aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2018-03-02 11:18:12 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:49:16 +0000
commitd2fab7315bac3a586f2f1b1c8d64f2441f89ca64 (patch)
tree33572f0fea29d24546850f3835703f9869726122 /src/core/CL/cl_kernels
parent27c08abe6947b1ee5b266799f2bb2bf0a05d0def (diff)
downloadComputeLibrary-d2fab7315bac3a586f2f1b1c8d64f2441f89ca64.tar.gz
COMPMID-935 - Implementing Convolution with Winograd on OpenCL (part 4)
Implemented Winograd Output Transform (2x2,3x3) on OpenCL Implemented CLWinogradConvolutionLayer on OpenCL Change-Id: I6a113fc5f052ca07f878d2b800d2ab003f84af65 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/125148 Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Tested-by: Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl127
-rw-r--r--src/core/CL/cl_kernels/winograd.cl247
2 files changed, 286 insertions, 88 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index cba5eea437..a5b0acbe9c 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -162,6 +162,8 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -199,8 +201,18 @@ __kernel void gemm_mm_interleaved_transposed_f32_midgard(IMAGE_DECLARATION(src0)
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global float *src_addr_a = (__global float *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
- __global float *src_addr_b = (__global float *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
+ __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
// Compute end row address for matrix B
__global float *src_end_addr_b = src_addr_b + COLS_B;
@@ -277,6 +289,9 @@ __kernel void gemm_mm_interleaved_transposed_f32_midgard(IMAGE_DECLARATION(src0)
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -314,8 +329,18 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global float *src_addr_a = (__global float *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
- __global float *src_addr_b = (__global float *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
+ __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
// Compute end row address for matrix B
__global float *src_end_addr_b = src_addr_b + COLS_B;
@@ -510,6 +535,8 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -547,8 +574,18 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global half *src_addr_a = (__global half *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
+ __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
// Compute end row address for matrix B
__global half *src_end_addr_b = src_addr_b + COLS_B;
@@ -627,8 +664,9 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- *
- * @note: ALPHA must be passed in 8 bit fixed point format
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
+ * @note:ALPHA must be passed in 8 bit fixed point format
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -666,8 +704,18 @@ __kernel void gemm_mm_interleaved_transposed_qs8(IMAGE_DECLARATION(src0),
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global char *src_addr_a = src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- __global char *src_addr_b = src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes;
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global char *src_addr_a = (__global char *)(src0_ptr + src0_addr_in_bytes);
+ __global char *src_addr_b = (__global char *)(src1_ptr + src1_addr_in_bytes);
// Compute end row address for matrix B
__global char *src_end_addr_b = src_addr_b + COLS_B;
@@ -738,8 +786,9 @@ __kernel void gemm_mm_interleaved_transposed_qs8(IMAGE_DECLARATION(src0),
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- *
- * @note: ALPHA must be passed in 16 bit fixed point format
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
+ * @note:ALPHA must be passed in 16 bit fixed point format
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -777,8 +826,18 @@ __kernel void gemm_mm_interleaved_transposed_qs16(IMAGE_DECLARATION(src0),
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global short *src_addr_a = (__global short *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
- __global short *src_addr_b = (__global short *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global short *src_addr_a = (__global short *)(src0_ptr + src0_addr_in_bytes);
+ __global short *src_addr_b = (__global short *)(src1_ptr + src1_addr_in_bytes);
// Compute end row address for matrix B
__global short *src_end_addr_b = src_addr_b + COLS_B;
@@ -845,6 +904,8 @@ __kernel void gemm_mm_interleaved_transposed_qs16(IMAGE_DECLARATION(src0),
* @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
* @note The number of matrix A columns and the optional alpha's value need to be passed at compile time using -DCOLS_A and -DALPHA
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -885,7 +946,13 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(DATA_TYPE));
@@ -1013,6 +1080,8 @@ __kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
* @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -1054,8 +1123,12 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
- // For convolution layer we do not want to slide the matrix B along Z
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
// Address boundary for matrix A
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(float));
@@ -1251,6 +1324,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=2.
