::SplitterQueueDescriptor::ViewOrigin window1(wOrigin1);
- std::vector<unsigned int> wOrigin2 = {1, 0, 0}; //extent of the window is defined by size of output[1]
+ std::vector<unsigned int> wOrigin2 = {1, 0, 0}; //Extent of the window is defined by size of output[1].
armnn::SplitterQueueDescriptor::ViewOrigin window2(wOrigin2);
- std::vector<unsigned int> wOrigin3 = {0, 0, 0}; //extent of the window is defined by size of output[2]
+ std::vector<unsigned int> wOrigin3 = {0, 0, 0}; //Extent of the window is defined by size of output[2].
armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
- std::vector<unsigned int> wOrigin4 = {1, 0, 0}; //extent of the window is defined by size of output[3]
+ std::vector<unsigned int> wOrigin4 = {1, 0, 0}; //Extent of the window is defined by size of output[3].
armnn::SplitterQueueDescriptor::ViewOrigin window4(wOrigin4);
bool subTensorsSupported = workloadFactory.SupportsSubTensors();
@@ -217,7 +217,7 @@ std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& wo
CopyDataFromITensorHandle(&ret1.output[0][0][0], outputHandle1.get());
CopyDataFromITensorHandle(&ret2.output[0][0][0], outputHandle2.get());
-// // Do the second split
+// // Do the second split.
armnn::SplitterQueueDescriptor data2;
armnn::WorkloadInfo info2;
AddInputToWorkload(data2, info2, outputTensorInfo2, outputHandle2.get());
diff --git a/src/armnn/backends/test/TensorCopyUtils.cpp b/src/armnn/backends/test/TensorCopyUtils.cpp
index e15c12a76f..82e80a52fe 100644
--- a/src/armnn/backends/test/TensorCopyUtils.cpp
+++ b/src/armnn/backends/test/TensorCopyUtils.cpp
@@ -6,6 +6,7 @@
#include <algorithm>
#include <cstring>
#include <boost/cast.hpp>
+#include <Half.hpp>
#include "TensorCopyUtils.hpp"
@@ -47,12 +48,15 @@ void CopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem
case arm_compute::DataType::QASYMM8:
CopyArmComputeITensorData(static_cast<const uint8_t*>(mem), handle->GetTensor());
break;
+ case arm_compute::DataType::F16:
+ CopyArmComputeITensorData(static_cast<const armnn::Half*>(mem), handle->GetTensor());
+ break;
default:
{
throw armnn::UnimplementedException();
}
}
- handle->UnMap();
+ handle->Unmap();
break;
}
#endif
@@ -108,12 +112,15 @@ void CopyDataFromITensorHandle(void* mem, const armnn::ITensorHandle* tensorHand
case arm_compute::DataType::QASYMM8:
CopyArmComputeITensorData(handle->GetTensor(), static_cast<uint8_t*>(mem));
break;
+ case arm_compute::DataType::F16:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<armnn::Half*>(mem));
+ break;
default:
{
throw armnn::UnimplementedException();
}
}
- const_cast<armnn::IClTensorHandle*>(handle)->UnMap();
+ const_cast<armnn::IClTensorHandle*>(handle)->Unmap();
break;
}
#endif
diff --git a/src/armnn/backends/test/WorkloadDataValidation.cpp b/src/armnn/backends/test/WorkloadDataValidation.cpp
index c3a9d40116..bc3898b405 100644
--- a/src/armnn/backends/test/WorkloadDataValidation.cpp
+++ b/src/armnn/backends/test/WorkloadDataValidation.cpp
@@ -22,7 +22,7 @@ BOOST_AUTO_TEST_CASE(QueueDescriptor_Validate_WrongNumOfInputsOutputs)
{
InputQueueDescriptor invalidData;
WorkloadInfo invalidInfo;
- //invalid argument exception is expected, because no inputs and no outputs were defined
+ //Invalid argument exception is expected, because no inputs and no outputs were defined.
