aboutsummaryrefslogtreecommitdiff
path: root/third_party/half/include/half.hpp
blob: ee8819aa14e7c1b02f44df193694c17557d75e89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
// half - IEEE 754-based half-precision floating-point library.
//
// Copyright (c) 2012-2021 Christian Rau <rauy@users.sourceforge.net>
// Copyright (c) 2023, ARM Limited.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation 
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, 
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

// Version 2.2.0

/// \file
/// Main header file for half-precision functionality.

#ifndef HALF_HALF_HPP
#define HALF_HALF_HPP

#define HALF_GCC_VERSION (__GNUC__*100+__GNUC_MINOR__)

#if defined(__INTEL_COMPILER)
	#define HALF_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICC)
	#define HALF_ICC_VERSION __ICC
#elif defined(__ICL)
	#define HALF_ICC_VERSION __ICL
#else
	#define HALF_ICC_VERSION 0
#endif

// check C++11 language features
#if defined(__clang__)										// clang
	#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
	#endif
	#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
		#define HALF_ENABLE_CPP11_CONSTEXPR 1
	#endif
	#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
		#define HALF_ENABLE_CPP11_NOEXCEPT 1
	#endif
	#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
		#define HALF_ENABLE_CPP11_USER_LITERALS 1
	#endif
	#if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
		#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
	#endif
	#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
		#define HALF_ENABLE_CPP11_LONG_LONG 1
	#endif
#elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__)		// Intel C++
	#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
		#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
	#endif
	#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
		#define HALF_ENABLE_CPP11_USER_LITERALS 1
	#endif
	#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
		#define HALF_ENABLE_CPP11_CONSTEXPR 1
	#endif
	#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
		#define HALF_ENABLE_CPP11_NOEXCEPT 1
	#endif
	#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
	#endif
	#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
		#define HALF_ENABLE_CPP11_LONG_LONG 1
	#endif
#elif defined(__GNUC__)										// gcc
	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
		#if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
			#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
		#endif
		#if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
			#define HALF_ENABLE_CPP11_USER_LITERALS 1
		#endif
		#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
			#define HALF_ENABLE_CPP11_CONSTEXPR 1
		#endif
		#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
			#define HALF_ENABLE_CPP11_NOEXCEPT 1
		#endif
		#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
			#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
		#endif
		#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
			#define HALF_ENABLE_CPP11_LONG_LONG 1
		#endif
	#endif
	#define HALF_TWOS_COMPLEMENT_INT 1
#elif defined(_MSC_VER)										// Visual C++
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
		#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
	#endif
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
		#define HALF_ENABLE_CPP11_USER_LITERALS 1
	#endif
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
		#define HALF_ENABLE_CPP11_CONSTEXPR 1
	#endif
	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
		#define HALF_ENABLE_CPP11_NOEXCEPT 1
	#endif
	#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
	#endif
	#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
		#define HALF_ENABLE_CPP11_LONG_LONG 1
	#endif
	#define HALF_TWOS_COMPLEMENT_INT 1
	#define HALF_POP_WARNINGS 1
	#pragma warning(push)
	#pragma warning(disable : 4099 4127 4146)	//struct vs class, constant in if, negative unsigned
#endif

// check C++11 library features
#include <utility>
#if defined(_LIBCPP_VERSION)								// libc++
	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
		#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
			#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
		#endif
		#ifndef HALF_ENABLE_CPP11_CSTDINT
			#define HALF_ENABLE_CPP11_CSTDINT 1
		#endif
		#ifndef HALF_ENABLE_CPP11_CMATH
			#define HALF_ENABLE_CPP11_CMATH 1
		#endif
		#ifndef HALF_ENABLE_CPP11_HASH
			#define HALF_ENABLE_CPP11_HASH 1
		#endif
		#ifndef HALF_ENABLE_CPP11_CFENV
			#define HALF_ENABLE_CPP11_CFENV 1
		#endif
	#endif
#elif defined(__GLIBCXX__)									// libstdc++
	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
		#ifdef __clang__
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
				#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
				#define HALF_ENABLE_CPP11_CSTDINT 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
				#define HALF_ENABLE_CPP11_CMATH 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
				#define HALF_ENABLE_CPP11_HASH 1
			#endif
			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV)
				#define HALF_ENABLE_CPP11_CFENV 1
			#endif
		#else
			#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
				#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
			#endif
			#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
				#define HALF_ENABLE_CPP11_CSTDINT 1
			#endif
			#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
				#define HALF_ENABLE_CPP11_CMATH 1
			#endif
			#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
				#define HALF_ENABLE_CPP11_HASH 1
			#endif
			#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV)
				#define HALF_ENABLE_CPP11_CFENV 1
			#endif
		#endif
	#endif
#elif defined(_CPPLIB_VER)									// Dinkumware/Visual C++
	#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
		#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
	#endif
	#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT)
			#define HALF_ENABLE_CPP11_CSTDINT 1
	#endif
	#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH)
		#define HALF_ENABLE_CPP11_HASH 1
	#endif
	#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH)
		#define HALF_ENABLE_CPP11_CMATH 1
	#endif
	#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV)
		#define HALF_ENABLE_CPP11_CFENV 1
	#endif
#endif
#undef HALF_GCC_VERSION
#undef HALF_ICC_VERSION

// any error throwing C++ exceptions?
#if defined(HALF_ERRHANDLING_THROW_INVALID) || defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || defined(HALF_ERRHANDLING_THROW_OVERFLOW) || defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || defined(HALF_ERRHANDLING_THROW_INEXACT)
#define HALF_ERRHANDLING_THROWS 1
#endif

// any error handling enabled?
#define HALF_ERRHANDLING	(HALF_ERRHANDLING_FLAGS||HALF_ERRHANDLING_ERRNO||HALF_ERRHANDLING_FENV||HALF_ERRHANDLING_THROWS)

#if HALF_ERRHANDLING
	#define HALF_UNUSED_NOERR(name) name
#else
	#define HALF_UNUSED_NOERR(name)
#endif

// support constexpr
#if HALF_ENABLE_CPP11_CONSTEXPR
	#define HALF_CONSTEXPR				constexpr
	#define HALF_CONSTEXPR_CONST		constexpr
	#if HALF_ERRHANDLING
		#define HALF_CONSTEXPR_NOERR
	#else
		#define HALF_CONSTEXPR_NOERR	constexpr
	#endif
#else
	#define HALF_CONSTEXPR
	#define HALF_CONSTEXPR_CONST		const
	#define HALF_CONSTEXPR_NOERR
#endif

// support noexcept
#if HALF_ENABLE_CPP11_NOEXCEPT
	#define HALF_NOEXCEPT	noexcept
	#define HALF_NOTHROW	noexcept
#else
	#define HALF_NOEXCEPT
	#define HALF_NOTHROW	throw()
#endif

// support thread storage
#if HALF_ENABLE_CPP11_THREAD_LOCAL
	#define HALF_THREAD_LOCAL	thread_local
#else
	#define HALF_THREAD_LOCAL	static
#endif

#include <utility>
#include <algorithm>
#include <istream>
#include <ostream>
#include <limits>
#include <stdexcept>
#include <climits>
#include <cmath>
#include <cstring>
#include <cstdlib>
#if HALF_ENABLE_CPP11_TYPE_TRAITS
	#include <type_traits>
#endif
#if HALF_ENABLE_CPP11_CSTDINT
	#include <cstdint>
#endif
#if HALF_ERRHANDLING_ERRNO
	#include <cerrno>
#endif
#if HALF_ENABLE_CPP11_CFENV
	#include <cfenv>
#endif
#if HALF_ENABLE_CPP11_HASH
	#include <functional>
#endif


#ifndef HALF_ENABLE_F16C_INTRINSICS
	/// Enable F16C intruction set intrinsics.
	/// Defining this to 1 enables the use of [F16C compiler intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between 
	/// half-precision and single-precision values which may result in improved performance. This will not perform additional checks 
	/// for support of the F16C instruction set, so an appropriate target platform is required when enabling this feature.
	///
	/// Unless predefined it will be enabled automatically when the `__F16C__` symbol is defined, which some compilers do on supporting platforms.
	#define HALF_ENABLE_F16C_INTRINSICS __F16C__
#endif
#if HALF_ENABLE_F16C_INTRINSICS
	#include <immintrin.h>
#endif

