aboutsummaryrefslogtreecommitdiff
path: root/src/armnnTfParser/TfParser.cpp
diff options
context:
space:
mode:
authorsurmeh01 <surabhi.mehta@arm.com>2018-03-29 16:29:27 +0100
committersurmeh01 <surabhi.mehta@arm.com>2018-03-29 16:29:27 +0100
commitbceff2fb3fc68bb0aa88b886900c34b77340c826 (patch)
treed867d3e090d58d3012dfbbac456e9ea8c7f789bc /src/armnnTfParser/TfParser.cpp
parent4fcda0101ec3d110c1d6d7bee5c83416b645528a (diff)
downloadarmnn-bceff2fb3fc68bb0aa88b886900c34b77340c826.tar.gz
Release 18.03
Diffstat (limited to 'src/armnnTfParser/TfParser.cpp')
-rw-r--r--src/armnnTfParser/TfParser.cpp2200
1 files changed, 2200 insertions, 0 deletions
diff --git a/src/armnnTfParser/TfParser.cpp b/src/armnnTfParser/TfParser.cpp
new file mode 100644
index 0000000000..7c8e01b112
--- /dev/null
+++ b/src/armnnTfParser/TfParser.cpp
@@ -0,0 +1,2200 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+#include "TfParser.hpp"
+
+#include <armnn/INetwork.hpp>
+#include <armnn/Utils.hpp>
+#include <armnn/TypesUtils.hpp>
+#include <armnn/Exceptions.hpp>
+#include <armnn/Descriptors.hpp>
+
+#include <GraphTopologicalSort.hpp>
+#include <Permute.hpp>
+
+#include <google/protobuf/io/zero_copy_stream_impl.h>
+#include <google/protobuf/text_format.h>
+
+#include "tensorflow/core/framework/graph.pb.h"
+#include "tensorflow/core/framework/node_def.pb.h"
+#include "tensorflow/core/framework/types.pb.h"
+#include "tensorflow/core/framework/tensor.pb.h"
+#include "tensorflow/core/framework/tensor_shape.pb.h"
+
+#include <boost/assert.hpp>
+#include <boost/format.hpp>
+#include <boost/core/ignore_unused.hpp>
+#include <boost/log/trivial.hpp>
+#include <boost/numeric/conversion/cast.hpp>
+#include <boost/polymorphic_cast.hpp>
+
+#include <memory>
+#include <sstream>
+#include <numeric>
+#include <functional>
+
+using namespace armnn;
+
+namespace armnnTfParser
+{
+namespace
+{
+
+const PermutationVector NHWCToArmNN = { 0, 2, 3, 1 };
+const PermutationVector ArmNNToNHWC = { 0, 3, 1, 2 };
+
+IConnectableLayer* AddSwizzleLayer(INetwork& network, IOutputSlot& input, const PermutationVector& mapping,
+ const std::string& name)
+{
+ // Add swizzle layer
+ IConnectableLayer* const layer = network.AddPermuteLayer(mapping, name.c_str());
+
+ // Connect intput to swizzle layer
+ input.Connect(layer->GetInputSlot(0));
+
+ // Setup swizzled output
+ const TensorInfo outInfo = armnnUtils::Permuted(input.GetTensorInfo(), mapping);
+ layer->GetOutputSlot(0).SetTensorInfo(outInfo);
+
+ return layer;
+}
+
+IConnectableLayer* SwizzleInDeswizzleOut(INetwork& network, IOutputSlot& input, IConnectableLayer& layer,
+ const std::string& name)
+{
+ // Add swizzle layer
+ IConnectableLayer* const swizzleLayer = AddSwizzleLayer(network, input, NHWCToArmNN, "swizzle_for-" + name);
+
+ // Connect swizzledInput to layer
+ swizzleLayer->GetOutputSlot(0).Connect(layer.GetInputSlot(0));
+
+ // Add deswizzle layer
+ IConnectableLayer* const deswizzleLayer = AddSwizzleLayer(network, layer.GetOutputSlot(0), ArmNNToNHWC,
+ "deswizzle_for-" + name);
+
+ return deswizzleLayer;
+}
+
+template <typename Callable>
+void ReadMandatoryNodeAttributeImpl(const tensorflow::NodeDef& nodeDef,
+ const std::string& attribName,
+ tensorflow::AttrValue::ValueCase expectedValueCase,
+ Callable callable)
+{
+ auto iter = nodeDef.attr().find(attribName);
+ if (iter != nodeDef.attr().end())
+ {
+ const auto& attrValue = iter->second;
+ if (attrValue.value_case() == expectedValueCase)
+ {
+ callable(attrValue);
+ }
+ else
+ {
+ throw ParseException(boost::str(boost::format(
+ "Attribute %1% of node %2% expected to have %3% as tensorflow::AttrValue::ValueCase, "
+ "but found %4% instead")
+ % attribName
+ % nodeDef.name()
+ % static_cast<int>(expectedValueCase)
+ % static_cast<int>(attrValue.value_case())));
+ }
+ }
+ else
+ {
+ throw ParseException(boost::str(boost::format("Could not find required attribute %1% in node %2%")
+ % attribName % nodeDef.name()));
+ }
+}
+
+template <typename Callable>
+void ReadOptionalNodeAttributeImpl(const tensorflow::NodeDef& nodeDef,
+ const std::string& attribName,
+ tensorflow::AttrValue::ValueCase expectedValueCase,
+ Callable callable)
+{
+ auto iter = nodeDef.attr().find(attribName);
+ if (iter != nodeDef.attr().end())
+ {
+ const auto& attrValue = iter->second;
+ if (attrValue.value_case() == expectedValueCase)
+ {
+ callable(attrValue);
+ }
+ else
+ {
+ throw ParseException(boost::str(boost::format(
+ "Attribute %1% of node %2% expected to have %3% as tensorflow::AttrValue::ValueCase, "
+ "but found %4% instead")
+ % attribName
+ % nodeDef.name()
+ % static_cast<int>(expectedValueCase)
+ % static_cast<int>(attrValue.value_case())));
+ }
+ }
+}
+
+float ReadMandatoryNodeFloatAttribute(const tensorflow::NodeDef& nodeDef, const std::string& name)
+{
+ float attribValue = 0.0f;
+ ReadMandatoryNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kF,
+ [&attribValue](const tensorflow::AttrValue& attrValue)
+ {
+ attribValue = attrValue.f();
+ });
+ return attribValue;
+}
+
+uint32_t ReadMandatoryNodeUint32Attribute(const tensorflow::NodeDef& nodeDef, const std::string& name)
+{
+ uint32_t attribValue = 0u;
+ ReadMandatoryNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kI,
+ [&attribValue](const tensorflow::AttrValue& attrValue)
+ {
+ attribValue = static_cast<uint32_t>(attrValue.i());
+ });
+ return attribValue;
+}
+
+std::string ReadMandatoryNodeStringAttribute(const tensorflow::NodeDef& nodeDef, const std::string& name)
+{
+ std::string attribValue = "";
+ ReadMandatoryNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kS,
+ [&attribValue](const tensorflow::AttrValue& attrValue)
+ {
+ attribValue = attrValue.s();
+ });
+ return attribValue;
+}
+
+std::vector<uint32_t> ReadMandatoryNodeUint32ListAttribute(const tensorflow::NodeDef& nodeDef,
+ const std::string& name)
+{
+ std::vector<uint32_t> attriList;
+ ReadMandatoryNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kList,
+ [&attriList](const tensorflow::AttrValue& attrValue)
+ {
+ for (int attriNum = 0; attriNum < attrValue.list().i_size(); ++attriNum)
+ {
+ attriList.push_back(static_cast<uint32_t>(attrValue.list().i(attriNum)));
+ }
+ });
+
+ return attriList;
+}
+
+std::vector<uint32_t> ReadOptionalNodeUint32ListAttribute(const tensorflow::NodeDef& nodeDef,
+ const std::string& name)
+{
+ std::vector<uint32_t> attriList;
+ ReadOptionalNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kList,
+ [&attriList](const tensorflow::AttrValue& attrValue)
+ {
+ for (int attriNum = 0; attriNum < attrValue.list().i_size(); ++attriNum)
+ {
+ attriList.push_back(static_cast<uint32_t>(attrValue.list().i(attriNum)));
+ }
+ });
+
+ return attriList;
+}
+
+bool ReadOptionalNodeBoolAttribute(const tensorflow::NodeDef& nodeDef,
+ const std::string& name,
+ bool defaultValue = false)
+{
+ bool attribValue = defaultValue;
+ ReadOptionalNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kB,
+ [&attribValue](const tensorflow::AttrValue& attrValue)
+ {
+ attribValue = attrValue.b();
+ });
+ return attribValue;
+}
+
+tensorflow::DataType ReadMandatoryNodeTypeAttribute(const tensorflow::NodeDef& nodeDef, const std::string& name)
+{
+ tensorflow::DataType attribValue = tensorflow::DT_INVALID;
+ ReadMandatoryNodeAttributeImpl(nodeDef, name, tensorflow::AttrValue::kType,
+ [&attribValue](const tensorflow::AttrValue& attrValue)
+ {
+ attribValue = attrValue.type();
+ });
+ return attribValue;
+}
+
+TensorInfo PrepareReshape(const TensorInfo& input, const std::vector<int32_t>& targetDims)
+{
+ std::vector<unsigned int> outDims(targetDims.begin(), targetDims.end());
+ const auto stretchDim = std::find(targetDims.begin(), targetDims.end(), -1);
+
+ if (stretchDim != targetDims.end())
+ {
+ if (std::find(std::next(stretchDim), targetDims.end(), -1) != targetDims.end())
+ {
+ throw ParseException("At most one component of shape can be -1");
+ }
+
+ auto targetNumElements = boost::numeric_cast<unsigned int>(std::accumulate(targetDims.begin(), targetDims.end(),
+ -1, std::multiplies<int32_t>()));
+ auto stretchIndex = static_cast<size_t>(std::distance(targetDims.begin(), stretchDim));
+ outDims[stretchIndex] = input.GetNumElements() / targetNumElements;
+ }
+
+ TensorInfo reshapeInfo = input;
+ reshapeInfo.SetShape(TensorShape{ static_cast<unsigned int>(outDims.size()), outDims.data() });
+
+ return reshapeInfo;
+}
+
+// We need the input0Slot to guide the reshape for input1Slot
+IOutputSlot* BroadcastForAddandMul(IOutputSlot* input0Slot, IOutputSlot* input1Slot, bool isNHWC, INetwork& m_Network,
