aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/add/generic/neon/impl.cpp
blob: 0d4402e3329f5a62905e5ec05147240978d176f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * Copyright (c) 2020-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "src/cpu/kernels/add/generic/neon/impl.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
namespace cpu
{
template <typename ScalarType>
void add_same_neon(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
{
    /** SIMD vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<ScalarType, wrapper::traits::BitWidth::W128>;

    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    constexpr int window_step_x         = 16 / sizeof(ScalarType);
    const auto    window_start_x        = static_cast<int>(window.x().start());
    const auto    window_end_x          = static_cast<int>(window.x().end());
    const bool    is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x();

    if(is_broadcast_across_x)
    {
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? src1 : src0;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0;

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(dst, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const ScalarType *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<ScalarType *>(output.ptr());

            const ScalarType broadcast_value     = *reinterpret_cast<const ScalarType *>(broadcast_input.ptr());
            const auto       broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});

            // Compute S elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
                const auto res             = (policy == ConvertPolicy::SATURATE) ? wrapper::vqadd(broadcast_value_vec, non_broadcast_v) : wrapper::vadd(broadcast_value_vec, non_broadcast_v);
                wrapper::vstore(output_ptr + x, res);
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
                *(output_ptr + x)          = (policy == ConvertPolicy::SATURATE) ? wrapper::add_sat(broadcast_value, non_broadcast_v) : broadcast_value + non_broadcast_v;
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(src0, input1_win);
        Iterator input2(src1, input2_win);
        Iterator output(dst, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());

            // Compute S elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto val1 = wrapper::vloadq(input1_ptr + x);
                const auto val2 = wrapper::vloadq(input2_ptr + x);
                const auto res  = (policy == ConvertPolicy::SATURATE) ? wrapper::vqadd(val1, val2) : wrapper::vadd(val1, val2);
                wrapper::vstore(output_ptr + x, res);
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const auto val1   = *(input1_ptr + x);
                const auto val2   = *(input2_ptr + x);
                *(output_ptr + x) = (policy == ConvertPolicy::SATURATE) ? wrapper::add_sat(val1, val2) : val1 + val2;
            }
        },
        input1, input2, output);
    }
}

bool add_q8_neon_fixedpoint_possible(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
    const auto iq0 = src0->quantization_info().uniform();
    const auto iq1 = src1->quantization_info().uniform();
    const auto oq = dst->quantization_info().uniform();

    const auto scale0 = iq0.scale / oq.scale;
    const auto scale1 = iq1.scale / oq.scale;

    if(scale0 < -31.f || scale0 > 31.f || scale1 < -31.f || scale1 > 31.f)
    {
        // The scale factor cannot be stored as 6.10 signed fixed-point number.
        return false;
    }

    const auto offset = float(oq.offset) - scale0 * float(iq0.offset) - scale1 * float(iq1.offset);
    const auto max_acc = (std::abs(scale0) + std::abs(scale1)) * 1024.f + std::abs(offset);

    if(max_acc > 2097151.f)  // 2^21 - 1
    {
        // It might not be possible to store the result as 22.10 signed fixed-point number.
        return false;
    }

    return true;
}

template <typename ScalarType>
void add_q8_neon_fixedpoint(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
{
    ARM_COMPUTE_UNUSED(policy);

    const auto in0_info = src0->info();
    const auto in1_info = src1->info();

    const auto &in0_shape = in0_info->tensor_shape();
    const auto &in1_shape = in1_info->tensor_shape();

    // Create input windows.
    Window in0_win = window.broadcast_if_dimension_le_one(in0_shape);
    Window in1_win = window.broadcast_if_dimension_le_one(in1_shape);

    // Clear the x dimension on the execution window as we process the whole row each iteration.
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    constexpr int window_step_x = 16;
    const auto window_start_x = window.x().start();
    const auto window_end_x = window.x().end();
    const auto is_broadcast_across_x = in0_shape.x() != in1_shape.x();

    const auto iq0_info = in0_info->quantization_info().uniform();
    const auto iq1_info = in1_info->quantization_info().uniform();
    const auto oq_info = dst->info()->quantization_info().uniform();

    const auto in0_scale = iq0_info.scale / oq_info.scale;
    const auto in1_scale = iq1_info.scale / oq_info.scale;
    const auto offset = float(oq_info.offset) - in0_scale * float(iq0_info.offset) - in1_scale * float(iq1_info.offset);

    const auto in0_scale_6p10 = static_cast<int16_t>(support::cpp11::lround(in0_scale * 1024.f));
    const auto in1_scale_6p10 = static_cast<int16_t>(support::cpp11::lround(in1_scale * 1024.f));
    const auto offset_22p10 = static_cast<int32_t>(support::cpp11::lround(offset * 1024.f));

    if(is_broadcast_across_x)
    {
        // Prefix: a = non-broadcast, b = broadcast.