BOOST_CHECK_THROW(RefWorkloadFactory().CreateInput(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
@@ -31,7 +31,7 @@ BOOST_AUTO_TEST_CASE(RefPooling2dFloat32Workload_Validate_WrongDimTensor)
armnn::TensorInfo inputTensorInfo;
armnn::TensorInfo outputTensorInfo;
- unsigned int inputShape[] = {2, 3, 4}; // <- invalid - input tensor has to be 4D
+ unsigned int inputShape[] = {2, 3, 4}; // <- Invalid - input tensor has to be 4D.
unsigned int outputShape[] = {2, 3, 4, 5};
outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
@@ -43,7 +43,7 @@ BOOST_AUTO_TEST_CASE(RefPooling2dFloat32Workload_Validate_WrongDimTensor)
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
- // invalid argument exception is expected, input tensor has to be 4D
+ // Invalid argument exception is expected, input tensor has to be 4D.
BOOST_CHECK_THROW(RefPooling2dFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
@@ -55,7 +55,7 @@ BOOST_AUTO_TEST_CASE(SoftmaxQueueDescriptor_Validate_WrongInputHeight)
unsigned int inputNum = 2;
unsigned int outputChannels = inputChannels;
- unsigned int outputHeight = inputHeight + 1; //makes data invalid - Softmax expects height and width to be 1
+ unsigned int outputHeight = inputHeight + 1; //Makes data invalid - Softmax expects height and width to be 1.
unsigned int outputWidth = inputWidth;
unsigned int outputNum = inputNum;
@@ -74,7 +74,7 @@ BOOST_AUTO_TEST_CASE(SoftmaxQueueDescriptor_Validate_WrongInputHeight)
AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
- //invalid argument exception is expected, because height != 1
+ //Invalid argument exception is expected, because height != 1.
BOOST_CHECK_THROW(RefSoftmaxFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
@@ -90,7 +90,7 @@ BOOST_AUTO_TEST_CASE(FullyConnectedQueueDescriptor_Validate_RequiredDataMissing)
unsigned int outputChannels = 3;
unsigned int outputNum = 2;
- // Define the tensor descriptors
+ // Define the tensor descriptors.
armnn::TensorInfo inputTensorInfo;
armnn::TensorInfo outputTensorInfo;
armnn::TensorInfo weightsDesc;
@@ -120,8 +120,8 @@ BOOST_AUTO_TEST_CASE(FullyConnectedQueueDescriptor_Validate_RequiredDataMissing)
invalidData.m_Parameters.m_TransposeWeightMatrix = false;
- //invalid argument exception is expected, because not all required fields have been provided
- //in particular inputsData[0], outputsData[0] and weightsData can not be null
+ //Invalid argument exception is expected, because not all required fields have been provided.
+ //In particular inputsData[0], outputsData[0] and weightsData can not be null.
BOOST_CHECK_THROW(RefFullyConnectedFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
@@ -135,8 +135,8 @@ BOOST_AUTO_TEST_CASE(NormalizationQueueDescriptor_Validate_WrongInputHeight)
constexpr unsigned int outputNum = inputNum;
constexpr unsigned int outputChannels = inputChannels;
- constexpr unsigned int outputHeight = inputHeight + 1; //makes data invalid - normalization requires
- //input and output to have the same dimensions
+ constexpr unsigned int outputHeight = inputHeight + 1; //Makes data invalid - normalization requires.
+ //Input and output to have the same dimensions.
constexpr unsigned int outputWidth = inputWidth;
@@ -169,7 +169,7 @@ BOOST_AUTO_TEST_CASE(NormalizationQueueDescriptor_Validate_WrongInputHeight)
invalidData.m_Parameters.m_Beta = beta;
invalidData.m_Parameters.m_K = kappa;
- //invalid argument exception is expected, because input height != output height
+ //Invalid argument exception is expected, because input height != output height.
BOOST_CHECK_THROW(RefNormalizationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
@@ -201,7 +201,7 @@ BOOST_AUTO_TEST_CASE(SplitterQueueDescriptor_Validate_WrongWindow)
AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
- // invalid since it has only 3 dimensions while the input tensor is 4d
+ // Invalid, since it has only 3 dimensions while the input tensor is 4d.
std::vector<unsigned int> wOrigin = {0, 0, 0};
armnn::SplitterQueueDescriptor::ViewOrigin window(wOrigin);
invalidData.m_ViewOrigins.push_back(window);
@@ -210,7 +210,7 @@ BOOST_AUTO_TEST_CASE(SplitterQueueDescriptor_Validate_WrongWindow)
"match input.");
BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
- // invalid since window extends past the boundary of input tensor
+ // Invalid, since window extends past the boundary of input tensor.