+ const tensorflow::NodeDef& nodeDef)
+{
+ const TensorInfo& input1Info = input1Slot->GetTensorInfo();
+ const TensorInfo inputTensorInfo = input0Slot->GetTensorInfo();
+ const unsigned int matchDim = inputTensorInfo.GetNumDimensions() - (isNHWC ? 1 : 3);
+ std::array<unsigned int, MaxNumOfTensorDimensions> reshapedDimensions;
+ std::fill_n(reshapedDimensions.begin(), inputTensorInfo.GetNumDimensions(), 1);
+ reshapedDimensions[matchDim] = input1Info.GetShape()[0];
+
+ armnn::TensorInfo reshapedInfo = input1Info;
+ reshapedInfo.SetShape(TensorShape{ inputTensorInfo.GetNumDimensions(), reshapedDimensions.data() });
+
+ const std::string reshapeLayerName = "reshape_for-" + nodeDef.name();
+ ReshapeDescriptor reshapeDesc;
+ reshapeDesc.m_TargetShape = reshapedInfo.GetShape();
+ IConnectableLayer* const reshapeLayer = m_Network.AddReshapeLayer(reshapeDesc, reshapeLayerName.c_str());
+
+ input1Slot->Connect(reshapeLayer->GetInputSlot(0));
+ reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo);
+
+ input1Slot = &reshapeLayer->GetOutputSlot(0);
+
+ return input1Slot;
+}
+
+OutputId ParseOutputId(const std::string & name)
+{
+ unsigned int outputNum = 0;
+ size_t colonPos = name.find_last_of(":");
+ if (colonPos != std::string::npos)
+ {
+ int n = std::stoi(name.substr(colonPos+1));
+ if (n<0 || n>100)
+ {
+ throw ParseException("Output tensor id is out of range for "+name);
+ }
+ outputNum = static_cast<unsigned int>(n);
+ }
+ return OutputId(name.substr(0,colonPos),outputNum);
+}
+
+} // namespace
+
+const std::map<std::string, TfParser::OperationParsingFunction> TfParser::ms_OperationNameToParsingFunctions = {
+ { "Const", &TfParser::ParseConst },
+ { "Add", &TfParser::ParseAdd },
+ { "BiasAdd", &TfParser::ParseBiasAdd },
+ { "Identity", &TfParser::ParseIdentity },
+ { "Conv2D", &TfParser::ParseConv2D },
+ { "DepthwiseConv2dNative", &TfParser::ParseDepthwiseConv2D },
+ { "FusedBatchNorm", &TfParser::ParseFusedBatchNorm },
+ { "ConcatV2", &TfParser::ParseConcat },
+ { "LRN", &TfParser::ParseLrn },
+ { "MatMul", &TfParser::ParseMatMul },
+ { "Mul", &TfParser::ParseMul },
+ { "Placeholder", &TfParser::ParsePlaceholder },
+ { "Relu", &TfParser::ParseRelu },
+ { "Relu6", &TfParser::ParseRelu6 },
+ { "Reshape", &TfParser::ParseReshape },
+ { "ResizeBilinear", &TfParser::ParseResizeBilinear },
+ { "Shape", &TfParser::ParseShape },
+ { "Squeeze", &TfParser::ParseSqueeze },
+ { "Sigmoid", &TfParser::ParseSigmoid },
+ { "Softmax", &TfParser::ParseSoftmax },
+ { "Softplus", &TfParser::ParseSoftplus },
+ { "Tanh", &TfParser::ParseTanh },
+ { "MaxPool", &TfParser::ParseMaxPool },
+ { "AvgPool", &TfParser::ParseAvgPool },
+};
+
+ITfParser* ITfParser::CreateRaw()
+{
+ return new TfParser();
+}
+
+ITfParserPtr ITfParser::Create()
+{
+ return ITfParserPtr(CreateRaw(), &ITfParser::Destroy);
+}
+
+void ITfParser::Destroy(ITfParser* parser)
+{
+ delete parser;
+}
+
+inline void CalculateSamePadding(uint32_t inputSize, uint32_t stride,
+ uint32_t filterSize, bool samePadding,
+ uint32_t* paddingFront, uint32_t* paddingBack) {
+ *paddingFront = 0;
+ *paddingBack = 0;
+
+ if (samePadding) {
+ uint32_t outputSize = (inputSize + stride - 1) / stride;
+ uint32_t temp = (outputSize - 1) * stride + filterSize;
+ if (temp > inputSize) {
+ *paddingFront = (temp - inputSize) / 2;
+ *paddingBack = (temp - inputSize) - *paddingFront;
+ }
+ }
+}
+
+void CalcPadding(uint32_t input, uint32_t kernel, uint32_t stride, uint32_t& outPadHead, uint32_t& outPadTail,
+ bool samePadding)
+{
+ CalculateSamePadding(input, stride, kernel, samePadding, &outPadHead, &outPadTail);
+}
+
+/// An Abstract base class which represents a single tensorflow operation (node)
+/// that has been (potentially partially) converted to Armnn.
+/// It may not yet have been fully converted into actual Armnn layers.
+class ParsedTfOperation
+{
+public:
+ ParsedTfOperation(TfParser* parser, const tensorflow::NodeDef& node)
+ : m_Parser(parser)
+ , m_Node(node)
+ {
+ }
+
+ virtual ~ParsedTfOperation() {};
+
+ const tensorflow::NodeDef& GetNode() const { return m_Node; }
+
+ /// Gets the ArmNN IOutputSlot corresponding to the given output index of the Tensorflow operation.
+ /// This may result in the creation of Armnn layers if this was deferred (e.g. see ParsedConstTfOperation).
+ virtual IOutputSlot& ResolveArmnnOutputSlot(unsigned int tfOutputIndex) = 0;
+
+ /// If this operation is an Identity then this will follow return the 'parent' operation (recursively).
+ virtual ParsedTfOperation* ResolveIdentityOperations()
+ {
+ return this;
+ }
+
+protected:
+ TfParser* m_Parser;
+ const tensorflow::NodeDef& m_Node;
+};
+
+/// An ParsedTfOperation where the Armnn equivalent is a single layer,
+/// with output slots that correspond directly to the Tf node outputs.
+class SingleLayerParsedTfOperation : public ParsedTfOperation
+{
+public:
+ SingleLayerParsedTfOperation(TfParser* parser, const tensorflow::NodeDef& node, IConnectableLayer* layer)
+ : ParsedTfOperation(parser, node)
+ , m_Layer(layer)
+ {
+ }
+
+ IOutputSlot& ResolveArmnnOutputSlot(unsigned int tfOutputIndex) override
+ {
+ BOOST_ASSERT(m_Layer);
+ // Assume one-to-one mapping between Tf and armnn output slots.
+ unsigned int armnnOutputSlotIdx = tfOutputIndex;
+ if (armnnOutputSlotIdx >= m_Layer->GetNumOutputSlots())
+ {
+ throw ParseException(
+ boost::str(boost::format("The requested output slot #%1% "
+ "for %2% does not exist") % armnnOutputSlotIdx % m_Layer->GetName()));
+ }
+ return m_Layer->GetOutputSlot(armnnOutputSlotIdx);
+ }
+
+protected:
+ IConnectableLayer* m_Layer;
+};
+
+/// A SingleLayerParsedTfOperation for deferred layer creation
+class DeferredSingleLayerParsedTfOperation : public SingleLayerParsedTfOperation
+{
+public:
+ DeferredSingleLayerParsedTfOperation(TfParser* parser, const tensorflow::NodeDef& node)
+ : SingleLayerParsedTfOperation(parser, node, nullptr)
+ {
+ }
+
+ IOutputSlot& ResolveArmnnOutputSlot(unsigned int tfOutputIndex) override
+ {
+ if (!m_Layer)
+ {
+ CreateLayerDeferred();
+ }
+ return SingleLayerParsedTfOperation::ResolveArmnnOutputSlot(tfOutputIndex);
+ }
+
+private:
+ virtual void CreateLayerDeferred() = 0;
+};
+
+
+TfParser::TfParser()
+ : m_Network(nullptr, nullptr)
+{
+}
+
+
+const tensorflow::NodeDef* TfParser::ResolveIdentityNode(const tensorflow::NodeDef* nodeDef)
+{
+ if (nodeDef->op() != "Identity")
+ {
+ return nodeDef;
+ }
+
+ if (nodeDef->input_size() != 1)
+ {
+ throw ParseException("Identity node does not have correct amount of inputs!");
+ }
+
+ auto it = m_NodesByName.find(nodeDef->input(0));
+ if (it != m_NodesByName.end())
+ {
+ const tensorflow::NodeDef* inputNode = it->second;
+ return ResolveIdentityNode(inputNode);
+ }
+ else
+ {
+ throw ParseException("Cannot find what the Identity node is linked to!");
+ }
+}
+
+std::vector<OutputOfConstNodeDef>
+TfParser::GetTfInputNodes(const tensorflow::NodeDef& nodeDef) const
+{
+ std::vector<OutputOfConstNodeDef> ret;
+
+ ret.reserve(boost::numeric_cast<size_t>(nodeDef.input_size()));
+ for (int j = 0; j < nodeDef.input_size(); ++j)
+ {
+ OutputId outputId = ParseOutputId(nodeDef.input(j));
+ auto inputIt = m_NodesByName.find(outputId.m_IndexedValue);
+ if (inputIt == m_NodesByName.end())
+ {
+ throw ParseException(
+ "Can't find node '" + nodeDef.input(j) +
+ "', which is listed as an input of '" + nodeDef.name() + "'");
+ }
+ ret.push_back(OutputOfConstNodeDef(inputIt->second,outputId.m_Index));
+ }
+
+ return ret;
+}
+
+std::vector<OutputOfParsedTfOperation>
+TfParser::GetInputParsedTfOperationsChecked(const tensorflow::NodeDef& nodeDef,
+ std::size_t expectedNumInputs)
+{
+ // Fetch the tensorflow nodes connected as inputs and validate the size.
+ std::vector<OutputOfConstNodeDef> nodes = GetTfInputNodes(nodeDef);
+ const std::size_t numInputs = nodes.size();
+ if (numInputs != expectedNumInputs)
+ {
+ throw ParseException(boost::str(boost::format("Unexpected number of inputs for node %1%. "
+ "Expected %2%, found %3%") % nodeDef.name() % expectedNumInputs % numInputs));
+ }
+ // Fetch the corresponding ParsedTfOperation operations
+ std::vector<OutputOfParsedTfOperation> result;
+ for (auto&& node : nodes)
+ {
+ auto it = m_ParsedTfOperations.find(node.m_IndexedValue->name());
+ if (it == m_ParsedTfOperations.end())
+ {
+ throw ParseException("Node with name '" + node.m_IndexedValue->name() + "' has not been parsed");
+ }
+ ParsedTfOperation* parsedOp = it->second.get();
+ // Transparently 'skip' any Identity operations. This simplifies the logic inside the ParseXXX() functions.