        const auto is_broadcast_input_1 = in1_win.x().step() == 0;
        auto a_win = is_broadcast_input_1 ? in0_win : in1_win;
        auto b_win = is_broadcast_input_1 ? in1_win : in0_win;
        const auto a_tensor = is_broadcast_input_1 ? src0 : src1;
        const auto b_tensor = is_broadcast_input_1 ? src1 : src0;

        const auto a_scale_6p10 = is_broadcast_input_1 ? in0_scale_6p10 : in1_scale_6p10;
        const auto b_scale = is_broadcast_input_1 ? in1_scale : in0_scale;
        const auto a_vscale_6p10 = wrapper::vdup_n(a_scale_6p10, wrapper::traits::vector_64_tag());

#ifndef __aarch64__
        const auto a_scale = is_broadcast_input_1 ? in0_scale : in1_scale;
#endif // __aarch64__

        // Clear the x dimension on the execution window as we process the whole row each iteration.
        a_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator a_input_it(a_tensor, a_win);
        Iterator b_input_it(b_tensor, b_win);
        Iterator out_it(dst, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto a_ptr = reinterpret_cast<const ScalarType *>(a_input_it.ptr());
            const auto b_ptr = reinterpret_cast<const ScalarType *>(b_input_it.ptr());
            const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr());

            const auto b_val = *b_ptr;
            const auto b_scaled = b_scale * b_val;
            const auto b_scaled_22p10 = static_cast<int32_t>(support::cpp11::lround(b_scaled * 1024.f));
            const auto b_scaled_offseted_22p10 = b_scaled_22p10 + offset_22p10;
            const auto b_vscaled_offseted_22p10 = wrapper::vdup_n(b_scaled_offseted_22p10, wrapper::traits::vector_128_tag());

#ifndef __aarch64__
            const auto b_scaled_offseted = b_scaled + offset;
#endif // __aarch64__

            int x = window_start_x;

            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                // Load the input.
                const auto a_vin_8p0 = wrapper::vloadq(a_ptr + x);

                // Widen the non-broadcast elements to signed 16-bit regardless of the input signedness.
                const auto a_vin_16p0_0 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(a_vin_8p0)));
                const auto a_vin_16p0_1 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(a_vin_8p0)));

                // Multiply the non-broadcast elements by the scale factor, add the scaled broadcast elements and the offset.
                // Widen and store the result in 32-bit integer.
                const auto vout_22p10_00 = wrapper::vmlal(b_vscaled_offseted_22p10, wrapper::vgetlow(a_vin_16p0_0), a_vscale_6p10);
                const auto vout_22p10_01 = wrapper::vmlal(b_vscaled_offseted_22p10, wrapper::vgethigh(a_vin_16p0_0), a_vscale_6p10);
                const auto vout_22p10_10 = wrapper::vmlal(b_vscaled_offseted_22p10, wrapper::vgetlow(a_vin_16p0_1), a_vscale_6p10);
                const auto vout_22p10_11 = wrapper::vmlal(b_vscaled_offseted_22p10, wrapper::vgethigh(a_vin_16p0_1), a_vscale_6p10);

                // Remove 2 bits of the fractional part, round, narrow to 16-bit and saturate the result.
                const auto vout_8p8_0 = wrapper::vcombine(
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_00),
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_01)
                );
                const auto vout_8p8_1 = wrapper::vcombine(
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_10),
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_11)
                );

                // Remove 8 bits of the fractional part, round, narrow to 8-bit and saturate the result.
                const auto vout_8p0 = wrapper::vcombine(
                    wrapper::vqrshrn<8>(vout_8p8_0),
                    wrapper::vqrshrn<8>(vout_8p8_1)
                );

                // Store the result.
                wrapper::vstore(out_ptr + x, vout_8p0);
            }

            // Process the left-over elements.
            for(; x < window_end_x; ++x)
            {
#ifdef __aarch64__
                out_ptr[x] = wrapper::vqrshrn<8>(wrapper::vqrshrn_ex<2, ScalarType>(int32_t(a_ptr[x]) * a_scale_6p10 + b_scaled_offseted_22p10));
#else // __aarch64__
                out_ptr[x] = utility::clamp<int, ScalarType>(support::cpp11::lround(float(a_ptr[x]) * a_scale + b_scaled_offseted));
#endif // __aarch64__
            }
        },
        b_input_it, a_input_it, out_it);
    }
    else
    {
        const auto vscale0_6p10 = wrapper::vdup_n(in0_scale_6p10, wrapper::traits::vector_64_tag());
        const auto vscale1_6p10 = wrapper::vdup_n(in1_scale_6p10, wrapper::traits::vector_64_tag());
        const auto voffset_22p10 = wrapper::vdup_n(offset_22p10, wrapper::traits::vector_128_tag());