#ifdef HALF_DOXYGEN_ONLY
/// Type for internal floating-point computations.
/// This can be predefined to a built-in floating-point type (`float`, `double` or `long double`) to override the internal 
/// half-precision implementation to use this type for computing arithmetic operations and mathematical function (if available). 
/// This can result in improved performance for arithmetic operators and mathematical functions but might cause results to 
/// deviate from the specified half-precision rounding mode and inhibits proper detection of half-precision exceptions.
#define HALF_ARITHMETIC_TYPE (undefined)

/// Enable internal exception flags.
/// Defining this to 1 causes operations on half-precision values to raise internal floating-point exception flags according to 
/// the IEEE 754 standard. These can then be cleared and checked with clearexcept(), testexcept().
#define HALF_ERRHANDLING_FLAGS	0

/// Enable exception propagation to `errno`.
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to 
/// [errno](https://en.cppreference.com/w/cpp/error/errno) from `<cerrno>`. Specifically this will propagate domain errors as 
/// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole, overflow and underflow errors as 
/// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact errors won't be propagated.
#define HALF_ERRHANDLING_ERRNO	0

/// Enable exception propagation to built-in floating-point platform.
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to the built-in 
/// single- and double-precision implementation's exception flags using the 
/// [C++11 floating-point environment control](https://en.cppreference.com/w/cpp/numeric/fenv) from `<cfenv>`. However, this 
/// does not work in reverse and single- or double-precision exceptions will not raise the corresponding half-precision 
/// exception flags, nor will explicitly clearing flags clear the corresponding built-in flags.
#define HALF_ERRHANDLING_FENV	0

/// Throw C++ exception on domain errors.
/// Defining this to a string literal causes operations on half-precision values to throw a 
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on domain errors.
#define HALF_ERRHANDLING_THROW_INVALID		(undefined)

/// Throw C++ exception on pole errors.
/// Defining this to a string literal causes operations on half-precision values to throw a 
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on pole errors.
#define HALF_ERRHANDLING_THROW_DIVBYZERO	(undefined)

/// Throw C++ exception on overflow errors.
/// Defining this to a string literal causes operations on half-precision values to throw a 
/// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error) with the specified message on overflows.
#define HALF_ERRHANDLING_THROW_OVERFLOW		(undefined)

/// Throw C++ exception on underflow errors.
/// Defining this to a string literal causes operations on half-precision values to throw a 
/// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error) with the specified message on underflows.
#define HALF_ERRHANDLING_THROW_UNDERFLOW	(undefined)

/// Throw C++ exception on rounding errors.
/// Defining this to 1 causes operations on half-precision values to throw a 
/// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with the specified message on general rounding errors.
#define HALF_ERRHANDLING_THROW_INEXACT		(undefined)
#endif

#ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
/// Raise INEXACT exception on overflow.
/// Defining this to 1 (default) causes overflow errors to automatically raise inexact exceptions in addition.
/// These will be raised after any possible handling of the underflow exception.
#define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT	1
#endif

#ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
/// Raise INEXACT exception on underflow.
/// Defining this to 1 (default) causes underflow errors to automatically raise inexact exceptions in addition.
/// These will be raised after any possible handling of the underflow exception.
///
/// **Note:** This will actually cause underflow (and the accompanying inexact) exceptions to be raised *only* when the result 
/// is inexact, while if disabled bare underflow errors will be raised for *any* (possibly exact) subnormal result.
#define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT	1
#endif

/// Default rounding mode.
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and more precise types 
/// (unless using half_cast() and specifying the rounding mode directly) as well as in arithmetic operations and mathematical 
/// functions. It can be redefined (before including half.hpp) to one of the standard rounding modes using their respective 
/// constants or the equivalent values of 
/// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style):
///
/// `std::float_round_style`         | value | rounding
/// ---------------------------------|-------|-------------------------
/// `std::round_indeterminate`       | -1    | fastest
/// `std::round_toward_zero`         | 0     | toward zero
/// `std::round_to_nearest`          | 1     | to nearest (default)
/// `std::round_toward_infinity`     | 2     | toward positive infinity
/// `std::round_toward_neg_infinity` | 3     | toward negative infinity
///
/// By default this is set to `1` (`std::round_to_nearest`), which rounds results to the nearest representable value. It can even 
/// be set to [std::numeric_limits<float>::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style) to synchronize 
/// the rounding mode with that of the built-in single-precision implementation (which is likely `std::round_to_nearest`, though).
#ifndef HALF_ROUND_STYLE
	#define HALF_ROUND_STYLE	1		// = std::round_to_nearest
#endif

/// Value signaling overflow.
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an 
/// operation, in particular it just evaluates to positive infinity.
///
/// **See also:** Documentation for [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL)
#define HUGE_VALH	std::numeric_limits<half_float::half>::infinity()

/// Fast half-precision fma function.
/// This symbol is defined if the fma() function generally executes as fast as, or faster than, a separate 
/// half-precision multiplication followed by an addition, which is always the case.
///
/// **See also:** Documentation for [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma)
#define FP_FAST_FMAH	1

///	Half rounding mode.
/// In correspondence with `FLT_ROUNDS` from `<cfloat>` this symbol expands to the rounding mode used for 
/// half-precision operations. It is an alias for [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE).
///
/// **See also:** Documentation for [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS)
#define HLF_ROUNDS	HALF_ROUND_STYLE

#ifndef FP_ILOGB0
	#define FP_ILOGB0		INT_MIN
#endif
#ifndef FP_ILOGBNAN
	#define FP_ILOGBNAN		INT_MAX
#endif
#ifndef FP_SUBNORMAL
	#define FP_SUBNORMAL	0
#endif
#ifndef FP_ZERO
	#define FP_ZERO			1
#endif
#ifndef FP_NAN
	#define FP_NAN			2
#endif
#ifndef FP_INFINITE
	#define FP_INFINITE		3
#endif
#ifndef FP_NORMAL
	#define FP_NORMAL		4
#endif

#if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT)
	#define FE_INVALID		0x10
	#define FE_DIVBYZERO	0x08
	#define FE_OVERFLOW		0x04
	#define FE_UNDERFLOW	0x02
	#define FE_INEXACT		0x01
	#define FE_ALL_EXCEPT	(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT)
#endif


/// Main namespace for half-precision functionality.
/// This namespace contains all the functionality provided by the library.
namespace half_float
{
	class half;

#if HALF_ENABLE_CPP11_USER_LITERALS
	/// Library-defined half-precision literals.
	/// Import this namespace to enable half-precision floating-point literals:
	/// ~~~~{.cpp}
	/// using namespace half_float::literal;
	/// half_float::half = 4.2_h;
	/// ~~~~
	namespace literal
	{
		half operator "" _h(long double);
	}
#endif

	/// \internal
	/// \brief Implementation details.
	namespace detail
	{
	#if HALF_ENABLE_CPP11_TYPE_TRAITS
		/// Conditional type.
		template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};

		/// Helper for tag dispatching.
		template<bool B> struct bool_type : std::integral_constant<bool,B> {};
		using std::true_type;
		using std::false_type;

		/// Type traits for floating-point types.
		template<typename T> struct is_float : std::is_floating_point<T> {};
	#else
		/// Conditional type.
		template<bool,typename T,typename> struct conditional { typedef T type; };
		template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };

		/// Helper for tag dispatching.
		template<bool> struct bool_type {};
		typedef bool_type<true> true_type;
		typedef bool_type<false> false_type;

		/// Type traits for floating-point types.
		template<typename> struct is_float : false_type {};
		template<typename T> struct is_float<const T> : is_float<T> {};
		template<typename T> struct is_float<volatile T> : is_float<T> {};
		template<typename T> struct is_float<const volatile T> : is_float<T> {};
		template<> struct is_float<float> : true_type {};
		template<> struct is_float<double> : true_type {};
		template<> struct is_float<long double> : true_type {};
	#endif

		/// Type traits for floating-point bits.
		template<typename T> struct bits { typedef unsigned char type; };
		template<typename T> struct bits<const T> : bits<T> {};
		template<typename T> struct bits<volatile T> : bits<T> {};
		template<typename T> struct bits<const volatile T> : bits<T> {};

	#if HALF_ENABLE_CPP11_CSTDINT
		/// Unsigned integer of (at least) 16 bits width.
		typedef std::uint_least16_t uint16;