* @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha if alpha!=1.0f.
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -1293,8 +1368,12 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
- // For convolution layer we do not want to slide the matrix B along Z
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
// Address boundary for the matrix A
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(float));
@@ -1460,6 +1539,8 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
* @note The number matrix A columns, the number of elements processed per thread along the Y direction and the alpha's value need to be passed at compile time using -DCOLS_A, -DNUM_ELEMS_PROCESSED_PER_THREAD_Y and -DALPHA
* @note The fixed point position need to be passed at compile time using -DFIXED_POINT_POSITION
* @note The optional alpha value must be passed in 8 bit fixed point format using -DALPHA
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8/QS16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -1500,7 +1581,13 @@ __kernel void gemm_mm_qs8(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(char));
@@ -1636,6 +1723,8 @@ __kernel void gemm_mm_qs8(IMAGE_DECLARATION(src0),
* @note The number of matrix A columns, the number of elements processed per thread along the Y direction and the alpha's value need to be passed at compile time using -DCOLS_A, -DNUM_ELEMS_PROCESSED_PER_THREAD_Y and -DALPHA
* @note The fixed point position need to be passed at compile time using -DFIXED_POINT_POSITION
* @note The optional alpha value must be passed in 16 bit fixed point format using -DALPHA
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8/QS16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -1676,7 +1765,13 @@ __kernel void gemm_mm_qs16(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(short));
diff --git a/src/core/CL/cl_kernels/winograd.cl b/src/core/CL/cl_kernels/winograd.cl
index 238e21a18a..25c129d0aa 100644
--- a/src/core/CL/cl_kernels/winograd.cl
+++ b/src/core/CL/cl_kernels/winograd.cl
@@ -23,8 +23,102 @@
*/
#include "helpers.h"
-#if defined(NUM_TILES_X)
+#if defined(NUM_CHANNELS)
+
+/** This OpenCL kernel performs Winograd filter transform 3x3 when the data format is NCHW and the output tile is 2x2
+ *
+ * @note The number of channels must be passed at compile time using -DNUM_CHANNELS: e.g. -DNUM_CHANNELS=64
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_filter_transform_2x2_3x3_nchw(
+ TENSOR4D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, NUM_CHANNELS);
+
+ const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);
+
+ // Load the values from the input tensor
+ float3 w0 = vload3(0, (__global float *)(src_addr + 0 * src_stride_y));
+ float3 w1 = vload3(0, (__global float *)(src_addr + 1 * src_stride_y));
+ float3 w2 = vload3(0, (__global float *)(src_addr + 2 * src_stride_y));
+
+ // Transform the 3x3 tile in a 4x4 tile
+ float4 out0 = 0.0f;
+ float4 out1 = 0.0f;
+ float4 out2 = 0.0f;
+ float4 out3 = 0.0f;
+
+ // Row 0
+ out0.s0 = (w0.s0);
+ out0.s1 = (w0.s0 + w0.s1 + w0.s2) * 0.5f;