        // Clear the x dimension on the execution window as we process the whole row each iteration.
        in0_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        in1_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator in0_it(src0, in0_win);
        Iterator in1_it(src1, in1_win);
        Iterator out_it(dst, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto in0_ptr = reinterpret_cast<const ScalarType *>(in0_it.ptr());
            const auto in1_ptr = reinterpret_cast<const ScalarType *>(in1_it.ptr());
            const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr());

            int x = window_start_x;

            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                // Load the inputs.
                const auto vin0_8p0 = wrapper::vloadq(in0_ptr + x);
                const auto vin1_8p0 = wrapper::vloadq(in1_ptr + x);

                // Widen the input elements to signed 16-bit regardless of the input signedness.
                const auto vin0_16p0_0 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(vin0_8p0)));
                const auto vin0_16p0_1 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(vin0_8p0)));
                const auto vin1_16p0_0 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(vin1_8p0)));
                const auto vin1_16p0_1 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(vin1_8p0)));

                // Multiply the input elements by the scale factor and add the offset.
                // Widen and store the result in 32-bit integer.
                const auto vscaled0_offseted_22p10_00 = wrapper::vmlal(voffset_22p10, wrapper::vgetlow(vin0_16p0_0), vscale0_6p10);
                const auto vscaled0_offseted_22p10_01 = wrapper::vmlal(voffset_22p10, wrapper::vgethigh(vin0_16p0_0), vscale0_6p10);
                const auto vscaled0_offseted_22p10_10 = wrapper::vmlal(voffset_22p10, wrapper::vgetlow(vin0_16p0_1), vscale0_6p10);
                const auto vscaled0_offseted_22p10_11 = wrapper::vmlal(voffset_22p10, wrapper::vgethigh(vin0_16p0_1), vscale0_6p10);

                const auto vout_22p10_00 = wrapper::vmlal(vscaled0_offseted_22p10_00, wrapper::vgetlow(vin1_16p0_0), vscale1_6p10);
                const auto vout_22p10_01 = wrapper::vmlal(vscaled0_offseted_22p10_01, wrapper::vgethigh(vin1_16p0_0), vscale1_6p10);
                const auto vout_22p10_10 = wrapper::vmlal(vscaled0_offseted_22p10_10, wrapper::vgetlow(vin1_16p0_1), vscale1_6p10);
                const auto vout_22p10_11 = wrapper::vmlal(vscaled0_offseted_22p10_11, wrapper::vgethigh(vin1_16p0_1), vscale1_6p10);

                // Remove 2 bits of the fractional part, round, narrow to 16-bit and saturate the result.
                const auto vout_8p8_0 = wrapper::vcombine(
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_00),
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_01)
                );
                const auto vout_8p8_1 = wrapper::vcombine(
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_10),
                    wrapper::vqrshrn_ex<2, ScalarType>(vout_22p10_11)
                );

                // Remove 8 bits of the fractional part, round, narrow to 8-bit and saturate the result.
                const auto vout_8p0 = wrapper::vcombine(
                    wrapper::vqrshrn<8>(vout_8p8_0),
                    wrapper::vqrshrn<8>(vout_8p8_1)
                );

                // Store the result.
                wrapper::vstore(out_ptr + x, vout_8p0);
            }

            // Process the left-over elements.
            for(; x < window_end_x; ++x)
            {
#ifdef __aarch64__
                out_ptr[x] = wrapper::vqrshrn<8>(wrapper::vqrshrn_ex<2, ScalarType>(int32_t(in0_ptr[x]) * in0_scale_6p10 + int32_t(in1_ptr[x]) * in1_scale_6p10 + offset_22p10));
#else // __aarch64__
                out_ptr[x] = utility::clamp<int, ScalarType>(support::cpp11::lround(float(in0_ptr[x]) * in0_scale + float(in1_ptr[x]) * in1_scale + offset));
#endif // __aarch64__
            }
        },
        in0_it, in1_it, out_it);
    }
}

template void add_same_neon<float>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);
template void add_same_neon<uint8_t>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);
template void add_same_neon<int32_t>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);
template void add_same_neon<int16_t>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
template void add_same_neon<float16_t>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);
#endif /* (__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */

template void add_q8_neon_fixedpoint<int8_t>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);
template void add_q8_neon_fixedpoint<uint8_t>(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window);

} // namespace cpu
} // namespace arm_compute