		/// Fastest unsigned integer of (at least) 32 bits width.
		typedef std::uint_fast32_t uint32;

		/// Fastest signed integer of (at least) 32 bits width.
		typedef std::int_fast32_t int32;

		/// Unsigned integer of (at least) 32 bits width.
		template<> struct bits<float> { typedef std::uint_least32_t type; };

		/// Unsigned integer of (at least) 64 bits width.
		template<> struct bits<double> { typedef std::uint_least64_t type; };
	#else
		/// Unsigned integer of (at least) 16 bits width.
		typedef unsigned short uint16;

		/// Fastest unsigned integer of (at least) 32 bits width.
		typedef unsigned long uint32;

		/// Fastest unsigned integer of (at least) 32 bits width.
		typedef long int32;

		/// Unsigned integer of (at least) 32 bits width.
		template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};

		#if HALF_ENABLE_CPP11_LONG_LONG
			/// Unsigned integer of (at least) 64 bits width.
			template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};
		#else
			/// Unsigned integer of (at least) 64 bits width.
			template<> struct bits<double> { typedef unsigned long type; };
		#endif
	#endif

	#ifdef HALF_ARITHMETIC_TYPE
		/// Type to use for arithmetic computations and mathematic functions internally.
		typedef HALF_ARITHMETIC_TYPE internal_t;
	#endif

		/// Tag type for binary construction.
		struct binary_t {};

		/// Tag for binary construction.
		HALF_CONSTEXPR_CONST binary_t binary = binary_t();

		/// \name Implementation defined classification and arithmetic
		/// \{

		/// Check for infinity.
		/// \tparam T argument type (builtin floating-point type)
		/// \param arg value to query
		/// \retval true if infinity
		/// \retval false else
		template<typename T> bool builtin_isinf(T arg)
		{
		#if HALF_ENABLE_CPP11_CMATH
			return std::isinf(arg);
		#elif defined(_MSC_VER)
			return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));
		#else
			return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();
		#endif
		}

		/// Check for NaN.
		/// \tparam T argument type (builtin floating-point type)
		/// \param arg value to query
		/// \retval true if not a number
		/// \retval false else
		template<typename T> bool builtin_isnan(T arg)
		{
		#if HALF_ENABLE_CPP11_CMATH
			return std::isnan(arg);
		#elif defined(_MSC_VER)
			return ::_isnan(static_cast<double>(arg)) != 0;
		#else
			return arg != arg;
		#endif
		}

		/// Check sign.
		/// \tparam T argument type (builtin floating-point type)
		/// \param arg value to query
		/// \retval true if signbit set
		/// \retval false else
		template<typename T> bool builtin_signbit(T arg)
		{
		#if HALF_ENABLE_CPP11_CMATH
			return std::signbit(arg);
		#else
			return arg < T() || (arg == T() && T(1)/arg < T());
		#endif
		}

		/// Platform-independent sign mask.
		/// \param arg integer value in two's complement
		/// \retval -1 if \a arg negative
		/// \retval 0 if \a arg positive
		inline uint32 sign_mask(uint32 arg)
		{
			static const int N = std::numeric_limits<uint32>::digits - 1;
		#if HALF_TWOS_COMPLEMENT_INT
			return static_cast<int32>(arg) >> N;
		#else
			return -((arg>>N)&1);
		#endif
		}

		/// Platform-independent arithmetic right shift.
		/// \param arg integer value in two's complement
		/// \param i shift amount (at most 31)
		/// \return \a arg right shifted for \a i bits with possible sign extension
		inline uint32 arithmetic_shift(uint32 arg, int i)
		{
		#if HALF_TWOS_COMPLEMENT_INT
			return static_cast<int32>(arg) >> i;
		#else
			return static_cast<int32>(arg)/(static_cast<int32>(1)<<i) - ((arg>>(std::numeric_limits<uint32>::digits-1))&1);
		#endif
		}

		/// \}
		/// \name Error handling
		/// \{

		/// Internal exception flags.
		/// \return reference to global exception flags
		inline int& errflags() { HALF_THREAD_LOCAL int flags = 0; return flags; }

		/// Raise floating-point exception.
		/// \param flags exceptions to raise
		/// \param cond condition to raise exceptions for
		inline void raise(int HALF_UNUSED_NOERR(flags), bool HALF_UNUSED_NOERR(cond) = true)
		{
		#if HALF_ERRHANDLING
			if(!cond)
				return;
		#if HALF_ERRHANDLING_FLAGS
			errflags() |= flags;
		#endif
		#if HALF_ERRHANDLING_ERRNO
			if(flags & FE_INVALID)
				errno = EDOM;
			else if(flags & (FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW))
				errno = ERANGE;
		#endif
		#if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV
			std::feraiseexcept(flags);
		#endif
		#ifdef HALF_ERRHANDLING_THROW_INVALID
			if(flags & FE_INVALID)
				throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID);
		#endif
		#ifdef HALF_ERRHANDLING_THROW_DIVBYZERO
			if(flags & FE_DIVBYZERO)
				throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO);
		#endif
		#ifdef HALF_ERRHANDLING_THROW_OVERFLOW
			if(flags & FE_OVERFLOW)
				throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW);
		#endif
		#ifdef HALF_ERRHANDLING_THROW_UNDERFLOW
			if(flags & FE_UNDERFLOW)
				throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW);
		#endif
		#ifdef HALF_ERRHANDLING_THROW_INEXACT
			if(flags & FE_INEXACT)
				throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT);
		#endif
		#if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
			if((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT))
				raise(FE_INEXACT);
		#endif
		#if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
			if((flags & FE_OVERFLOW) && !(flags & FE_INEXACT))
				raise(FE_INEXACT);
		#endif
		#endif
		}

		/// Check and signal for any NaN.
		/// \param x first half-precision value to check
		/// \param y second half-precision value to check
		/// \retval true if either \a x or \a y is NaN
		/// \retval false else
		/// \exception FE_INVALID if \a x or \a y is NaN
		inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y)
		{
		#if HALF_ERRHANDLING
			raise(FE_INVALID, (x&0x7FFF)>0x7C00 || (y&0x7FFF)>0x7C00);
		#endif
			return (x&0x7FFF) > 0x7C00 || (y&0x7FFF) > 0x7C00;
		}

		/// Signal and silence signaling NaN.
		/// \param nan half-precision NaN value
		/// \return quiet NaN
		/// \exception FE_INVALID if \a nan is signaling NaN
		inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan)
		{
		#if HALF_ERRHANDLING
			raise(FE_INVALID, !(nan&0x200));
		#endif
			return nan | 0x200;
		}

		/// Signal and silence signaling NaNs.
		/// \param x first half-precision value to check
		/// \param y second half-precision value to check
		/// \return quiet NaN
		/// \exception FE_INVALID if \a x or \a y is signaling NaN
		inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y)
		{
		#if HALF_ERRHANDLING
			raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)));
		#endif
			return ((x&0x7FFF)>0x7C00) ? (x|0x200) : (y|0x200);
		}

		/// Signal and silence signaling NaNs.
		/// \param x first half-precision value to check
		/// \param y second half-precision value to check
		/// \param z third half-precision value to check
		/// \return quiet NaN
		/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
		inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y, unsigned int z)
		{
		#if HALF_ERRHANDLING
			raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)) || ((z&0x7FFF)>0x7C00 && !(z&0x200)));
		#endif
			return ((x&0x7FFF)>0x7C00) ? (x|0x200) : ((y&0x7FFF)>0x7C00) ? (y|0x200) : (z|0x200);
		}

		/// Select value or signaling NaN.
		/// \param x preferred half-precision value
		/// \param y ignored half-precision value except for signaling NaN
		/// \return \a y if signaling NaN, \a x otherwise
		/// \exception FE_INVALID if \a y is signaling NaN
		inline HALF_CONSTEXPR_NOERR unsigned int select(unsigned int x, unsigned int HALF_UNUSED_NOERR(y))
		{
		#if HALF_ERRHANDLING
			return (((y&0x7FFF)>0x7C00) && !(y&0x200)) ? signal(y) : x;
		#else
			return x;
		#endif
		}

		/// Raise domain error and return NaN.
		/// return quiet NaN
		/// \exception FE_INVALID
		inline HALF_CONSTEXPR_NOERR unsigned int invalid()
		{
		#if HALF_ERRHANDLING
			raise(FE_INVALID);
		#endif
			return 0x7FFF;
		}