+ out0.s2 = (w0.s0 + w0.s2 - w0.s1) * 0.5f;
+ out0.s3 = (w0.s2);
+
+ // Row 1
+ out1.s0 = (w0.s0 + w1.s0 + w2.s0) * 0.5f;
+ out1.s1 = (w0.s0 + w1.s0 + w2.s0 + w0.s1 + w1.s1 + w2.s1 + w0.s2 + w1.s2 + w2.s2) * 0.25f;
+ out1.s2 = (w0.s0 + w1.s0 + w2.s0 + w0.s2 + w1.s2 + w2.s2 - w0.s1 - w1.s1 - w2.s1) * 0.25f;
+ out1.s3 = (w0.s2 + w1.s2 + w2.s2) * 0.5f;
+
+ // Row 2
+ out2.s0 = (w0.s0 + w2.s0 - w1.s0) * 0.5f;
+ out2.s1 = (w0.s0 + w2.s0 + w0.s1 + w2.s1 + w0.s2 + w2.s2 - w1.s0 - w1.s1 - w1.s2) * 0.25f;
+ out2.s2 = (w0.s0 + w2.s0 + w1.s1 + w0.s2 + w2.s2 - w1.s0 - w0.s1 - w2.s1 - w1.s2) * 0.25f;
+ out2.s3 = (w0.s2 + w2.s2 - w1.s2) * 0.5f;
+
+ // Row 3
+ out3.s0 = (w2.s0);
+ out3.s1 = (w2.s0 + w2.s1 + w2.s2) * 0.5f;
+ out3.s2 = (w2.s0 + w2.s2 - w2.s1) * 0.5f;
+ out3.s3 = (w2.s2);
+ int z = get_global_id(2);
+ int x0 = z / NUM_CHANNELS; // idx filter
+ int y0 = z % NUM_CHANNELS; // idx channel
+
+ // Get output address
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x0 * dst_stride_x + y0 * dst_stride_y;
+
+ // Store the 16 values across the 16 channels
+ *(__global float *)(dst_addr + 0 * dst_stride_z) = out0.s0;
+ *(__global float *)(dst_addr + 1 * dst_stride_z) = out0.s1;
+ *(__global float *)(dst_addr + 2 * dst_stride_z) = out0.s2;
+ *(__global float *)(dst_addr + 3 * dst_stride_z) = out0.s3;
+ *(__global float *)(dst_addr + 4 * dst_stride_z) = out1.s0;
+ *(__global float *)(dst_addr + 5 * dst_stride_z) = out1.s1;
+ *(__global float *)(dst_addr + 6 * dst_stride_z) = out1.s2;
+ *(__global float *)(dst_addr + 7 * dst_stride_z) = out1.s3;
+ *(__global float *)(dst_addr + 8 * dst_stride_z) = out2.s0;
+ *(__global float *)(dst_addr + 9 * dst_stride_z) = out2.s1;
+ *(__global float *)(dst_addr + 10 * dst_stride_z) = out2.s2;
+ *(__global float *)(dst_addr + 11 * dst_stride_z) = out2.s3;
+ *(__global float *)(dst_addr + 12 * dst_stride_z) = out3.s0;
+ *(__global float *)(dst_addr + 13 * dst_stride_z) = out3.s1;
+ *(__global float *)(dst_addr + 14 * dst_stride_z) = out3.s2;
+ *(__global float *)(dst_addr + 15 * dst_stride_z) = out3.s3;
+}
+#endif // defined(NUM_CHANNELS)
+
+#if defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP)
/** This OpenCL kernel computes the input transform when the kernel size is 3x3 and the output tile is 2x2
*
* @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
@@ -205,13 +299,12 @@ __kernel void winograd_input_transform_2x2_3x3_stepz2_nchw(
vstore2(out32, 0, (__global float *)(dst_addr + 14 * dst_stride_z));
vstore2(out33, 0, (__global float *)(dst_addr + 15 * dst_stride_z));
}
-#endif //defined(NUM_TILES_X)
+#endif // defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP)
-#if defined(NUM_CHANNELS)
-
-/** This OpenCL kernel performs Winograd filter transform 3x3 when the data format is NCHW and the output tile is 2x2
+#if defined(NUM_TILES_X)
+/** This OpenCL kernel performs Winograd output transform when the output tile is 2x2, the filter size 3x3 and the data format is NCHW
*
- * @note The number of channels must be passed at compile time using -DNUM_CHANNELS: e.g. -DNUM_CHANNELS=64
+ * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
@@ -220,8 +313,6 @@ __kernel void winograd_input_transform_2x2_3x3_stepz2_nchw(
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
@@ -232,72 +323,84 @@ __kernel void winograd_input_transform_2x2_3x3_stepz2_nchw(
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
-__kernel void winograd_filter_transform_2x2_3x3_nchw(
- TENSOR4D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
+__kernel void winograd_output_transform_2x2_3x3_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst)
+#if defined(HAS_BIAS)
+ ,
+ VECTOR_DECLARATION(bias)
+#endif // defined(HAS_BIAS)
+)
{
- Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, NUM_CHANNELS);
-
- const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);
-
- // Load the values from the input tensor
- float3 w0 = vload3(0, (__global float *)(src_addr + 0 * src_stride_y));
- float3 w1 = vload3(0, (__global float *)(src_addr + 1 * src_stride_y));
- float3 w2 = vload3(0, (__global float *)(src_addr + 2 * src_stride_y));
-
- // Transform the 3x3 tile in a 4x4 tile
- float4 out0 = 0.0f;
- float4 out1 = 0.0f;
- float4 out2 = 0.0f;
- float4 out3 = 0.0f;
-
- // Row 0
- out0.s0 = (w0.s0);
- out0.s1 = (w0.s0 + w0.s1 + w0.s2) * 0.5f;
- out0.s2 = (w0.s0 + w0.s2 - w0.s1) * 0.5f;
- out0.s3 = (w0.s2);
-
- // Row 1
- out1.s0 = (w0.s0 + w1.s0 + w2.s0) * 0.5f;
- out1.s1 = (w0.s0 + w1.s0 + w2.s0 + w0.s1 + w1.s1 + w2.s1 + w0.s2 + w1.s2 + w2.s2) * 0.25f;
- out1.s2 = (w0.s0 + w1.s0 + w2.s0 + w0.s2 + w1.s2 + w2.s2 - w0.s1 - w1.s1 - w2.s1) * 0.25f;
- out1.s3 = (w0.s2 + w1.s2 + w2.s2) * 0.5f;
-
- // Row 2
- out2.s0 = (w0.s0 + w2.s0 - w1.s0) * 0.5f;
- out2.s1 = (w0.s0 + w2.s0 + w0.s1 + w2.s1 + w0.s2 + w2.s2 - w1.s0 - w1.s1 - w1.s2) * 0.25f;
- out2.s2 = (w0.s0 + w2.s0 + w1.s1 + w0.s2 + w2.s2 - w1.s0 - w0.s1 - w2.s1 - w1.s2) * 0.25f;
- out2.s3 = (w0.s2 + w2.s2 - w1.s2) * 0.5f;
-
- // Row 3
- out3.s0 = (w2.s0);
- out3.s1 = (w2.s0 + w2.s1 + w2.s2) * 0.5f;
- out3.s2 = (w2.s0 + w2.s2 - w2.s1) * 0.5f;
- out3.s3 = (w2.s2);
-
- int z = get_global_id(2);
- int x0 = z / NUM_CHANNELS; // idx filter
- int y0 = z % NUM_CHANNELS; // idx channel
+ // Each thread stores a 2x2 tile
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+
+ const __global uchar *src_addr = tensor3D_offset(&src, 0, 0, 0);
+
+ // Load the values across the 16 channels to compose the 4x4 tile
+ float d00 = *((__global float *)(src_addr + 0 * src_stride_z));
+ float d01 = *((__global float *)(src_addr + 1 * src_stride_z));
+ float d02 = *((__global float *)(src_addr + 2 * src_stride_z));
+ float d03 = *((__global float *)(src_addr + 3 * src_stride_z));
+
+ float d10 = *((__global float *)(src_addr + 4 * src_stride_z));
+ float d11 = *((__global float *)(src_addr + 5 * src_stride_z));
+ float d12 = *((__global float *)(src_addr + 6 * src_stride_z));
+ float d13 = *((__global float *)(src_addr + 7 * src_stride_z));
+
+ float d20 = *((__global float *)(src_addr + 8 * src_stride_z));
+ float d21 = *((__global float *)(src_addr + 9 * src_stride_z));