+ parsedOp = parsedOp->ResolveIdentityOperations();
+ result.push_back(OutputOfParsedTfOperation(parsedOp,node.m_Index));
+ }
+ return result;
+}
+
+ParsedTfOperationPtr TfParser::ParseAdd(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+
+ // If one of the inputs is a MatMul and the other is a const, then we handle both nodes together as FullyConnected
+ if (inputs[0].m_IndexedValue->GetNode().op() == "MatMul" &&
+ HasParsedConstTensor<float>(inputs[1].m_IndexedValue->GetNode().name()))
+ {
+ IConnectableLayer* layer =
+ AddFullyConnectedLayer(inputs[0].m_IndexedValue->GetNode(),
+ &nodeDef,nodeDef.name().c_str());
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+ }
+ else if (HasParsedConstTensor<float>(inputs[0].m_IndexedValue->GetNode().name()) &&
+ inputs[1].m_IndexedValue->GetNode().op() == "MatMul")
+ {
+ IConnectableLayer* layer =
+ AddFullyConnectedLayer(inputs[1].m_IndexedValue->GetNode(),
+ &nodeDef,nodeDef.name().c_str());
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+ }
+ else
+ {
+ // Otherwise it's just a regular addition
+ return AddAdditionLayer(nodeDef);
+ }
+}
+
+ParsedTfOperationPtr TfParser::ParseBiasAdd(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ return AddAdditionLayer(nodeDef, true);
+}
+
+/// An ParsedTfOperation which forwards to another (used for Identity nodes).
+class ParsedIdentityTfOperation : public ParsedTfOperation
+{
+public:
+ ParsedIdentityTfOperation(TfParser* parser, const tensorflow::NodeDef& node, ParsedTfOperation* representative)
+ : ParsedTfOperation(parser, node)
+ , m_Representative(representative)
+ {
+ }
+
+ virtual IOutputSlot& ResolveArmnnOutputSlot(unsigned int tfOutputIndex) override
+ {
+ BOOST_ASSERT(m_Representative);
+ return m_Representative->ResolveArmnnOutputSlot(tfOutputIndex);
+ }
+
+ virtual ParsedTfOperation* ResolveIdentityOperations() override
+ {
+ return m_Representative->ResolveIdentityOperations();
+ }
+
+private:
+ ParsedTfOperation* m_Representative;
+};
+
+ParsedTfOperationPtr TfParser::ParseIdentity(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+ // Any requests for the output slots of this node should be forwarded to the node connected as input.
+ return std::make_unique<ParsedIdentityTfOperation>(this, nodeDef, inputs[0].m_IndexedValue);
+}
+
+/// An ParsedTfOperation for a Const node.
+/// Creation of the armnn ConstLayer is deferred until it is actually needed, because Const nodes are mostly used
+/// for weight inputs to MatMul/Conv2D nodes and in these cases armnn doesn't need a ConstLayer.
+template <typename T>
+class ParsedConstTfOperation : public DeferredSingleLayerParsedTfOperation
+{
+public:
+ ParsedConstTfOperation(TfParser* parser, const tensorflow::NodeDef& node,
+ const T* tensorData, const TensorInfo& tensorInfo)
+ : DeferredSingleLayerParsedTfOperation(parser, node),
+ m_Storage(tensorData, tensorData + tensorInfo.GetNumElements()),
+ m_TensorInfo(tensorInfo)
+ {
+ BOOST_ASSERT(tensorInfo.GetDataType() == GetDataType<T>());
+ }
+
+ void CreateLayerDeferred() override
+ {
+ BOOST_ASSERT(m_Layer == nullptr);
+ m_Layer = m_Parser->m_Network->AddConstantLayer(ConstTensor(m_TensorInfo, m_Storage), m_Node.name().c_str());
+ m_Layer->GetOutputSlot(0).SetTensorInfo(m_TensorInfo);
+ }
+
+ ConstTensor GetConstTensor(bool swizzleForConvolutionWeights, std::vector<T>& outputTensorData) const
+ {
+ // Mappings from TensorFlow filter tensors to the ArmNN filter tensors.
+ // Tensorflow weights are [H, W, In, Out]
+ // ArmNN weights are [Out, In, H, W]
+ static const PermutationVector HWIOToOIHW = {2, 3, 1, 0};
+
+ const TensorInfo outInfo = swizzleForConvolutionWeights
+ ? armnnUtils::Permuted(m_TensorInfo, HWIOToOIHW)
+ : m_TensorInfo;
+
+ outputTensorData.resize(m_TensorInfo.GetNumElements());
+
+ // Copy or swizzle from the permanent storage into the storage the caller provided.
+ if (swizzleForConvolutionWeights)
+ {
+ armnnUtils::Permute(outInfo.GetShape(), HWIOToOIHW, m_Storage.data(), outputTensorData.data());
+ }
+ else
+ {
+ memcpy(outputTensorData.data(), m_Storage.data(), m_TensorInfo.GetNumBytes());
+ }
+ // Update the result to point to the user provided storage
+ ConstTensor constTensor(outInfo, outputTensorData);
+ return constTensor;
+ }
+
+private:
+ ///< Manages the lifetime of the tensor data.
+ std::vector<T> m_Storage;
+ ///< Describes the layout of the tensor and points to the data in m_Storage.
+ TensorInfo m_TensorInfo;
+};
+
+DataType ConvertTfTensorDataType(const tensorflow::DataType tfDataType)
+{
+ switch (tfDataType)
+ {
+ case tensorflow::DT_FLOAT:
+ return DataType::Float32;
+ break;
+ case tensorflow::DT_INT32:
+ return DataType::Signed32;
+ break;
+ default:
+ throw ParseException(boost::str(
+ boost::format("Unknown DataType %1% for node")
+ % tensorflow::DataType_Name(tfDataType)));
+ }
+}
+
+struct ParseTfTensorValueList
+{
+ template<typename DataType>
+ static void Parse(
+ const tensorflow::TensorProto& tfTensor,
+ unsigned int dstElements,
+ std::vector<int8_t>& outputData);
+
+ template <typename DataType>
+ static void ReadData(const void* srcData, unsigned int numSrcElements,
+ std::vector<int8_t>& dstData, unsigned int numDstElements)
+ {
+ // If there are no entries in the list, perform no action
+ if (numSrcElements == 0)
+ {
+ return;
+ }
+
+ // If no size was provided, use the length of the value list
+ if (numDstElements == 0)
+ {
+ numDstElements = numSrcElements;
+ }
+
+ // Allocate memory
+ dstData.resize(std::max(numSrcElements, numDstElements) * sizeof(DataType));
+
+ const DataType* srcTensor = reinterpret_cast<const DataType*>(srcData);
+ DataType* dstTensor = reinterpret_cast<DataType*>(dstData.data());
+
+ // Copy the value list entries into the destination
+ std::copy(srcTensor, srcTensor + numSrcElements, dstTensor);
+
+ if (numDstElements > numSrcElements)
+ {
+ // Use the last element in the list to fill the remaining entries
+ std::fill(dstTensor + numSrcElements, dstTensor + numDstElements, srcTensor[numSrcElements - 1]);
+ }
+ }
+
+};
+
+template <>
+void ParseTfTensorValueList::Parse<float>(const tensorflow::TensorProto& tfTensor,
+ unsigned int dstElements, std::vector<int8_t>& outputData)
+{
+ ReadData<float>(tfTensor.float_val().data(), static_cast<unsigned int>(tfTensor.float_val_size()),
+ outputData, dstElements);
+}
+
+template <>
+void ParseTfTensorValueList::Parse<int32_t>(const tensorflow::TensorProto& tfTensor,
+ unsigned int dstElements, std::vector<int8_t>& outputData)
+{
+ ReadData<int32_t>(tfTensor.int_val().data(), static_cast<unsigned int>(tfTensor.int_val_size()),
+ outputData, dstElements);
+}
+
+template <template<typename> class OperatorType, typename T = int8_t>
+struct MakeTfOperation
+{
+ template<typename DataType, class... Args>
+ inline static std::unique_ptr<OperatorType<DataType>> Parse(TfParser* parser, const tensorflow::NodeDef& node,
+ Args&&... args)
+ {
+ return std::make_unique<OperatorType<DataType>>(parser, node, std::forward<Args>(args)...);
+ }
+};
+
+template <>
+struct MakeTfOperation<ParsedConstTfOperation>
+{
+ template<typename DataType, class... Args>
+ inline static std::unique_ptr<ParsedConstTfOperation<DataType>> Parse(TfParser* parser,
+ const tensorflow::NodeDef& node, const std::vector<int8_t>& tensorData, const TensorInfo& tensorInfo)
+ {
+ return std::make_unique<ParsedConstTfOperation<DataType>>(parser, node,
+ reinterpret_cast<const DataType*>(tensorData.data()), tensorInfo);
+ }
+};
+
+template <class FuncType>
+struct InvokeParseFunction
+{
+ template<class ResType, class... Args>
+ inline static ResType Result(DataType dataType, Args&&... args)
+ {
+ if (dataType == DataType::Float32)
+ {
+ return FuncType::template Parse<float>(std::forward<Args>(args)...);
+ }
+ else if (dataType == DataType::Signed32)
+ {
+ return FuncType::template Parse<int32_t>(std::forward<Args>(args)...);
+ }
+
+ return ResType();
+ }
+
+ template<class... Args>
+ inline static void Result(DataType dataType, Args&&... args)
+ {
+ if (dataType == DataType::Float32)
+ {
+ FuncType::template Parse<float>(std::forward<Args>(args)...);
+ }
+ else if (dataType == DataType::Signed32)
+ {
+ FuncType::template Parse<int32_t>(std::forward<Args>(args)...);
+ }
+ }
+};
+
+ParsedTfOperationPtr TfParser::ParseConst(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ BOOST_ASSERT(nodeDef.op() == "Const");
+
+ if (nodeDef.attr().count("value") == 0)
+ {
+ throw ParseException(boost::str(
+ boost::format("Value not found for Const node - %1%")
+ % nodeDef.name()));
+ }
+
+ const tensorflow::TensorProto& tfTensor = nodeDef.attr().at("value").tensor();
+ const tensorflow::TensorShapeProto& tfTensorShape = tfTensor.tensor_shape();
+ const tensorflow::DataType tfDataType = ReadMandatoryNodeTypeAttribute(nodeDef, "dtype");
+
+ const auto GetDimensionSize = [](auto& d) { return d.size(); };
+
+ std::vector<unsigned int> dimensionSizes;
+ std::transform(tfTensorShape.dim().begin(), tfTensorShape.dim().end(),
+ std::back_inserter(dimensionSizes), GetDimensionSize);
+
+ // Calculate number of elements
+ const DataType dataType = ConvertTfTensorDataType(tfDataType);
+ unsigned int numElements = 0U;
+
+ if (!dimensionSizes.empty())
+ {
+ numElements = std::accumulate(dimensionSizes.begin(), dimensionSizes.end(),
+ 1U, std::multiplies<unsigned int>());