		/// Raise pole error and return infinity.
		/// \param sign half-precision value with sign bit only
		/// \return half-precision infinity with sign of \a sign
		/// \exception FE_DIVBYZERO
		inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0)
		{
		#if HALF_ERRHANDLING
			raise(FE_DIVBYZERO);
		#endif
			return sign | 0x7C00;
		}

		/// Check value for underflow.
		/// \param arg non-zero half-precision value to check
		/// \return \a arg
		/// \exception FE_UNDERFLOW if arg is subnormal
		inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg)
		{
		#if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
			raise(FE_UNDERFLOW, !(arg&0x7C00));
		#endif
			return arg;
		}

		/// \}
		/// \name Conversion and rounding
		/// \{

		/// Half-precision overflow.
		/// \tparam R rounding mode to use
		/// \param sign half-precision value with sign bit only
		/// \return rounded overflowing half-precision value
		/// \exception FE_OVERFLOW
		template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0)
		{
		#if HALF_ERRHANDLING
			raise(FE_OVERFLOW);
		#endif
			return	(R==std::round_toward_infinity) ? (sign+0x7C00-(sign>>15)) :
					(R==std::round_toward_neg_infinity) ? (sign+0x7BFF+(sign>>15)) :
					(R==std::round_toward_zero) ? (sign|0x7BFF) :
					(sign|0x7C00);
		}

		/// Half-precision underflow.
		/// \tparam R rounding mode to use
		/// \param sign half-precision value with sign bit only
		/// \return rounded underflowing half-precision value
		/// \exception FE_UNDERFLOW
		template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0)
		{
		#if HALF_ERRHANDLING
			raise(FE_UNDERFLOW);
		#endif
			return	(R==std::round_toward_infinity) ? (sign+1-(sign>>15)) :
					(R==std::round_toward_neg_infinity) ? (sign+(sign>>15)) :
					sign;
		}

		/// Round half-precision number.
		/// \tparam R rounding mode to use
		/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
		/// \param value finite half-precision number to round
		/// \param g guard bit (most significant discarded bit)
		/// \param s sticky bit (or of all but the most significant discarded bits)
		/// \return rounded half-precision value
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
		template<std::float_round_style R,bool I> HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s)
		{
		#if HALF_ERRHANDLING
			value +=	(R==std::round_to_nearest) ? (g&(s|value)) :
						(R==std::round_toward_infinity) ? (~(value>>15)&(g|s)) :
						(R==std::round_toward_neg_infinity) ? ((value>>15)&(g|s)) : 0;
			if((value&0x7C00) == 0x7C00)
				raise(FE_OVERFLOW);
			else if(value & 0x7C00)
				raise(FE_INEXACT, I || (g|s)!=0);
			else
				raise(FE_UNDERFLOW, !(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g|s)!=0);
			return value;
		#else
			return	(R==std::round_to_nearest) ? (value+(g&(s|value))) :
					(R==std::round_toward_infinity) ? (value+(~(value>>15)&(g|s))) :
					(R==std::round_toward_neg_infinity) ? (value+((value>>15)&(g|s))) :
					value;
		#endif
		}

		/// Round half-precision number to nearest integer value.
		/// \tparam R rounding mode to use
		/// \tparam E `true` for round to even, `false` for round away from zero
		/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
		/// \param value half-precision value to round
		/// \return half-precision bits for nearest integral value
		/// \exception FE_INVALID for signaling NaN
		/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
		template<std::float_round_style R,bool E,bool I> unsigned int integral(unsigned int value)
		{
			unsigned int abs = value & 0x7FFF;
			if(abs < 0x3C00)
			{
				raise(FE_INEXACT, I);
				return ((R==std::round_to_nearest) ? (0x3C00&-static_cast<unsigned>(abs>=(0x3800+E))) :
						(R==std::round_toward_infinity) ? (0x3C00&-(~(value>>15)&(abs!=0))) :
						(R==std::round_toward_neg_infinity) ? (0x3C00&-static_cast<unsigned>(value>0x8000)) :
						0) | (value&0x8000);
			}
			if(abs >= 0x6400)
				return (abs>0x7C00) ? signal(value) : value;
			unsigned int exp = 25 - (abs>>10), mask = (1<<exp) - 1;
			raise(FE_INEXACT, I && (value&mask));
			return ((	(R==std::round_to_nearest) ? ((1<<(exp-1))-(~(value>>exp)&E)) :
						(R==std::round_toward_infinity) ? (mask&((value>>15)-1)) :
						(R==std::round_toward_neg_infinity) ? (mask&-(value>>15)) :
						0) + value) & ~mask;
		}

		/// Convert fixed point to half-precision floating-point.
		/// \tparam R rounding mode to use
		/// \tparam F number of fractional bits in [11,31]
		/// \tparam S `true` for signed, `false` for unsigned
		/// \tparam N `true` for additional normalization step, `false` if already normalized to 1.F
		/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
		/// \param m mantissa in Q1.F fixed point format
		/// \param exp biased exponent - 1
		/// \param sign half-precision value with sign bit only
		/// \param s sticky bit (or of all but the most significant already discarded bits)
		/// \return value converted to half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
		template<std::float_round_style R,unsigned int F,bool S,bool N,bool I> unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0, int s = 0)
		{
			if(S)
			{
				uint32 msign = sign_mask(m);
				m = (m^msign) - msign;
				sign = msign & 0x8000;
			}
			if(N)
				for(; m<(static_cast<uint32>(1)<<F) && exp; m<<=1,--exp) ;
			else if(exp < 0)
				return rounded<R,I>(sign+(m>>(F-10-exp)), (m>>(F-11-exp))&1, s|((m&((static_cast<uint32>(1)<<(F-11-exp))-1))!=0));
			return rounded<R,I>(sign+(exp<<10)+(m>>(F-10)), (m>>(F-11))&1, s|((m&((static_cast<uint32>(1)<<(F-11))-1))!=0));
		}

		/// Convert IEEE single-precision to half-precision.
		/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
		/// \tparam R rounding mode to use
		/// \param value single-precision value to convert
		/// \return rounded half-precision value
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded
		template<std::float_round_style R> unsigned int float2half_impl(float value, true_type)
		{
		#if HALF_ENABLE_F16C_INTRINSICS
			return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(value),
				(R==std::round_to_nearest) ? _MM_FROUND_TO_NEAREST_INT :
				(R==std::round_toward_zero) ? _MM_FROUND_TO_ZERO :
				(R==std::round_toward_infinity) ? _MM_FROUND_TO_POS_INF :
				(R==std::round_toward_neg_infinity) ? _MM_FROUND_TO_NEG_INF :
				_MM_FROUND_CUR_DIRECTION));
		#else
			bits<float>::type fbits;
			std::memcpy(&fbits, &value, sizeof(float));
		#if 1
			unsigned int sign = (fbits>>16) & 0x8000;
			fbits &= 0x7FFFFFFF;
			if(fbits >= 0x7F800000)
				return sign | 0x7C00 | ((fbits>0x7F800000) ? (0x200|((fbits>>13)&0x3FF)) : 0);
			if(fbits >= 0x47800000)
				return overflow<R>(sign);
			if(fbits >= 0x38800000)
				return rounded<R,false>(sign|(((fbits>>23)-112)<<10)|((fbits>>13)&0x3FF), (fbits>>12)&1, (fbits&0xFFF)!=0);
			if(fbits >= 0x33000000)
			{
				int i = 125 - (fbits>>23);
				fbits = (fbits&0x7FFFFF) | 0x800000;
				return rounded<R,false>(sign|(fbits>>(i+1)), (fbits>>i)&1, (fbits&((static_cast<uint32>(1)<<i)-1))!=0);
			}
			if(fbits != 0)
				return underflow<R>(sign);
			return sign;
		#else
			static const uint16 base_table[512] = {
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 
				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 
				0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00, 
				0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 
				0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7C00, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 
				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 
				0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, 
				0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 
				0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00 };
			static const unsigned char shift_table[256] = {
				24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
				25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
				25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
				25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 
				13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 
				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };
			int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp];
			fbits &= 0x7FFFFF;
			uint32 m = (fbits|((exp!=0)<<23)) & -static_cast<uint32>(exp!=0xFF);
			return rounded<R,false>(base_table[sexp]+(fbits>>i), (m>>(i-1))&1, (((static_cast<uint32>(1)<<(i-1))-1)&m)!=0);
		#endif
		#endif
		}