std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
invalidData.m_ViewOrigins[0] = window3;
@@ -259,7 +259,7 @@ BOOST_AUTO_TEST_CASE(MergerQueueDescriptor_Validate_WrongWindow)
AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
- // invalid since it has only 3 dimensions while the input tensor is 4d
+ // Invalid, since it has only 3 dimensions while the input tensor is 4d.
std::vector<unsigned int> wOrigin = {0, 0, 0};
armnn::MergerQueueDescriptor::ViewOrigin window(wOrigin);
invalidData.m_ViewOrigins.push_back(window);
@@ -268,7 +268,7 @@ BOOST_AUTO_TEST_CASE(MergerQueueDescriptor_Validate_WrongWindow)
"match input.");
BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
- // invalid since window extends past the boundary of output tensor
+ // Invalid, since window extends past the boundary of output tensor.
std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
armnn::MergerQueueDescriptor::ViewOrigin window3(wOrigin3);
invalidData.m_ViewOrigins[0] = window3;
@@ -308,17 +308,17 @@ BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputNumbers)
AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
- // too few inputs
+ // Too few inputs.
BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
- // correct
+ // Correct.
BOOST_CHECK_NO_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo));
AddInputToWorkload(invalidData, invalidInfo, input3TensorInfo, nullptr);
- // too many inputs
+ // Too many inputs.
BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
@@ -331,7 +331,7 @@ BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputShapes)
unsigned int shape1[] = {1, 1, 2, 1};
unsigned int shape2[] = {1, 1, 3, 2};
- // Incompatible shapes even with broadcasting
+ // Incompatible shapes even with broadcasting.
{
input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
input2TensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);
@@ -347,7 +347,7 @@ BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputShapes)
BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
- // Output size not compatible with input sizes
+ // Output size not compatible with input sizes.
{
input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
input2TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
@@ -360,7 +360,7 @@ BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputShapes)
AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
- // output differs
+ // Output differs.
BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
}
@@ -374,7 +374,7 @@ BOOST_AUTO_TEST_CASE(MultiplicationQueueDescriptor_Validate_InputTensorDimension
constexpr unsigned int input0Shape[] = { 2, 2, 4, 4 };
constexpr std::size_t dimensionCount = std::extent<decltype(input0Shape)>::value;
- // Check dimension consistency for input tensors
+ // Checks dimension consistency for input tensors.
for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
{
unsigned int input1Shape[dimensionCount];
@@ -399,7 +399,7 @@ BOOST_AUTO_TEST_CASE(MultiplicationQueueDescriptor_Validate_InputTensorDimension
BOOST_CHECK_THROW(RefMultiplicationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
- // Check dimension consistency for input and output tensors
+ // Checks dimension consistency for input and output tensors.
for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
{
unsigned int outputShape[dimensionCount];
@@ -430,7 +430,7 @@ BOOST_AUTO_TEST_CASE(ReshapeQueueDescriptor_Validate_MismatchingNumElements)
armnn::TensorInfo inputTensorInfo;
armnn::TensorInfo outputTensorInfo;
- // The input and output shapes should have the same number of elements, but these don't
+ // The input and output shapes should have the same number of elements, but these don't.
unsigned int inputShape[] = { 1, 1, 2, 3 };
unsigned int outputShape[] = { 1, 1, 1, 2 };
@@ -443,8 +443,29 @@ BOOST_AUTO_TEST_CASE(ReshapeQueueDescriptor_Validate_MismatchingNumElements)
AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
- // InvalidArgumentException is expected, because the number of elements don't match
+ // InvalidArgumentException is expected, because the number of elements don't match.
BOOST_CHECK_THROW(RefReshapeFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}
+
+BOOST_AUTO_TEST_CASE(LstmQueueDescriptor_Validate)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2 };
+ unsigned int outputShape[] = { 1 };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(1, outputShape, armnn::DataType::Float32);
+
+ LstmQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(invalidData.Validate(invalidInfo), armnn::InvalidArgumentException);
+}
+
BOOST_AUTO_TEST_SUITE_END()