+ }
+
+ std::vector<int8_t> tensorData;
+
+ // Get tensor data from the list of values attribute
+ if (tfTensor.tensor_content().empty())
+ {
+ InvokeParseFunction<ParseTfTensorValueList>::Result<void>(dataType, tfTensor, numElements, tensorData);
+
+ // If the tensor shape is not defined, but there is a value list, then interpret the data as a 1D
+ // tensor of the provided number of elements
+ if (numElements == 0)
+ {
+ const unsigned int tfNumElements = static_cast<unsigned int>(tensorData.size()) / GetDataTypeSize(dataType);
+ dimensionSizes.push_back(tfNumElements);
+ }
+ }
+ // Get tensor data from tensor content attribute
+ else
+ {
+ tensorData.assign(tfTensor.tensor_content().begin(), tfTensor.tensor_content().end());
+
+ // Check if a tensor shape is defined for the tensor content
+ if (numElements == 0)
+ {
+ throw ParseException(boost::str(
+ boost::format("No tensor shape found for Const node - %1%")
+ % nodeDef.name()));
+ }
+ }
+
+ // Const node requires at least a list of values or a content attribute
+ if (tensorData.empty())
+ {
+ throw ParseException(boost::str(
+ boost::format("No tensor data found for Const node - %1%")
+ % nodeDef.name()));
+ }
+
+ const TensorInfo tensorInfo(static_cast<unsigned int>(dimensionSizes.size()), dimensionSizes.data(), dataType);
+
+ // If we have a list of values, then the length of the list must be
+ // less than or equal to the number of elements implied by the shape argument
+ if (tensorData.size() > tensorInfo.GetNumBytes())
+ {
+ throw ParseException(boost::str(
+ boost::format("Number of elements (%1%) should be less than or equal \
+ to the number of elements implied by the shape argument (%2%) for Const node - %3%")
+ % (tensorData.size() / GetDataTypeSize(dataType))
+ % tensorInfo.GetNumElements()
+ % nodeDef.name()));
+ }
+
+ return InvokeParseFunction<MakeTfOperation<ParsedConstTfOperation>>::Result<ParsedTfOperationPtr>(
+ dataType, this, nodeDef, tensorData, tensorInfo);
+}
+
+template<typename Type>
+bool TfParser::HasParsedConstTensor(const std::string & nodeName) const
+{
+ auto it = m_ParsedTfOperations.find(nodeName);
+ if (it == m_ParsedTfOperations.end() ||
+ dynamic_cast<ParsedConstTfOperation<Type>*>(it->second.get()) == nullptr)
+ {
+ return false;
+ }
+ else
+ {
+ return true;
+ }
+}
+
+ParsedTfOperationPtr TfParser::ParseConv2D(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+ IOutputSlot& inputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ TensorInfo inputTensorInfo = inputSlot.GetTensorInfo();
+
+ if (!HasParsedConstTensor<float>(inputs[1].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports Convolution layers with constant weights");
+ }
+ ParsedConstTfOperation<float>* weightNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<float> *>(inputs[1].m_IndexedValue);
+
+ std::string paddingString = ReadMandatoryNodeStringAttribute(nodeDef, "padding");
+ std::string dataFormat = ReadMandatoryNodeStringAttribute(nodeDef, "data_format");
+ std::vector<uint32_t> strides = ReadMandatoryNodeUint32ListAttribute(nodeDef, "strides");
+
+ // read the dilations, if present - only [1,1,1,1] (the default) is supported
+ std::vector<uint32_t> dilations = ReadOptionalNodeUint32ListAttribute(nodeDef, "dilations");
+ if (!dilations.empty())
+ {
+ for (auto dilation : dilations)
+ {
+ if (dilation != 1u)
+ {
+ throw ParseException("ArmNN only supports Convolution layers with dilations [1,1,1,1]");
+ }
+ }
+ }
+
+ Convolution2dDescriptor desc;
+ desc.m_BiasEnabled = false;
+
+ if (dataFormat == "NHWC")
+ {
+ desc.m_StrideX = strides[2];
+ desc.m_StrideY = strides[1];
+ // Swizzle input to supported memory layout
+ inputTensorInfo = armnnUtils::Permuted(inputSlot.GetTensorInfo(), NHWCToArmNN);
+ }
+ else if (dataFormat == "NCHW")
+ {
+ desc.m_StrideX = strides[3];
+ desc.m_StrideY = strides[2];
+ }
+ else
+ {
+ throw ParseException("Unsupported data format passed for Conv2D. Only NHWC and NCHW supported");
+ }
+
+ uint32_t inputHeight = inputTensorInfo.GetShape()[2];
+ uint32_t inputWidth = inputTensorInfo.GetShape()[3];
+
+ std::vector<float> outputTensorData;
+
+ ConstTensor weightTensor = weightNode->GetConstTensor(true, outputTensorData);
+
+ uint32_t weightHeight = weightTensor.GetShape()[2];
+ uint32_t weightWidth = weightTensor.GetShape()[3];
+
+ bool padding = false;
+ TensorInfo outputInfo;
+ if (paddingString == "SAME")
+ {
+ padding = true;
+ outputInfo = TensorInfo({ inputTensorInfo.GetShape()[0],
+ weightTensor.GetShape()[0],
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputHeight) /
+ static_cast<float>(desc.m_StrideY))),
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputWidth) /
+ static_cast<float>(desc.m_StrideX)))
+ }, DataType::Float32);
+ }
+ else if (paddingString == "VALID")
+ {
+ padding = false;
+ outputInfo = TensorInfo({ inputTensorInfo.GetShape()[0],
+ weightTensor.GetShape()[0],
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputHeight - weightHeight + 1) /
+ static_cast<float>(desc.m_StrideY))),
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputWidth - weightWidth + 1) /
+ static_cast<float>(desc.m_StrideX)))
+ }, DataType::Float32);
+ }
+ else
+ {
+ throw ParseException("Only 'SAME' and 'VALID' padding supported");
+ }
+
+ CalcPadding(inputHeight, weightHeight, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, padding);
+ CalcPadding(inputWidth, weightWidth, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, padding);
+
+ IConnectableLayer* layer = m_Network->AddConvolution2dLayer(desc, weightTensor, nodeDef.name().c_str());
+ layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+
+ if (dataFormat == "NHWC")
+ {
+ layer = SwizzleInDeswizzleOut(*m_Network, inputSlot, *layer, nodeDef.name());
+ }
+ else
+ {
+ inputSlot.Connect(layer->GetInputSlot(0));
+ }
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseDepthwiseConv2D(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+ IOutputSlot& inputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ TensorInfo inputTensorInfo = inputSlot.GetTensorInfo();
+
+ if (!HasParsedConstTensor<float>(inputs[1].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports Depthwise Convolution layers with constant weights");
+ }
+ ParsedConstTfOperation<float>* weightNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<float> *>(inputs[1].m_IndexedValue);
+
+
+ std::string paddingString = ReadMandatoryNodeStringAttribute(nodeDef, "padding");
+ std::string dataFormat = ReadMandatoryNodeStringAttribute(nodeDef, "data_format");
+ std::vector<uint32_t> strides = ReadMandatoryNodeUint32ListAttribute(nodeDef, "strides");
+
+ DepthwiseConvolution2dDescriptor desc;
+ desc.m_BiasEnabled = false;
+
+ if (dataFormat == "NHWC")
+ {
+ desc.m_StrideX = strides[2];
+ desc.m_StrideY = strides[1];
+ // Swizzle input to supported memory layout
+ inputTensorInfo = armnnUtils::Permuted(inputSlot.GetTensorInfo(), NHWCToArmNN);
+ }
+ else if (dataFormat == "NCHW")
+ {
+ desc.m_StrideX = strides[3];
+ desc.m_StrideY = strides[2];
+ }
+ else
+ {
+ throw ParseException("Unsupported data format passed for DepthwiseConv2dNative. Only NHWC and NCHW supported");
+ }
+
+ uint32_t inputHeight = inputTensorInfo.GetShape()[2];
+ uint32_t inputWidth = inputTensorInfo.GetShape()[3];
+
+ std::vector<float> outputTensorData;
+
+ ConstTensor weightTensor = weightNode->GetConstTensor(true, outputTensorData);
+
+ uint32_t weightHeight = weightTensor.GetShape()[2];
+ uint32_t weightWidth = weightTensor.GetShape()[3];
+
+ bool padding = false;
+ TensorInfo outputInfo;
+ if (paddingString == "SAME")
+ {
+ padding = true;
+ outputInfo = TensorInfo({ inputTensorInfo.GetShape()[0],
+ weightTensor.GetShape()[0] * weightTensor.GetShape()[1],
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputHeight) /
+ static_cast<float>(desc.m_StrideY))),
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputWidth) /
+ static_cast<float>(desc.m_StrideX)))
+ }, DataType::Float32);
+ }
+ else if (paddingString == "VALID")
+ {
+ padding = false;
+ outputInfo = TensorInfo({ inputTensorInfo.GetShape()[0],
+ weightTensor.GetShape()[0] * weightTensor.GetShape()[1],
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputHeight - weightHeight + 1) /
+ static_cast<float>(desc.m_StrideY))),
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputWidth - weightWidth + 1) /
+ static_cast<float>(desc.m_StrideX)))
+ }, DataType::Float32);
+ }
+ else
+ {
+ throw ParseException("Only 'SAME' and 'VALID' padding supported");
+ }
+
+ CalcPadding(inputHeight, weightHeight, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, padding);
+ CalcPadding(inputWidth, weightWidth, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, padding);
+
+ IConnectableLayer* layer = m_Network->AddDepthwiseConvolution2dLayer(desc, weightTensor, nodeDef.name().c_str());
+ layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+
+ if (dataFormat == "NHWC")
+ {
+ layer = SwizzleInDeswizzleOut(*m_Network, inputSlot, *layer, nodeDef.name());
+ }
+ else
+ {
+ inputSlot.Connect(layer->GetInputSlot(0));
+ }
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseFusedBatchNorm(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 5);
+
+ if (!HasParsedConstTensor<float>(inputs[1].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports FusedBatchNormalization layers with constant scale");