		/// Convert IEEE double-precision to half-precision.
		/// \tparam R rounding mode to use
		/// \param value double-precision value to convert
		/// \return rounded half-precision value
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded
		template<std::float_round_style R> unsigned int float2half_impl(double value, true_type)
		{
		#if HALF_ENABLE_F16C_INTRINSICS
			if(R == std::round_indeterminate)
				return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)), _MM_FROUND_CUR_DIRECTION));
		#endif
			bits<double>::type dbits;
			std::memcpy(&dbits, &value, sizeof(double));
			uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF;
			unsigned int sign = (hi>>16) & 0x8000;
			hi &= 0x7FFFFFFF;
			if(hi >= 0x7FF00000)
				return sign | 0x7C00 | ((dbits&0xFFFFFFFFFFFFF) ? (0x200|((hi>>10)&0x3FF)) : 0);
			if(hi >= 0x40F00000)
				return overflow<R>(sign);
			if(hi >= 0x3F100000)
				return rounded<R,false>(sign|(((hi>>20)-1008)<<10)|((hi>>10)&0x3FF), (hi>>9)&1, ((hi&0x1FF)|lo)!=0);
			if(hi >= 0x3E600000)
			{
				int i = 1018 - (hi>>20);
				hi = (hi&0xFFFFF) | 0x100000;
				return rounded<R,false>(sign|(hi>>(i+1)), (hi>>i)&1, ((hi&((static_cast<uint32>(1)<<i)-1))|lo)!=0);
			}
			if((hi|lo) != 0)
				return underflow<R>(sign);
			return sign;
		}

		/// Convert non-IEEE floating-point to half-precision.
		/// \tparam R rounding mode to use
		/// \tparam T source type (builtin floating-point type)
		/// \param value floating-point value to convert
		/// \return rounded half-precision value
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded
		template<std::float_round_style R,typename T> unsigned int float2half_impl(T value, ...)
		{
			unsigned int hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
			if(value == T())
				return hbits;
			if(builtin_isnan(value))
				return hbits | 0x7FFF;
			if(builtin_isinf(value))
				return hbits | 0x7C00;
			int exp;
			std::frexp(value, &exp);
			if(exp > 16)
				return overflow<R>(hbits);
			if(exp < -13)
				value = std::ldexp(value, 25);
			else
			{
				value = std::ldexp(value, 12-exp);
				hbits |= ((exp+13)<<10);
			}
			T ival, frac = std::modf(value, &ival);
			int m = std::abs(static_cast<int>(ival));
			return rounded<R,false>(hbits+(m>>1), m&1, frac!=T());
		}

		/// Convert floating-point to half-precision.
		/// \tparam R rounding mode to use
		/// \tparam T source type (builtin floating-point type)
		/// \param value floating-point value to convert
		/// \return rounded half-precision value
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded
		template<std::float_round_style R,typename T> unsigned int float2half(T value)
		{
			return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
		}

		/// Convert integer to half-precision floating-point.
		/// \tparam R rounding mode to use
		/// \tparam T type to convert (builtin integer type)
		/// \param value integral value to convert
		/// \return rounded half-precision value
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_INEXACT if value had to be rounded
		template<std::float_round_style R,typename T> unsigned int int2half(T value)
		{
			unsigned int bits = static_cast<unsigned>(value<0) << 15;
			if(!value)
				return bits;
			if(bits)
				value = -value;
			if(value > 0xFFFF)
				return overflow<R>(bits);
			unsigned int m = static_cast<unsigned int>(value), exp = 24;
			for(; m<0x400; m<<=1,--exp) ;
			for(; m>0x7FF; m>>=1,++exp) ;
			bits |= (exp<<10) + m;
			return (exp>24) ? rounded<R,false>(bits, (value>>(exp-25))&1, (((1<<(exp-25))-1)&value)!=0) : bits;
		}

		/// Convert half-precision to IEEE single-precision.
		/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
		/// \param value half-precision value to convert
		/// \return single-precision value
		inline float half2float_impl(unsigned int value, float, true_type)
		{
		#if HALF_ENABLE_F16C_INTRINSICS
			return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value)));
		#else
		#if 0
			bits<float>::type fbits = static_cast<bits<float>::type>(value&0x8000) << 16;
			int abs = value & 0x7FFF;
			if(abs)
			{
				fbits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
				for(; abs<0x400; abs<<=1,fbits-=0x800000) ;
				fbits += static_cast<bits<float>::type>(abs) << 13;
			}
		#else
			static const bits<float>::type mantissa_table[2048] = {
				0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000, 
				0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000, 
				0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000, 
				0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000, 
				0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000, 
				0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000, 
				0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, 
				0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000, 
				0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000, 
				0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, 
				0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000, 
				0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000, 
				0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, 
				0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000, 
				0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000, 
				0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, 
				0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000, 
				0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000, 
				0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000, 
				0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000, 
				0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000, 
				0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, 
				0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000, 
				0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000, 
				0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, 
				0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000, 
				0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000, 
				0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, 
				0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000, 
				0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000, 
				0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, 
				0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000, 
				0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000, 
				0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000, 
				0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000, 
				0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000, 
				0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000, 
				0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000, 
				0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000, 
				0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, 
				0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000, 
				0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000, 
				0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, 
				0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000, 
				0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000, 
				0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000, 
				0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000, 
				0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000, 
				0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000, 
				0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000, 
				0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000, 
				0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, 
				0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000, 
				0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000, 
				0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, 
				0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000, 
				0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000, 
				0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000, 
				0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000, 
				0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000, 
				0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000, 
				0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000, 
				0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000, 
				0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, 
				0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000, 
				0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000, 
				0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, 
				0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000, 
				0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000, 
				0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, 
				0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000, 
				0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000, 
				0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, 
				0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000, 
				0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000, 
				0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, 
				0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000, 
				0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000, 
				0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, 
				0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000, 
				0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000, 
				0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, 
				0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000, 
				0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000, 
				0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, 
				0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000, 
				0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000, 
				0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, 
				0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000, 
				0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000, 
				0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, 
				0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000, 
				0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000, 
				0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, 
				0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000, 
				0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000, 
				0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, 
				0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000, 
				0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000, 
				0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, 
				0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000, 
				0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000, 
				0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, 
				0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000, 
				0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000, 
				0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, 
				0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000, 
				0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000, 
				0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, 
				0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000, 
				0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000, 
				0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, 
				0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000, 
				0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000, 
				0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, 
				0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000, 
				0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000, 
				0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, 
				0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000, 
				0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000, 
				0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, 
				0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000, 
				0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000, 
				0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, 
				0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000, 
				0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000, 
				0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, 
				0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };
			static const bits<float>::type exponent_table[64] = {
				0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000, 
				0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000, 
				0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000, 
				0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };
			static const unsigned short offset_table[64] = {
				0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 
				0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };
			bits<float>::type fbits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];
		#endif
			float out;
			std::memcpy(&out, &fbits, sizeof(float));
			return out;
		#endif
		}

		/// Convert half-precision to IEEE double-precision.
		/// \param value half-precision value to convert
		/// \return double-precision value
		inline double half2float_impl(unsigned int value, double, true_type)
		{
		#if HALF_ENABLE_F16C_INTRINSICS
			return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value))));
		#else
			uint32 hi = static_cast<uint32>(value&0x8000) << 16;
			unsigned int abs = value & 0x7FFF;
			if(abs)
			{
				hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);
				for(; abs<0x400; abs<<=1,hi-=0x100000) ;
				hi += static_cast<uint32>(abs) << 10;
			}
			bits<double>::type dbits = static_cast<bits<double>::type>(hi) << 32;
			double out;
			std::memcpy(&out, &dbits, sizeof(double));
			return out;
		#endif
		}

		/// Convert half-precision to non-IEEE floating-point.
		/// \tparam T type to convert to (builtin integer type)
		/// \param value half-precision value to convert
		/// \return floating-point value
		template<typename T> T half2float_impl(unsigned int value, T, ...)
		{
			T out;
			unsigned int abs = value & 0x7FFF;
			if(abs > 0x7C00)
				out = (std::numeric_limits<T>::has_signaling_NaN && !(abs&0x200)) ? std::numeric_limits<T>::signaling_NaN() :
					std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();
			else if(abs == 0x7C00)
				out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();
			else if(abs > 0x3FF)
				out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);
			else
				out = std::ldexp(static_cast<T>(abs), -24);
			return (value&0x8000) ? -out : out;
		}