+ float d22 = *((__global float *)(src_addr + 10 * src_stride_z));
+ float d23 = *((__global float *)(src_addr + 11 * src_stride_z));
+
+ float d30 = *((__global float *)(src_addr + 12 * src_stride_z));
+ float d31 = *((__global float *)(src_addr + 13 * src_stride_z));
+ float d32 = *((__global float *)(src_addr + 14 * src_stride_z));
+ float d33 = *((__global float *)(src_addr + 15 * src_stride_z));
+
+ // Compute the 2x2 output tile
+ float k0 = d01 + d11 + d21;
+ float k1 = d02 + d12 + d22;
+ float k2 = d11 - d21 - d31;
+ float k3 = d12 - d22 - d32;
+
+ // out00 = d00 + d10 + d20 + d01 + d11 + d21 + d02 + d12 + d22
+ // out01 = d01 + d11 + d21 - (d02 + d12 + d22) - (d03 + d13 + d23)
+ // out10 = d10 - d20 - d30 + (d11 - d21 - d31) + (d12 - d22 - d32)
+ // out11 = d11 - d21 - d31 - (d12 - d22 - d32) - (d13 - d23 - d33)
+
+ float out00 = d10;
+ float out01 = -d13;
+ float out10 = d10;
+ float out11 = -d13;
+
+ out00 += d00 + d20 + k0 + k1;
+ out01 += k0 - k1 - (d03 + d23);
+ out10 += -d20 - d30 + k2 + k3;
+ out11 += k2 - k3 + d23 + d33;
+
+ int y_in = get_global_id(1);
+ int x_out = (y_in % NUM_TILES_X) * 2;
+ int y_out = (y_in / NUM_TILES_X) * 2;
+ int z_out = get_global_id(0);
+
+#if defined(HAS_BIAS)
+ // Add bias
+ Vector bias = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);
+
+ float b = (float) * ((__global float *)(vector_offset(&bias, z_out)));
+
+ out00 += (float)b;
+ out01 += (float)b;
+ out10 += (float)b;
+ out11 += (float)b;
+#endif // defined(HAS_BIAS)
// Get output address
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x0 * dst_stride_x + y0 * dst_stride_y;
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * dst_stride_x + y_out * dst_stride_y + z_out * dst_stride_z;
- // Store the 16 values across the 16 channels
- *(__global float *)(dst_addr + 0 * dst_stride_z) = out0.s0;
- *(__global float *)(dst_addr + 1 * dst_stride_z) = out0.s1;
- *(__global float *)(dst_addr + 2 * dst_stride_z) = out0.s2;
- *(__global float *)(dst_addr + 3 * dst_stride_z) = out0.s3;
- *(__global float *)(dst_addr + 4 * dst_stride_z) = out1.s0;
- *(__global float *)(dst_addr + 5 * dst_stride_z) = out1.s1;
- *(__global float *)(dst_addr + 6 * dst_stride_z) = out1.s2;
- *(__global float *)(dst_addr + 7 * dst_stride_z) = out1.s3;
- *(__global float *)(dst_addr + 8 * dst_stride_z) = out2.s0;
- *(__global float *)(dst_addr + 9 * dst_stride_z) = out2.s1;
- *(__global float *)(dst_addr + 10 * dst_stride_z) = out2.s2;
- *(__global float *)(dst_addr + 11 * dst_stride_z) = out2.s3;
- *(__global float *)(dst_addr + 12 * dst_stride_z) = out3.s0;
- *(__global float *)(dst_addr + 13 * dst_stride_z) = out3.s1;
- *(__global float *)(dst_addr + 14 * dst_stride_z) = out3.s2;
- *(__global float *)(dst_addr + 15 * dst_stride_z) = out3.s3;
+ // Store the 2x2 output tile
+ vstore2((float2)(out00, out01), 0, (__global float *)(dst_addr + 0 * dst_stride_y));
+ vstore2((float2)(out10, out11), 0, (__global float *)(dst_addr + 1 * dst_stride_y));
}
-#endif // defined(NUM_CHANNELS)
+#endif // defined(NUM_TILES_X)