+ }
+ ParsedConstTfOperation<float>* scaleNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<float> *>(inputs[1].m_IndexedValue);
+
+ if (!HasParsedConstTensor<float>(inputs[2].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports FusedBatchNormalization layers with constant offset");
+ }
+ ParsedConstTfOperation<float>* offsetNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<float> *>(inputs[2].m_IndexedValue);
+
+ if (!HasParsedConstTensor<float>(inputs[3].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports FusedBatchNormalization layers with constant mean");
+ }
+ ParsedConstTfOperation<float>* meanNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<float> *>(inputs[3].m_IndexedValue);
+
+ if (!HasParsedConstTensor<float>(inputs[4].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports FusedBatchNormalization layers with constant variance");
+ }
+ ParsedConstTfOperation<float>* varianceNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<float> *>(inputs[4].m_IndexedValue);
+
+ // The descriptor only has the epsilon attribute
+ BatchNormalizationDescriptor desc;
+ desc.m_Eps = ReadMandatoryNodeFloatAttribute(nodeDef, "epsilon");
+
+ // data for the parsed tensor args (scale, offset, mean, variance) must be stored locally until the layer is added
+ std::vector<float> scaleTensorData;
+ ConstTensor scaleTensor = scaleNode->GetConstTensor(false, scaleTensorData);
+
+ std::vector<float> offsetTensorData;
+ ConstTensor offsetTensor = offsetNode->GetConstTensor(false, offsetTensorData);
+
+ std::vector<float> meanTensorData;
+ ConstTensor meanTensor = meanNode->GetConstTensor(false, meanTensorData);
+
+ std::vector<float> varianceTensorData;
+ ConstTensor varianceTensor = varianceNode->GetConstTensor(false, varianceTensorData);
+
+ IConnectableLayer* layer = m_Network->AddBatchNormalizationLayer(desc,
+ meanTensor,
+ varianceTensor,
+ offsetTensor,
+ scaleTensor,
+ nodeDef.name().c_str());
+
+ IOutputSlot& inputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+
+ const std::string dataFormat = ReadMandatoryNodeStringAttribute(nodeDef, "data_format");
+
+ if (dataFormat == "NHWC")
+ {
+ const TensorInfo outputTensorInfo = armnnUtils::Permuted(inputSlot.GetTensorInfo(), NHWCToArmNN);
+ layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
+ layer = SwizzleInDeswizzleOut(*m_Network, inputSlot, *layer, nodeDef.name());
+ }
+ else
+ {
+ layer->GetOutputSlot(0).SetTensorInfo(inputSlot.GetTensorInfo());
+ inputSlot.Connect(layer->GetInputSlot(0));
+ }
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseConcat(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfConstNodeDef> nodes = GetTfInputNodes(nodeDef);
+ // In tensorflow, we have the last input of the Concat layer as the axis for concatenation
+ unsigned int numInputs = static_cast<unsigned int>(nodes.size());
+ unsigned int numConcatView = numInputs - 1;
+
+ OriginsDescriptor concatDescriptor(static_cast<uint32_t>(numConcatView), MaxNumOfTensorDimensions);
+ std::vector<unsigned int>mergeDimSizes(MaxNumOfTensorDimensions, 0u);
+
+ unsigned int mergeDim = 0;
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, numInputs);
+
+ // The last input is the axis for concatenation
+ if (!HasParsedConstTensor<int32_t>(inputs[numInputs - 1].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports Concat with constant axis");
+ }
+ ParsedConstTfOperation<int32_t>* shapeNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<int32_t>*>(inputs[numInputs - 1].m_IndexedValue);
+
+ std::vector<int32_t> axisTensorData;
+ ConstTensor axisTensor = shapeNode->GetConstTensor(false, axisTensorData);
+
+ // This concatDim indicates the data format: 3 is the NHWC, 1 is the NCHW
+ const unsigned int concatDimInput = static_cast<unsigned int>(axisTensorData[0]);
+
+ // Armnn supports concatenation along the channel dimension for data format NHWC and NCHW
+ if (concatDimInput == 0 || concatDimInput == 2)
+ {
+ throw ParseException("The dimension for concatenation is not supported by Armnn");
+ }
+
+ // This is the only concatDim we support in Armnn
+ const unsigned int concatDim = 1;
+ for (unsigned int viewIndex = 0; viewIndex < numConcatView; ++viewIndex)
+ {
+ // need to double check whether it should be
+ IOutputSlot& inputSlot =
+ inputs[viewIndex].m_IndexedValue->ResolveArmnnOutputSlot(inputs[viewIndex].m_Index);
+ TensorInfo inputTensorInfo = inputSlot.GetTensorInfo();
+
+ if (inputTensorInfo.GetNumDimensions() != MaxNumOfTensorDimensions)
+ {
+ throw ParseException("The number of dimensions for input tensors of the concatenation op should be 4");
+ }
+
+ if (concatDimInput == 3)
+ {
+ inputTensorInfo = armnnUtils::Permuted(inputTensorInfo, NHWCToArmNN);
+ }
+
+ for (unsigned int dim = 0; dim < MaxNumOfTensorDimensions; ++dim)
+ {
+ mergeDimSizes[dim] = inputTensorInfo.GetShape()[dim];
+ }
+
+ for (unsigned int j = 0; j < concatDim; ++j)
+ {
+ concatDescriptor.SetViewOriginCoord(viewIndex, j, 0);
+ }
+
+ concatDescriptor.SetViewOriginCoord(viewIndex, concatDim, mergeDim);
+ mergeDim += mergeDimSizes[concatDim];
+
+ for (unsigned int j = concatDim+1; j < MaxNumOfTensorDimensions; ++j)
+ {
+ concatDescriptor.SetViewOriginCoord(viewIndex, j, 0);
+ }
+ }
+
+ mergeDimSizes[concatDim] = mergeDim;
+ armnn::IConnectableLayer *layer = m_Network->AddMergerLayer(concatDescriptor, nodeDef.name().c_str());
+
+ layer->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo(MaxNumOfTensorDimensions, mergeDimSizes.data(),
+ DataType::Float32));
+
+ for (unsigned int v = 0; v < numConcatView; ++v)
+ {
+ IOutputSlot& inputSlot = inputs[v].m_IndexedValue->ResolveArmnnOutputSlot(inputs[v].m_Index);
+ if (concatDimInput == 3)
+ {
+ IConnectableLayer* const swizzleLayer = AddSwizzleLayer(*m_Network, inputSlot, NHWCToArmNN,
+ "swizzle_for-" + nodeDef.name());
+ swizzleLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(v));
+ }
+ else
+ {
+ inputSlot.Connect(layer->GetInputSlot(v));
+ }
+ }
+
+ if (concatDimInput == 3)
+ {
+ IConnectableLayer* const deswizzleLayer = AddSwizzleLayer(*m_Network, layer->GetOutputSlot(0), ArmNNToNHWC,
+ "deswizzle_for-" + nodeDef.name());
+ layer = deswizzleLayer;
+ }
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseShape(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ // Note: The Shape layer is handled in a special way, because:
+ // 1. ARMNN doesn't support int32 tensors which it outputs
+ // 2. ARMNN works with statically shaped tensors which are known at parse time
+ // 3. because of 1. and 2. we treat the output of Shape as a temporary const int32
+ // tensor which may be used as an input to other ops, most likely a Reshape
+
+ const tensorflow::DataType tfDataType = ReadMandatoryNodeTypeAttribute(nodeDef, "out_type");
+ if (tfDataType != tensorflow::DT_INT32)
+ {
+ throw ParseException("Armnn only supports DT_INT32 as out_type");
+ }
+
+ const std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+ IOutputSlot& prevLayerOutputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ const TensorInfo& prevLayerTensorInfo = prevLayerOutputSlot.GetTensorInfo();
+ unsigned int prevLayerDimensions = prevLayerTensorInfo.GetNumDimensions();
+
+ std::vector<int32_t> shapeTensorData;
+ shapeTensorData.reserve(prevLayerDimensions);
+
+ for (unsigned int i=0; i<prevLayerDimensions; ++i)
+ {
+ shapeTensorData.push_back(static_cast<int32_t>(prevLayerTensorInfo.GetShape()[i]));
+ }
+
+ TensorInfo shapeTensorInfo(1, &prevLayerDimensions, DataType::Signed32);
+
+ return std::make_unique<ParsedConstTfOperation<int32_t>>(this,
+ nodeDef,
+ &shapeTensorData[0],
+ shapeTensorInfo);
+}
+
+ParsedTfOperationPtr TfParser::ParseReshape(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+ ParsedTfOperation* inputNode = inputs[0].m_IndexedValue;
+
+ if (!HasParsedConstTensor<int32_t>(inputs[1].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports Reshape layers with constant shapes");
+ }
+ ParsedConstTfOperation<int32_t>* shapeNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<int32_t>*>(inputs[1].m_IndexedValue);
+
+ armnn::IOutputSlot& prevLayerOutputSlot = inputNode->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ TensorInfo inputTensorInfo = prevLayerOutputSlot.GetTensorInfo();
+
+ std::vector<int32_t> shapeTensorData;
+ ConstTensor shapeTensor = shapeNode->GetConstTensor(false, shapeTensorData);
+ const TensorInfo outputTensorInfo = PrepareReshape(inputTensorInfo, shapeTensorData);
+
+ TensorShape targetShape = outputTensorInfo.GetShape();
+ ReshapeDescriptor reshapeDesc;
+ reshapeDesc.m_TargetShape = targetShape;
+
+ IConnectableLayer* layer = m_Network->AddReshapeLayer(reshapeDesc, nodeDef.name().c_str());
+ prevLayerOutputSlot.Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseResizeBilinear(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+
+ if (!HasParsedConstTensor<int32_t>(inputs[1].m_IndexedValue->GetNode().name()))
+ {
+ throw ParseException("ArmNN only supports ResizeBilinear layers with constant sizes");
+ }
+ ParsedConstTfOperation<int32_t>* sizeNode =
+ boost::polymorphic_downcast<ParsedConstTfOperation<int32_t>*>(inputs[1].m_IndexedValue);
+
+ // Check the align_corners attribute is not set
+ if (ReadOptionalNodeBoolAttribute(nodeDef, "align_corners", false))
+ {