		/// Convert half-precision to floating-point.
		/// \tparam T type to convert to (builtin integer type)
		/// \param value half-precision value to convert
		/// \return floating-point value
		template<typename T> T half2float(unsigned int value)
		{
			return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
		}

		/// Convert half-precision floating-point to integer.
		/// \tparam R rounding mode to use
		/// \tparam E `true` for round to even, `false` for round away from zero
		/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
		/// \param value half-precision value to convert
		/// \return rounded integer value
		/// \exception FE_INVALID if value is not representable in type \a T
		/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
		template<std::float_round_style R,bool E,bool I,typename T> T half2int(unsigned int value)
		{
			unsigned int abs = value & 0x7FFF;
			if(abs >= 0x7C00)
			{
				raise(FE_INVALID);
				return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();
			}
			if(abs < 0x3800)
			{
				raise(FE_INEXACT, I);
				return	(R==std::round_toward_infinity) ? T(~(value>>15)&(abs!=0)) :
						(R==std::round_toward_neg_infinity) ? -T(value>0x8000) :
						T();
			}
			int exp = 25 - (abs>>10);
			unsigned int m = (value&0x3FF) | 0x400;
			int32 i = static_cast<int32>((exp<=0) ? (m<<-exp) : ((m+(
				(R==std::round_to_nearest) ? ((1<<(exp-1))-(~(m>>exp)&E)) :
				(R==std::round_toward_infinity) ? (((1<<exp)-1)&((value>>15)-1)) :
				(R==std::round_toward_neg_infinity) ? (((1<<exp)-1)&-(value>>15)) : 0))>>exp));
			if((!std::numeric_limits<T>::is_signed && (value&0x8000)) || (std::numeric_limits<T>::digits<16 &&
				((value&0x8000) ? (-i<std::numeric_limits<T>::min()) : (i>std::numeric_limits<T>::max()))))
				raise(FE_INVALID);
			else if(I && exp > 0 && (m&((1<<exp)-1)))
				raise(FE_INEXACT);
			return static_cast<T>((value&0x8000) ? -i : i);
		}

		/// \}
		/// \name Mathematics
		/// \{

		/// upper part of 64-bit multiplication.
		/// \tparam R rounding mode to use
		/// \param x first factor
		/// \param y second factor
		/// \return upper 32 bit of \a x * \a y
		template<std::float_round_style R> uint32 mulhi(uint32 x, uint32 y)
		{
			uint32 xy = (x>>16) * (y&0xFFFF), yx = (x&0xFFFF) * (y>>16), c = (xy&0xFFFF) + (yx&0xFFFF) + (((x&0xFFFF)*(y&0xFFFF))>>16);
			return (x>>16)*(y>>16) + (xy>>16) + (yx>>16) + (c>>16) +
				((R==std::round_to_nearest) ? ((c>>15)&1) : (R==std::round_toward_infinity) ? ((c&0xFFFF)!=0) : 0);
		}

		/// 64-bit multiplication.
		/// \param x first factor
		/// \param y second factor
		/// \return upper 32 bit of \a x * \a y rounded to nearest
		inline uint32 multiply64(uint32 x, uint32 y)
		{
		#if HALF_ENABLE_CPP11_LONG_LONG
			return static_cast<uint32>((static_cast<unsigned long long>(x)*static_cast<unsigned long long>(y)+0x80000000)>>32);
		#else
			return mulhi<std::round_to_nearest>(x, y);
		#endif
		}

		/// 64-bit division.
		/// \param x upper 32 bit of dividend
		/// \param y divisor
		/// \param s variable to store sticky bit for rounding
		/// \return (\a x << 32) / \a y
		inline uint32 divide64(uint32 x, uint32 y, int &s)
		{
		#if HALF_ENABLE_CPP11_LONG_LONG
			unsigned long long xx = static_cast<unsigned long long>(x) << 32;
			return s = (xx%y!=0), static_cast<uint32>(xx/y);
		#else
			y >>= 1;
			uint32 rem = x, div = 0;
			for(unsigned int i=0; i<32; ++i)
			{
				div <<= 1;
				if(rem >= y)
				{
					rem -= y;
					div |= 1;
				}
				rem <<= 1;
			}
			return s = rem > 1, div;
		#endif
		}

		/// Half precision positive modulus.
		/// \tparam Q `true` to compute full quotient, `false` else
		/// \tparam R `true` to compute signed remainder, `false` for positive remainder
		/// \param x first operand as positive finite half-precision value
		/// \param y second operand as positive finite half-precision value
		/// \param quo adress to store quotient at, `nullptr` if \a Q `false`
		/// \return modulus of \a x / \a y
		template<bool Q,bool R> unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL)
		{
			unsigned int q = 0;
			if(x > y)
			{
				int absx = x, absy = y, expx = 0, expy = 0;
				for(; absx<0x400; absx<<=1,--expx) ;
				for(; absy<0x400; absy<<=1,--expy) ;
				expx += absx >> 10;
				expy += absy >> 10;
				int mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
				for(int d=expx-expy; d; --d)
				{
					if(!Q && mx == my)
						return 0;
					if(mx >= my)
					{
						mx -= my;
						q += Q;
					}
					mx <<= 1;
					q <<= static_cast<int>(Q);
				}
				if(!Q && mx == my)
					return 0;
				if(mx >= my)
				{
					mx -= my;
					++q;
				}
				if(Q)
				{
					q &= (1<<(std::numeric_limits<int>::digits-1)) - 1;
					if(!mx)
						return *quo = q, 0;
				}
				for(; mx<0x400; mx<<=1,--expy) ;
				x = (expy>0) ? ((expy<<10)|(mx&0x3FF)) : (mx>>(1-expy));
			}
			if(R)
			{
				unsigned int a, b;
				if(y < 0x800)
				{
					a = (x<0x400) ? (x<<1) : (x+0x400);
					b = y;
				}
				else
				{
					a = x;
					b = y - 0x400;
				}
				if(a > b || (a == b && (q&1)))
				{
					int exp = (y>>10) + (y<=0x3FF), d = exp - (x>>10) - (x<=0x3FF);
					int m = (((y&0x3FF)|((y>0x3FF)<<10))<<1) - (((x&0x3FF)|((x>0x3FF)<<10))<<(1-d));
					for(; m<0x800 && exp>1; m<<=1,--exp) ;
					x = 0x8000 + ((exp-1)<<10) + (m>>1);
					q += Q;
				}
			}
			if(Q)
				*quo = q;
			return x;
		}

		/// Fixed point square root.
		/// \tparam F number of fractional bits
		/// \param r radicand in Q1.F fixed point format
		/// \param exp exponent
		/// \return square root as Q1.F/2
		template<unsigned int F> uint32 sqrt(uint32 &r, int &exp)
		{
			int i = exp & 1;
			r <<= i;
			exp = (exp-i) / 2;
			uint32 m = 0;
			for(uint32 bit=static_cast<uint32>(1)<<F; bit; bit>>=2)
			{
				if(r < m+bit)
					m >>= 1;
				else
				{
					r -= m + bit;
					m = (m>>1) + bit;
				}
			}
			return m;
		}

		/// Fixed point binary exponential.
		/// This uses the BKM algorithm in E-mode.
		/// \param m exponent in [0,1) as Q0.31
		/// \param n number of iterations (at most 32)
		/// \return 2 ^ \a m as Q1.31
		inline uint32 exp2(uint32 m, unsigned int n = 32)
		{
			static const uint32 logs[] = {
				0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
				0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
				0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
				0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
			if(!m)
				return 0x80000000;
			uint32 mx = 0x80000000, my = 0;
			for(unsigned int i=1; i<n; ++i)
			{
				uint32 mz = my + logs[i];
				if(mz <= m)
				{
					my = mz;
					mx += mx >> i;
				}
			}
			return mx;
		}