+ throw ParseException("ArmNN only supports ResizeBilinear layers with align_corners set to false");
+ }
+
+ // data for the parsed tensor args (size) must be stored locally
+ std::vector<int32_t> sizeTensorData;
+ ConstTensor sizeTensor = sizeNode->GetConstTensor(false, sizeTensorData);
+
+ // The descriptor only has target height and width attributes, which we get from the size tensor
+ ResizeBilinearDescriptor desc;
+ desc.m_TargetHeight = static_cast<uint32_t> (sizeTensorData[0]);
+ desc.m_TargetWidth = static_cast<uint32_t> (sizeTensorData[1]);
+
+ IConnectableLayer* layer = m_Network->AddResizeBilinearLayer(desc, nodeDef.name().c_str());
+
+ IOutputSlot& inputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ TensorInfo inputTensorInfo = inputSlot.GetTensorInfo();
+ // the input shape is always in BHWC format, this will be swizzled below; for now,
+ // get the batch and channels to make up the ArmNN output shape with the target size
+ unsigned int outBatch = inputTensorInfo.GetShape()[0];
+ unsigned int outChannels = inputTensorInfo.GetShape()[3];
+ unsigned int outHeight = desc.m_TargetHeight;
+ unsigned int outWidth = desc.m_TargetWidth;
+ TensorShape outShape({outBatch, outChannels, outHeight, outWidth});
+ // The output DataType is always Float32, regardless of the input DataType
+ const TensorInfo outputTensorInfo(outShape, armnn::DataType::Float32);
+ layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
+
+ // TensorFlow ResizeBilinear input is always in BHWC format, so add swizzle and deswizzle layers
+ layer = SwizzleInDeswizzleOut(*m_Network, inputSlot, *layer, nodeDef.name());
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+TensorInfo OutputShapeOfSqueeze(const tensorflow::NodeDef& nodeDef, TensorInfo inputTensorInfo)
+{
+ BOOST_ASSERT(nodeDef.op() == "Squeeze");
+ tensorflow::DataType tfDataType = ReadMandatoryNodeTypeAttribute(nodeDef, "T");
+
+ DataType type;
+ if (tfDataType == tensorflow::DT_FLOAT)
+ {
+ type = DataType::Float32;
+ }
+ else if (tfDataType == tensorflow::DT_INT32)
+ {
+ type = DataType::Signed32;
+ }
+ else
+ {
+ throw ParseException(boost::str(
+ boost::format("Unsupported DataType %1% for Squeeze operation")
+ % tensorflow::DataType_Name(tfDataType)));
+ }
+
+ std::vector<uint32_t> squeezeDims = ReadOptionalNodeUint32ListAttribute(nodeDef, "squeeze_dims");
+ if (squeezeDims.empty())
+ {
+ for(unsigned int i = 0; i < inputTensorInfo.GetNumDimensions(); i++)
+ {
+ if (inputTensorInfo.GetShape()[i] == 1)
+ {
+ squeezeDims.push_back(i);
+ }
+ }
+ }
+
+ std::vector<uint32_t> outputDims;
+ for(unsigned int i = 0; i < inputTensorInfo.GetNumDimensions(); i++)
+ {
+ bool includeDimension = (std::find(squeezeDims.begin(), squeezeDims.end(), i) == squeezeDims.end());
+ if (includeDimension)
+ {
+ outputDims.push_back(inputTensorInfo.GetShape()[i]);
+ }
+ }
+
+ if (outputDims.size() > 4)
+ {
+ throw ParseException("Unsupported shape for Squeeze");
+ }
+
+ TensorInfo outTensorInfo = TensorInfo(boost::numeric_cast<unsigned int>(outputDims.size()),
+ outputDims.data(),
+ type);
+
+ return outTensorInfo;
+}
+
+ParsedTfOperationPtr TfParser::ParseSqueeze(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+
+ IOutputSlot& prevLayerOutputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ TensorInfo inputTensorInfo = prevLayerOutputSlot.GetTensorInfo();
+
+ TensorInfo outputInfo;
+ outputInfo = OutputShapeOfSqueeze(nodeDef, inputTensorInfo);
+
+ ReshapeDescriptor reshapeDesc;
+ reshapeDesc.m_TargetShape = outputInfo.GetShape();
+ IConnectableLayer* layer = m_Network->AddReshapeLayer(reshapeDesc, nodeDef.name().c_str());
+ prevLayerOutputSlot.Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseLrn(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+
+ NormalizationDescriptor normalizationDescriptor;
+ normalizationDescriptor.m_NormMethodType = NormalizationAlgorithmMethod::LocalBrightness;
+ normalizationDescriptor.m_NormChannelType = NormalizationAlgorithmChannel::Across;
+ normalizationDescriptor.m_Alpha = ReadMandatoryNodeFloatAttribute(nodeDef, "alpha");
+ normalizationDescriptor.m_Beta = ReadMandatoryNodeFloatAttribute(nodeDef, "beta");
+ normalizationDescriptor.m_K = ReadMandatoryNodeFloatAttribute(nodeDef, "bias");
+ normalizationDescriptor.m_NormSize = ReadMandatoryNodeUint32Attribute(nodeDef, "depth_radius");
+
+ // The window size must be an odd value. For a window size of (2 * n + 1), TensorFlow defines depth_radius = n.
+ normalizationDescriptor.m_NormSize = normalizationDescriptor.m_NormSize * 2 + 1;
+
+ IOutputSlot& prevLayerOutputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+
+ IConnectableLayer* layer = m_Network->AddNormalizationLayer(normalizationDescriptor,
+ nodeDef.name().c_str());
+
+ const TensorInfo permutedInfo = armnnUtils::Permuted(prevLayerOutputSlot.GetTensorInfo(), NHWCToArmNN);
+ layer->GetOutputSlot(0).SetTensorInfo(permutedInfo);
+
+ layer = SwizzleInDeswizzleOut(*m_Network, prevLayerOutputSlot, *layer, nodeDef.name());
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+/// An ParsedTfOperation for a MatMul node.
+/// Creation of the armnn FullyConnected layer is deferred until it is actually needed, because MatMul nodes are
+/// often used for the first part of a biased FullyConnected (MatMul followed by Add) and in these cases armnn doesn't
+/// need a separate layer for the MatMul.
+class ParsedMatMulTfOperation : public DeferredSingleLayerParsedTfOperation
+{
+public:
+ ParsedMatMulTfOperation(TfParser* parser, const tensorflow::NodeDef& node)
+ : DeferredSingleLayerParsedTfOperation(parser, node)
+ {
+ }
+
+ void CreateLayerDeferred() override
+ {
+ BOOST_ASSERT(m_Layer == nullptr);
+ m_Layer = m_Parser->AddFullyConnectedLayer(m_Node, nullptr, m_Node.name().c_str());
+ }
+};
+
+ParsedTfOperationPtr TfParser::ParseMatMul(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ // Defer the creation of the layer (see ParsedMatMulTfOperation).
+ return std::make_unique<ParsedMatMulTfOperation>(this, nodeDef);
+}
+
+ParsedTfOperationPtr TfParser::ParseMul(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+
+ IConnectableLayer* const layer = m_Network->AddMultiplicationLayer(nodeDef.name().c_str());
+ IOutputSlot* input0Slot = &inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ IOutputSlot* input1Slot = &inputs[1].m_IndexedValue->ResolveArmnnOutputSlot(inputs[1].m_Index);
+
+ auto const input0NumDims = input0Slot->GetTensorInfo().GetNumDimensions();
+ auto const input1NumDims = input1Slot->GetTensorInfo().GetNumDimensions();
+
+ if (input0NumDims < input1NumDims)
+ {
+ const bool isNHWC = true;
+ input0Slot = BroadcastForAddandMul(input1Slot, input0Slot, isNHWC, *m_Network, nodeDef);
+ }
+ if (input1NumDims < input0NumDims)
+ {
+ const bool isNHWC = true;
+ input1Slot = BroadcastForAddandMul(input0Slot, input1Slot, isNHWC, *m_Network, nodeDef);
+ }
+
+ input0Slot->Connect(layer->GetInputSlot(0));
+ input1Slot->Connect(layer->GetInputSlot(1));
+
+ if (input0NumDims < input1NumDims)
+ {
+ layer->GetOutputSlot(0).SetTensorInfo(input1Slot->GetTensorInfo());
+ }
+ else
+ {
+ layer->GetOutputSlot(0).SetTensorInfo(input0Slot->GetTensorInfo());
+ }
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParsePlaceholder(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 0);
+
+ const LayerBindingId layerId = boost::numeric_cast<LayerBindingId>(m_NetworkInputsBindingInfo.size());
+
+ auto it = m_InputShapes.find(nodeDef.name());
+ if (it == m_InputShapes.end())
+ {
+ throw ParseException("Missing input shape for Placeholder '" + nodeDef.name() + "'");
+ }
+ TensorInfo tensorInfo(it->second, DataType::Float32);
+
+ IConnectableLayer* const layer = m_Network->AddInputLayer(layerId, nodeDef.name().c_str());
+
+ layer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
+
+ TrackInputBinding(layer, layerId, tensorInfo);
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseRelu(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ ActivationDescriptor activationDesc;
+ activationDesc.m_Function = ActivationFunction::ReLu;
+ return AddActivationLayer(nodeDef, activationDesc);
+}
+
+ParsedTfOperationPtr TfParser::ParseRelu6(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ ActivationDescriptor activationDesc;
+ activationDesc.m_Function = ActivationFunction::BoundedReLu;
+ activationDesc.m_A = 6.0f;
+ activationDesc.m_B = 0.0f;
+
+ return AddActivationLayer(nodeDef, activationDesc);
+}
+
+ParsedTfOperationPtr TfParser::ParseSigmoid(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ ActivationDescriptor activationDesc;
+ activationDesc.m_Function = ActivationFunction::Sigmoid;
+
+ return AddActivationLayer(nodeDef, activationDesc);
+}
+
+ParsedTfOperationPtr TfParser::ParseSoftmax(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+
+ SoftmaxDescriptor softmaxDescriptor;
+ IConnectableLayer* const layer = m_Network->AddSoftmaxLayer(softmaxDescriptor, nodeDef.name().c_str());
+
+ IOutputSlot& prevLayerSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ prevLayerSlot.Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(prevLayerSlot.GetTensorInfo());
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseSoftplus(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ ActivationDescriptor activationDesc;
+ activationDesc.m_Function = ActivationFunction::SoftReLu;
+
+ return AddActivationLayer(nodeDef, activationDesc);
+}
+
+ParsedTfOperationPtr TfParser::ParseTanh(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ boost::ignore_unused(graphDef);
+
+ ActivationDescriptor activationDesc;
+ activationDesc.m_Function = ActivationFunction::TanH;
+ activationDesc.m_A = 1.0f;
+ activationDesc.m_B = 1.0f;
+
+ return AddActivationLayer(nodeDef, activationDesc);
+}
+
+ParsedTfOperationPtr TfParser::AddActivationLayer(const tensorflow::NodeDef& nodeDef,
+ ActivationDescriptor& activationDesc)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+
+ IConnectableLayer* const layer = m_Network->AddActivationLayer(activationDesc, nodeDef.name().c_str());
+
+ IOutputSlot& prevLayerOutputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ prevLayerOutputSlot.Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(prevLayerOutputSlot.GetTensorInfo());
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::ParseMaxPool(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ return ParsePooling2d(nodeDef, graphDef, PoolingAlgorithm::Max);
+}
+
+ParsedTfOperationPtr TfParser::ParseAvgPool(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef)
+{
+ return ParsePooling2d(nodeDef, graphDef, PoolingAlgorithm::Average);
+}
+
+ParsedTfOperationPtr TfParser::ParsePooling2d(const tensorflow::NodeDef& nodeDef,
+ const tensorflow::GraphDef& graphDef, PoolingAlgorithm pooltype)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 1);
+ IOutputSlot& inputSlot = inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ TensorInfo inputTensorInfo = inputSlot.GetTensorInfo();
+
+ if (inputs.size() != 1)
+ {
+ throw ParseException("2D Pooling expects one input!");
+ }
+
+ std::string paddingString = ReadMandatoryNodeStringAttribute(nodeDef, "padding");
+ std::string dataFormat = ReadMandatoryNodeStringAttribute(nodeDef, "data_format");
+ std::vector<uint32_t> strides = ReadMandatoryNodeUint32ListAttribute(nodeDef, "strides");
+ std::vector<uint32_t> ksize = ReadMandatoryNodeUint32ListAttribute(nodeDef, "ksize"); // size of pool windows
+
+ Pooling2dDescriptor pooling2dDescriptor;
+ pooling2dDescriptor.m_PoolType = pooltype;
+ pooling2dDescriptor.m_PaddingMethod = PaddingMethod::Exclude;
+ pooling2dDescriptor.m_OutputShapeRounding = OutputShapeRounding::Floor;
+
+ if (dataFormat == "NHWC")
+ {
+ pooling2dDescriptor.m_StrideX = strides[2];
+ pooling2dDescriptor.m_StrideY = strides[1];
+ pooling2dDescriptor.m_PoolWidth = ksize[2];
+ pooling2dDescriptor.m_PoolHeight = ksize[1];
+ // Swizzle input to supported memory layout
+ inputTensorInfo = armnnUtils::Permuted(inputSlot.GetTensorInfo(), NHWCToArmNN);
+ }
+ else if (dataFormat == "NCHW")
+ {
+ pooling2dDescriptor.m_StrideX = strides[3];
+ pooling2dDescriptor.m_StrideY = strides[2];
+ pooling2dDescriptor.m_PoolWidth = ksize[3];
+ pooling2dDescriptor.m_PoolHeight = ksize[2];
+ }
+ else
+ {
+ throw ParseException("Only NHWC or NCHW supported for Pooling2d");
+ }
+
+ uint32_t inputHeight = inputTensorInfo.GetShape()[2];
+ uint32_t inputWidth = inputTensorInfo.GetShape()[3];
+
+ bool padding = false;
+ TensorInfo outputInfo;
+ if (paddingString == "SAME")
+ {
+ padding = true;
+ outputInfo = TensorInfo({ inputTensorInfo.GetShape()[0],
+ inputTensorInfo.GetShape()[1],
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputHeight) /
+ static_cast<float>(pooling2dDescriptor.m_StrideY))),
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputWidth) /
+ static_cast<float>(pooling2dDescriptor.m_StrideX)))
+ }, DataType::Float32);
+ }
+ else if (paddingString == "VALID")
+ {
+ padding = false;
+ outputInfo = TensorInfo({ inputTensorInfo.GetShape()[0],
+ inputTensorInfo.GetShape()[1],
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputHeight - pooling2dDescriptor.m_PoolHeight + 1) /
+ static_cast<float>(pooling2dDescriptor.m_StrideY))),
+ static_cast<uint32_t>(ceil(
+ static_cast<float>(inputWidth - pooling2dDescriptor.m_PoolWidth + 1) /
+ static_cast<float>(pooling2dDescriptor.m_StrideX)))
+ }, DataType::Float32);
+ }
+ else
+ {
+ throw ParseException("Only 'SAME' and 'VALID' padding supported");
+ }
+
+ CalcPadding(inputWidth, pooling2dDescriptor.m_PoolWidth, pooling2dDescriptor.m_StrideX,
+ pooling2dDescriptor.m_PadLeft, pooling2dDescriptor.m_PadRight, padding);
+ CalcPadding(inputHeight, pooling2dDescriptor.m_PoolHeight, pooling2dDescriptor.m_StrideY,
+ pooling2dDescriptor.m_PadTop, pooling2dDescriptor.m_PadBottom, padding);
+
+
+ IConnectableLayer* layer = m_Network->AddPooling2dLayer(pooling2dDescriptor, nodeDef.name().c_str());
+ if (layer == nullptr)
+ {
+ throw ParseException("Failed to add pooling2d layer");
+ }
+
+ layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+
+ if (dataFormat == "NHWC")
+ {
+ layer = SwizzleInDeswizzleOut(*m_Network, inputSlot, *layer, nodeDef.name());
+ }
+ else
+ {
+ inputSlot.Connect(layer->GetInputSlot(0));
+ }
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+ParsedTfOperationPtr TfParser::AddAdditionLayer(const tensorflow::NodeDef& nodeDef, bool isBiasAdd)
+{
+ std::vector<OutputOfParsedTfOperation> inputs = GetInputParsedTfOperationsChecked(nodeDef, 2);
+
+ IOutputSlot* input0Slot = &inputs[0].m_IndexedValue->ResolveArmnnOutputSlot(inputs[0].m_Index);
+ IOutputSlot* input1Slot = &inputs[1].m_IndexedValue->ResolveArmnnOutputSlot(inputs[1].m_Index);
+
+ const TensorInfo& input0Info = input0Slot->GetTensorInfo();
+ const TensorInfo& input1Info = input1Slot->GetTensorInfo();
+
+ if (isBiasAdd)
+ {
+ // BiasAdd takes bias as a 1D tensor. We need to add a reshape layer to create a 4D tensor
+ // with the same data in the correct dimension for broadcast in addition.
+ if(input1Info.GetNumDimensions() != 1)
+ {
+ throw ParseException("Unsupported bias for BiasAdd. It should be a 1D vector.");
+ }
+
+ const std::string dataFormat = ReadMandatoryNodeStringAttribute(nodeDef, "data_format");
+ const bool isNHWC = (dataFormat == "NHWC");
+ const bool isNCHW = (dataFormat == "NCHW");
+
+ if (!isNHWC && ! isNCHW)
+ {
+ throw ParseException("Only NHWC or NCHW supported for BiasAdd");
+ }
+
+ input1Slot = BroadcastForAddandMul(input0Slot, input1Slot, isNHWC, *m_Network, nodeDef);
+ }
+ else
+ {
+ if (input0Info.GetNumDimensions() == 1)
+ {
+ const bool isNHWC = true;
+ input0Slot = BroadcastForAddandMul(input1Slot, input0Slot, isNHWC, *m_Network, nodeDef);
+ }
+
+ if (input1Info.GetNumDimensions() == 1)
+ {
+ const bool isNHWC = true;
+ input1Slot = BroadcastForAddandMul(input0Slot, input1Slot, isNHWC, *m_Network, nodeDef);
+ }
+ }
+
+ IConnectableLayer* const layer = m_Network->AddAdditionLayer(nodeDef.name().c_str());
+
+ input0Slot->Connect(layer->GetInputSlot(0));
+ input1Slot->Connect(layer->GetInputSlot(1));
+
+ if (input0Info.GetNumDimensions() == 1 && isBiasAdd == false)
+ {
+ layer->GetOutputSlot(0).SetTensorInfo(input1Slot->GetTensorInfo());
+ }
+ else
+ {
+ layer->GetOutputSlot(0).SetTensorInfo(input0Slot->GetTensorInfo());
+ }
+
+ return std::make_unique<SingleLayerParsedTfOperation>(this, nodeDef, layer);
+}
+
+IConnectableLayer* TfParser::AddFullyConnectedLayer(const tensorflow::NodeDef& matMulNodeDef,
+ const tensorflow::NodeDef* addNodeDef, const char* armnnLayerName)
+{
+ // find bias const (if applicable)
+ ParsedConstTfOperation<float>* biasNode = nullptr;
+ if (addNodeDef != nullptr)
+ {
+ std::vector<OutputOfParsedTfOperation> addInputs = GetInputParsedTfOperationsChecked(*addNodeDef, 2);
+ // find our inputs
+ if (HasParsedConstTensor<float>(addInputs[0].m_IndexedValue->GetNode().name()))
+ {
+ biasNode = boost::polymorphic_downcast<ParsedConstTfOperation<float>*>(addInputs[0].m_IndexedValue);
+ }
+ else if (HasParsedConstTensor<float>(addInputs[1].m_IndexedValue->GetNode().name()))
+ {
+ biasNode = boost::polymorphic_downcast<ParsedConstTfOperation<float>*>(addInputs[1].m_IndexedValue);
+ }
+ else
+ {
+ throw ParseException("ArmNN only supports fully connected layers with constant bias");
+ }
+ }
+
+ // find matmul inputs
+ ParsedConstTfOperation<float>* weightNode = nullptr;
+ ParsedTfOperation* inputNode = nullptr;
+ unsigned int inputIdx = 0;
+ std::vector<OutputOfParsedTfOperation> mulInputs = GetInputParsedTfOperationsChecked(matMulNodeDef, 2);
+ if (HasParsedConstTensor<float>(mulInputs[0].m_IndexedValue->GetNode().name()))
+ {
+ weightNode = boost::polymorphic_downcast<ParsedConstTfOperation<float>*>(mulInputs[0].m_IndexedValue);
+ inputNode = mulInputs[1].m_IndexedValue;
+ inputIdx = mulInputs[1].m_Index;
+ }
+ else if (HasParsedConstTensor<float>(mulInputs[1].m_IndexedValue->GetNode().name()))
+ {
+ weightNode = boost::polymorphic_downcast<ParsedConstTfOperation<float>*>(mulInputs[1].m_IndexedValue);
+ inputNode = mulInputs[0].m_IndexedValue;
+ inputIdx = mulInputs[0].m_Index;
+ }
+ else
+ {
+ throw ParseException("ArmNN only supports fully connected layers with constant weights");
+ }
+
+ std::vector<float> weightTensorData;
+ // handle weight
+ ConstTensor weights = weightNode->GetConstTensor(false, weightTensorData);
+
+ FullyConnectedDescriptor desc;
+ desc.m_BiasEnabled = addNodeDef != nullptr;
+
+ IConnectableLayer* layer = nullptr;
+ // make the layer
+ if (addNodeDef != nullptr)
+ {
+ std::vector<float> biasTensorData;
+ ConstTensor biases = biasNode->GetConstTensor(false, biasTensorData);
+