		/// Fixed point binary logarithm.
		/// This uses the BKM algorithm in L-mode.
		/// \param m mantissa in [1,2) as Q1.30
		/// \param n number of iterations (at most 32)
		/// \return log2(\a m) as Q0.31
		inline uint32 log2(uint32 m, unsigned int n = 32)
		{
			static const uint32 logs[] = {
				0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
				0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
				0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
				0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
			if(m == 0x40000000)
				return 0;
			uint32 mx = 0x40000000, my = 0;
			for(unsigned int i=1; i<n; ++i)
			{
				uint32 mz = mx + (mx>>i);
				if(mz <= m)
				{
					mx = mz;
					my += logs[i];
				}
			}
			return my;
		}

		/// Fixed point sine and cosine.
		/// This uses the CORDIC algorithm in rotation mode.
		/// \param mz angle in [-pi/2,pi/2] as Q1.30
		/// \param n number of iterations (at most 31)
		/// \return sine and cosine of \a mz as Q1.30
		inline std::pair<uint32,uint32> sincos(uint32 mz, unsigned int n = 31)
		{
			static const uint32 angles[] = {
				0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
				0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
				0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
				0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
			uint32 mx = 0x26DD3B6A, my = 0;
			for(unsigned int i=0; i<n; ++i)
			{
				uint32 sign = sign_mask(mz);
				uint32 tx = mx - (arithmetic_shift(my, i)^sign) + sign;
				uint32 ty = my + (arithmetic_shift(mx, i)^sign) - sign;
				mx = tx; my = ty; mz -= (angles[i]^sign) - sign;
			}
			return std::make_pair(my, mx);
		}

		/// Fixed point arc tangent.
		/// This uses the CORDIC algorithm in vectoring mode.
		/// \param my y coordinate as Q0.30
		/// \param mx x coordinate as Q0.30
		/// \param n number of iterations (at most 31)
		/// \return arc tangent of \a my / \a mx as Q1.30
		inline uint32 atan2(uint32 my, uint32 mx, unsigned int n = 31)
		{
			static const uint32 angles[] = {
				0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
				0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
				0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
				0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
			uint32 mz = 0;
			for(unsigned int i=0; i<n; ++i)
			{
				uint32 sign = sign_mask(my);
				uint32 tx = mx + (arithmetic_shift(my, i)^sign) - sign;
				uint32 ty = my - (arithmetic_shift(mx, i)^sign) + sign;
				mx = tx; my = ty; mz += (angles[i]^sign) - sign;
			}
			return mz;
		}

		/// Reduce argument for trigonometric functions.
		/// \param abs half-precision floating-point value
		/// \param k value to take quarter period
		/// \return \a abs reduced to [-pi/4,pi/4] as Q0.30
		inline uint32 angle_arg(unsigned int abs, int &k)
		{
			uint32 m = (abs&0x3FF) | ((abs>0x3FF)<<10);
			int exp = (abs>>10) + (abs<=0x3FF) - 15;
			if(abs < 0x3A48)
				return k = 0, m << (exp+20);
		#if HALF_ENABLE_CPP11_LONG_LONG
			unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL<<(62-exp)) - 1, yi = (y+(mask>>1)) & ~mask, f = y - yi;
			uint32 sign = -static_cast<uint32>(f>>63);
			k = static_cast<int>(yi>>(62-exp));
			return (multiply64(static_cast<uint32>((sign ? -f : f)>>(31-exp)), 0xC90FDAA2)^sign) - sign;
		#else
			uint32 yh = m*0xA2F98 + mulhi<std::round_toward_zero>(m, 0x36E4E442), yl = (m*0x36E4E442) & 0xFFFFFFFF;
			uint32 mask = (static_cast<uint32>(1)<<(30-exp)) - 1, yi = (yh+(mask>>1)) & ~mask, sign = -static_cast<uint32>(yi>yh);
			k = static_cast<int>(yi>>(30-exp));
			uint32 fh = (yh^sign) + (yi^~sign) - ~sign, fl = (yl^sign) - sign;
			return (multiply64((exp>-1) ? (((fh<<(1+exp))&0xFFFFFFFF)|((fl&0xFFFFFFFF)>>(31-exp))) : fh, 0xC90FDAA2)^sign) - sign;
		#endif
		}

		/// Get arguments for atan2 function.
		/// \param abs half-precision floating-point value
		/// \return \a abs and sqrt(1 - \a abs^2) as Q0.30
		inline std::pair<uint32,uint32> atan2_args(unsigned int abs)
		{
			int exp = -15;
			for(; abs<0x400; abs<<=1,--exp) ;
			exp += abs >> 10;
			uint32 my = ((abs&0x3FF)|0x400) << 5, r = my * my;
			int rexp = 2 * exp;
			r = 0x40000000 - ((rexp>-31) ? ((r>>-rexp)|((r&((static_cast<uint32>(1)<<-rexp)-1))!=0)) : 1);
			for(rexp=0; r<0x40000000; r<<=1,--rexp) ;
			uint32 mx = sqrt<30>(r, rexp);
			int d = exp - rexp;
			if(d < 0)
				return std::make_pair((d<-14) ? ((my>>(-d-14))+((my>>(-d-15))&1)) : (my<<(14+d)), (mx<<14)+(r<<13)/mx);
			if(d > 0)
				return std::make_pair(my<<14, (d>14) ? ((mx>>(d-14))+((mx>>(d-15))&1)) : ((d==14) ? mx : ((mx<<(14-d))+(r<<(13-d))/mx)));
			return std::make_pair(my<<13, (mx<<13)+(r<<12)/mx);
		}

		/// Get exponentials for hyperbolic computation
		/// \param abs half-precision floating-point value
		/// \param exp variable to take unbiased exponent of larger result
		/// \param n number of BKM iterations (at most 32)
		/// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent
		inline std::pair<uint32,uint32> hyperbolic_args(unsigned int abs, int &exp, unsigned int n = 32)
		{
			uint32 mx = detail::multiply64(static_cast<uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29), my;
			int e = (abs>>10) + (abs<=0x3FF);
			if(e < 14)
			{
				exp = 0;
				mx >>= 14 - e;
			}
			else
			{
				exp = mx >> (45-e);
				mx = (mx<<(e-14)) & 0x7FFFFFFF;
			}
			mx = exp2(mx, n);
			int d = exp << 1, s;
			if(mx > 0x80000000)
			{
				my = divide64(0x80000000, mx, s);
				my |= s;
				++d;
			}
			else
				my = mx;
			return std::make_pair(mx, (d<31) ? ((my>>d)|((my&((static_cast<uint32>(1)<<d)-1))!=0)) : 1);
		}

		/// Postprocessing for binary exponential.
		/// \tparam R rounding mode to use
		/// \param m fractional part of as Q0.31
		/// \param exp absolute value of unbiased exponent
		/// \param esign sign of actual exponent
		/// \param sign sign bit of result
		/// \param n number of BKM iterations (at most 32)
		/// \return value converted to half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
		template<std::float_round_style R> unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0, unsigned int n = 32)
		{
			if(esign)
			{
				exp = -exp - (m!=0);
				if(exp < -25)
					return underflow<R>(sign);
				else if(exp == -25)
					return rounded<R,false>(sign, 1, m!=0);
			}
			else if(exp > 15)
				return overflow<R>(sign);
			if(!m)
				return sign | (((exp+=15)>0) ? (exp<<10) : check_underflow(0x200>>-exp));
			m = exp2(m, n);
			int s = 0;
			if(esign)
				m = divide64(0x80000000, m, s);
			return fixed2half<R,31,false,false,true>(m, exp+14, sign, s);
		}

		/// Postprocessing for binary logarithm.
		/// \tparam R rounding mode to use
		/// \tparam L logarithm for base transformation as Q1.31
		/// \param m fractional part of logarithm as Q0.31
		/// \param ilog signed integer part of logarithm
		/// \param exp biased exponent of result
		/// \param sign sign bit of result
		/// \return value base-transformed and converted to half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if no other exception occurred
		template<std::float_round_style R,uint32 L> unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0)
		{
			uint32 msign = sign_mask(ilog);
			m = (((static_cast<uint32>(ilog)<<27)+(m>>4))^msign) - msign;
			if(!m)
				return 0;
			for(; m<0x80000000; m<<=1,--exp) ;
			int i = m >= L, s;
			exp += i;
			m >>= 1 + i;
			sign ^= msign & 0x8000;
			if(exp < -11)
				return underflow<R>(sign);
			m = divide64(m, L, s);
			return fixed2half<R,30,false,false,true>(m, exp, sign, 1);
		}