+ if (weights.GetShape()[1] != biases.GetShape()[0])
+ {
+ throw ParseException("shape of matmul and bias do not match");
+ }
+
+ layer = m_Network->AddFullyConnectedLayer(desc, weights, biases, armnnLayerName);
+ }
+ else
+ {
+ layer = m_Network->AddFullyConnectedLayer(desc, weights, armnnLayerName);
+ }
+
+ BOOST_ASSERT(layer != nullptr);
+
+ inputNode->ResolveArmnnOutputSlot(inputIdx).Connect(layer->GetInputSlot(0));
+ unsigned int batches = inputNode->ResolveArmnnOutputSlot(inputIdx).GetTensorInfo().GetShape()[0];
+
+ // handle output
+ TensorInfo outputInfo({ batches, weights.GetShape()[1] }, DataType::Float32);
+ layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+ return layer;
+}
+
+void TfParser::LoadNodeDef(const tensorflow::NodeDef& nodeDef, const tensorflow::GraphDef& graphDef)
+{
+ // get the type of the node (assume float)
+ tensorflow::DataType type = tensorflow::DT_FLOAT;
+ if (nodeDef.attr().count("T") != 0)
+ {
+ auto attr = nodeDef.attr().at("T");
+ type = attr.type();
+ }
+ else if (nodeDef.attr().count("dtype") != 0)
+ {
+ auto attr = nodeDef.attr().at("dtype");
+ type = attr.type();
+ }
+
+ if (type != tensorflow::DT_FLOAT && nodeDef.op() != "Const")
+ {
+ throw ParseException("Currently only FLOAT is supported for tensorflow nodes (apart from Const)");
+ }
+
+ const std::string& operation = nodeDef.op();
+ auto it = ms_OperationNameToParsingFunctions.find(operation);
+ if (it != ms_OperationNameToParsingFunctions.end())
+ {
+ auto func = it->second;
+ ParsedTfOperationPtr parsedTfOperation = (this->*func)(nodeDef, graphDef);
+ ParsedTfOperation* parsedTfOperationRaw = parsedTfOperation.get();
+
+ // Store the parsed operation so that dependent layers can connect to it
+ auto it = m_ParsedTfOperations.find(nodeDef.name());
+ if (it != m_ParsedTfOperations.end())
+ {
+ throw ParseException(boost::str(boost::format("Name %1% used by more than one node") % nodeDef.name()));
+ }
+ m_ParsedTfOperations[nodeDef.name()] = std::move(parsedTfOperation);
+
+ // If this node was requested as an output from the network then add an ArmNN output layer
+ if (std::find(m_RequestedOutputs.begin(), m_RequestedOutputs.end(), nodeDef.name()) !=
+ m_RequestedOutputs.end())
+ {
+ auto outId = ParseOutputId(nodeDef.name());
+ const LayerBindingId layerId = boost::numeric_cast<LayerBindingId>(m_NetworkOutputsBindingInfo.size());
+ IOutputSlot& prevSlot = parsedTfOperationRaw->ResolveArmnnOutputSlot(outId.m_Index);
+
+ TensorInfo tensorInfo = prevSlot.GetTensorInfo();
+
+ IConnectableLayer* outputLayer = m_Network->AddOutputLayer(layerId, nodeDef.name().c_str());
+
+ prevSlot.Connect(outputLayer->GetInputSlot(0));
+
+ TrackOutputBinding(outputLayer, layerId, tensorInfo);
+ }
+ }
+ else
+ {
+ throw ParseException(boost::str(
+ boost::format("Unsupported operation %1% in tensorflow::GraphDef") % operation));
+ }
+}
+
+void TfParser::LoadGraphDef(const tensorflow::GraphDef& graphDef)
+{
+ // add all nodes to our map
+ m_NodesByName.clear();
+ m_NetworkInputsBindingInfo.clear();
+ m_NetworkOutputsBindingInfo.clear();
+
+ for (int i = 0; i < graphDef.node_size(); ++i)
+ {
+ const tensorflow::NodeDef& node = graphDef.node(i);
+ m_NodesByName[node.name()] = &node;
+ }
+
+ // Find the output nodes the user requested
+ std::vector<const tensorflow::NodeDef*> targetNodes;
+ for (const std::string& requestedOutputName : m_RequestedOutputs)
+ {
+ auto nodeIt = m_NodesByName.find(requestedOutputName);
+ if (nodeIt == m_NodesByName.end())
+ {
+ throw ParseException("Couldn't find requested output node '" + requestedOutputName + "' in graph");
+ }
+ targetNodes.push_back(nodeIt->second);
+ }
+
+ // Sort them into a linear ordering such that all inputs of a node are before the node itself
+ std::vector<const tensorflow::NodeDef*> sortedNodes;
+ if (!armnnUtils::GraphTopologicalSort<const tensorflow::NodeDef*>(
+ targetNodes,
+ [this](const tensorflow::NodeDef* node)
+ {
+ auto outputs = GetTfInputNodes(*node);
+ std::vector<const tensorflow::NodeDef*> nodesOnly;
+ for (const auto & o : outputs) {
+ nodesOnly.push_back(o.m_IndexedValue);
+ }
+ return nodesOnly;
+ },
+ sortedNodes))
+ {
+ throw ParseException("Cycle detected in graph");
+ }
+
+ // Parse each node in order, knowing that all inputs of a node will be processed before the node itself
+ for (const auto& it : sortedNodes)
+ {
+ const tensorflow::NodeDef& currentNode = *it;
+ LoadNodeDef(currentNode, graphDef);
+ }
+}
+
+INetworkPtr TfParser::CreateNetworkFromTextFile(const char* graphFile,
+ const std::map<std::string, TensorShape>& inputShapes,
+ const std::vector<std::string>& requestedOutputs)
+{
+ FILE* fd = fopen(graphFile, "r");
+
+ if (fd == nullptr)
+ {
+ std::stringstream error;
+ error << "Graph file " << graphFile << " failed to open";
+ throw FileNotFoundException(error.str());
+ }
+
+ // Parse the file into a message
+ tensorflow::GraphDef graphDef;
+ auto input = new google::protobuf::io::FileInputStream(fileno(fd));
+ bool success = google::protobuf::TextFormat::Parse(input, &graphDef);
+ delete input;
+ fclose(fd);
+
+ if (!success)
+ {
+ std::stringstream error;
+ error << "Failed to parse graph file";
+ throw ParseException(error.str());
+ }
+
+ return CreateNetworkFromGraphDef(graphDef, inputShapes, requestedOutputs);
+}
+
+INetworkPtr TfParser::CreateNetworkFromString(const char* protoText,
+ const std::map<std::string, TensorShape>& inputShapes,
+ const std::vector<std::string>& requestedOutputs)
+{
+ // Parse the string into a message
+ tensorflow::GraphDef graphDef;
+ bool success = google::protobuf::TextFormat::ParseFromString(protoText, &graphDef);
+
+ if (!success)
+ {
+ std::stringstream error;
+ error << "Failed to parse graph file";
+ throw ParseException(error.str());
+ }
+
+ return CreateNetworkFromGraphDef(graphDef, inputShapes, requestedOutputs);
+}
+
+INetworkPtr TfParser::CreateNetworkFromBinaryFile(const char* graphFile,
+ const std::map<std::string, TensorShape>& inputShapes,
+ const std::vector<std::string>& requestedOutputs)
+{
+ FILE* fd = fopen(graphFile, "rb");
+
+ if (fd == nullptr)
+ {
+ std::stringstream error;
+ error << "Graph file " << graphFile << " failed to open";
+ throw FileNotFoundException(error.str());
+ }
+
+ // Parse the file into a message
+ tensorflow::GraphDef graphDef;
+
+ google::protobuf::io::FileInputStream inStream(fileno(fd));
+ google::protobuf::io::CodedInputStream codedStream(&inStream);
+ codedStream.SetTotalBytesLimit(INT_MAX, INT_MAX);
+ bool success = graphDef.ParseFromCodedStream(&codedStream);
+ fclose(fd);
+
+ if (!success)
+ {
+ std::stringstream error;
+ error << "Failed to parse protobuf file" << graphFile;
+ throw ParseException(error.str());
+ }
+
+ return CreateNetworkFromGraphDef(graphDef, inputShapes, requestedOutputs);
+}
+
+INetworkPtr TfParser::CreateNetworkFromGraphDef(const tensorflow::GraphDef& graphDef,
+ const std::map<std::string, TensorShape>& inputShapes,
+ const std::vector<std::string>& requestedOutputs)
+{
+ m_Network = INetwork::Create();
+
+ m_InputShapes = inputShapes;
+ if (requestedOutputs.size() == 0)
+ {
+ throw ParseException("requestedOutputs must have at least one entry");
+ }
+ m_RequestedOutputs = requestedOutputs;
+
+ try
+ {
+ LoadGraphDef(graphDef);
+ }
+ catch (const ParseException& e)
+ {
+ Cleanup();
+ throw e;
+ }
+
+ Cleanup();
+
+ return std::move(m_Network);
+}
+
+void TfParser::Cleanup()
+{
+ // cleanup, in case we reuse this parser
+ m_InputShapes.clear();
+ m_RequestedOutputs.clear();
+ m_NodesByName.clear();
+ m_ParsedTfOperations.clear();
+}
+
+BindingPointInfo TfParser::GetNetworkInputBindingInfo(const std::string& name) const
+{
+ return GetBindingInfo(name, "input", m_NetworkInputsBindingInfo);
+}
+
+BindingPointInfo TfParser::GetNetworkOutputBindingInfo(const std::string& name) const
+{
+ return GetBindingInfo(name, "output", m_NetworkOutputsBindingInfo);
+}
+
+std::pair<LayerBindingId, TensorInfo> TfParser::GetBindingInfo(const std::string& layerName,
+ const char* bindingPointDesc,
+ const std::unordered_map<std::string, BindingPointInfo>& nameToBindingInfo)
+{
+ auto it = nameToBindingInfo.find(layerName);
+ if (it == nameToBindingInfo.end())
+ {
+ throw InvalidArgumentException(boost::str(boost::format("Unknown %1% '%2%'") % bindingPointDesc % layerName));
+ }
+ return it->second;
+}
+
+void TfParser::TrackInputBinding(IConnectableLayer* layer, LayerBindingId id, const TensorInfo& tensorInfo)
+{
+ return TrackBindingPoint(layer, id, tensorInfo, "input", m_NetworkInputsBindingInfo);
+}
+
+void TfParser::TrackOutputBinding(IConnectableLayer* layer, LayerBindingId id, const TensorInfo& tensorInfo)
+{
+ return TrackBindingPoint(layer, id, tensorInfo, "output", m_NetworkOutputsBindingInfo);
+}
+
+void TfParser::TrackBindingPoint(IConnectableLayer* layer,
+ LayerBindingId id,
+ const TensorInfo& tensorInfo,
+ const char* bindingPointDesc,
+ std::unordered_map<std::string, BindingPointInfo>& nameToBindingInfo)
+{
+ const std::string layerName = layer->GetName();
+ auto it = nameToBindingInfo.find(layerName);
+ if (it == nameToBindingInfo.end())
+ {
+ nameToBindingInfo[layerName] = std::make_pair(id, tensorInfo);
+ }
+ else
+ {
+ throw ParseException(boost::str(
+ boost::format("Id %1% used by more than one %2% layer") % id % bindingPointDesc));
+ }
+}
+
+} // namespace armnnTfParser