		/// Hypotenuse square root and postprocessing.
		/// \tparam R rounding mode to use
		/// \param r mantissa as Q2.30
		/// \param exp biased exponent
		/// \return square root converted to half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if value had to be rounded
		template<std::float_round_style R> unsigned int hypot_post(uint32 r, int exp)
		{
			int i = r >> 31;
			if((exp+=i) > 46)
				return overflow<R>();
			if(exp < -34)
				return underflow<R>();
			r = (r>>i) | (r&i);
			uint32 m = sqrt<30>(r, exp+=15);
			return fixed2half<R,15,false,false,false>(m, exp-1, 0, r!=0);
		}

		/// Division and postprocessing for tangents.
		/// \tparam R rounding mode to use
		/// \param my dividend as Q1.31
		/// \param mx divisor as Q1.31
		/// \param exp biased exponent of result
		/// \param sign sign bit of result
		/// \return quotient converted to half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if no other exception occurred
		template<std::float_round_style R> unsigned int tangent_post(uint32 my, uint32 mx, int exp, unsigned int sign = 0)
		{
			int i = my >= mx, s;
			exp += i;
			if(exp > 29)
				return overflow<R>(sign);
			if(exp < -11)
				return underflow<R>(sign);
			uint32 m = divide64(my>>(i+1), mx, s);
			return fixed2half<R,30,false,false,true>(m, exp, sign, s);
		}

		/// Area function and postprocessing.
		/// This computes the value directly in Q2.30 using the representation `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`.
		/// \tparam R rounding mode to use
		/// \tparam S `true` for asinh, `false` for acosh
		/// \param arg half-precision argument
		/// \return asinh|acosh(\a arg) converted to half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if no other exception occurred
		template<std::float_round_style R,bool S> unsigned int area(unsigned int arg)
		{
			int abs = arg & 0x7FFF, expx = (abs>>10) + (abs<=0x3FF) - 15, expy = -15, ilog, i;
			uint32 mx = static_cast<uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << 20, my, r;
			for(; abs<0x400; abs<<=1,--expy) ;
			expy += abs >> 10;
			r = ((abs&0x3FF)|0x400) << 5;
			r *= r;
			i = r >> 31;
			expy = 2*expy + i;
			r >>= i;
			if(S)
			{
				if(expy < 0)
				{
					r = 0x40000000 + ((expy>-30) ? ((r>>-expy)|((r&((static_cast<uint32>(1)<<-expy)-1))!=0)) : 1);
					expy = 0;
				}
				else
				{
					r += 0x40000000 >> expy;
					i = r >> 31;
					r = (r>>i) | (r&i);
					expy += i;
				}
			}
			else
			{
				r -= 0x40000000 >> expy;
				for(; r<0x40000000; r<<=1,--expy) ;
			}
			my = sqrt<30>(r, expy);
			my = (my<<15) + (r<<14)/my;
			if(S)
			{
				mx >>= expy - expx;
				ilog = expy;
			}
			else
			{
				my >>= expx - expy;
				ilog = expx;
			}
			my += mx;
			i = my >> 31;
			static const int G = S && (R==std::round_to_nearest);
			return log2_post<R,0xB8AA3B2A>(log2(my>>i, 26+S+G)+(G<<3), ilog+i, 17, arg&(static_cast<unsigned>(S)<<15));
		}

		/// Class for 1.31 unsigned floating-point computation
		struct f31
		{
			/// Constructor.
			/// \param mant mantissa as 1.31
			/// \param e exponent
			HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {}

			/// Constructor.
			/// \param abs unsigned half-precision value
			f31(unsigned int abs) : exp(-15)
			{
				for(; abs<0x400; abs<<=1,--exp) ;
				m = static_cast<uint32>((abs&0x3FF)|0x400) << 21;
				exp += (abs>>10);
			}

			/// Addition operator.
			/// \param a first operand
			/// \param b second operand
			/// \return \a a + \a b
			friend f31 operator+(f31 a, f31 b)
			{
				if(b.exp > a.exp)
					std::swap(a, b);
				int d = a.exp - b.exp;
				uint32 m = a.m + ((d<32) ? (b.m>>d) : 0);
				int i = (m&0xFFFFFFFF) < a.m;
				return f31(((m+i)>>i)|0x80000000, a.exp+i);
			}

			/// Subtraction operator.
			/// \param a first operand
			/// \param b second operand
			/// \return \a a - \a b
			friend f31 operator-(f31 a, f31 b)
			{
				int d = a.exp - b.exp, exp = a.exp;
				uint32 m = a.m - ((d<32) ? (b.m>>d) : 0);
				if(!m)
					return f31(0, -32);
				for(; m<0x80000000; m<<=1,--exp) ;
				return f31(m, exp);
			}

			/// Multiplication operator.
			/// \param a first operand
			/// \param b second operand
			/// \return \a a * \a b
			friend f31 operator*(f31 a, f31 b)
			{
				uint32 m = multiply64(a.m, b.m);
				int i = m >> 31;
				return f31(m<<(1-i), a.exp + b.exp + i);
			}

			/// Division operator.
			/// \param a first operand
			/// \param b second operand
			/// \return \a a / \a b
			friend f31 operator/(f31 a, f31 b)
			{
				int i = a.m >= b.m, s;
				uint32 m = divide64((a.m+i)>>i, b.m, s);
				return f31(m, a.exp - b.exp + i - 1);
			}

			uint32 m;			///< mantissa as 1.31.
			int exp;			///< exponent.
		};

		/// Error function and postprocessing.
		/// This computes the value directly in Q1.31 using the approximations given 
		/// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions).
		/// \tparam R rounding mode to use
		/// \tparam C `true` for comlementary error function, `false` else
		/// \param arg half-precision function argument
		/// \return approximated value of error function in half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if no other exception occurred
		template<std::float_round_style R,bool C> unsigned int erf(unsigned int arg)
		{
			unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
			f31 x(abs), x2 = x * x * f31(0xB8AA3B29, 0), t = f31(0x80000000, 0) / (f31(0x80000000, 0)+f31(0xA7BA054A, -2)*x), t2 = t * t;
			f31 e = ((f31(0x87DC2213, 0)*t2+f31(0xB5F0E2AE, 0))*t2+f31(0x82790637, -2)-(f31(0xBA00E2B8, 0)*t2+f31(0x91A98E62, -2))*t) * t /
					((x2.exp<0) ? f31(exp2((x2.exp>-32) ? (x2.m>>-x2.exp) : 0, 30), 0) : f31(exp2((x2.m<<x2.exp)&0x7FFFFFFF, 22), x2.m>>(31-x2.exp)));
			return (!C || sign) ? fixed2half<R,31,false,true,true>(0x80000000-(e.m>>(C-e.exp)), 14+C, sign&(C-1U)) :
					(e.exp<-25) ? underflow<R>() : fixed2half<R,30,false,false,true>(e.m>>1, e.exp+14, 0, e.m&1);
		}

		/// Gamma function and postprocessing.
		/// This approximates the value of either the gamma function or its logarithm directly in Q1.31.
		/// \tparam R rounding mode to use
		/// \tparam L `true` for lograithm of gamma function, `false` for gamma function
		/// \param arg half-precision floating-point value
		/// \return lgamma/tgamma(\a arg) in half-precision
		/// \exception FE_OVERFLOW on overflows
		/// \exception FE_UNDERFLOW on underflows
		/// \exception FE_INEXACT if \a arg is not a positive integer
		template<std::float_round_style R,bool L> unsigned int gamma(unsigned int arg)
		{
/*			static const double p[] ={ 2.50662827563479526904, 225.525584619175212544, -268.295973841304927459, 80.9030806934622512966, -5.00757863970517583837, 0.0114684895434781459556 };
			double t = arg + 4.65, s = p[0];
			for(unsigned int i=0; i<5; ++i)
				s += p[i+1] / (arg+i);
			return std::log(s) + (arg-0.5)*std::log(t) - t;
*/			static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0);
			unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
			bool bsign = sign != 0;
			f31 z(abs), x = sign ? (z+f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2), s =
				f31(0xA06C9901, 1) + f31(0xBBE654E2, -7)/(x+f31(0x80000000, 2)) + f31(0xA1CE6098, 6)/(x+f31(0x80000000, 1))
				+ f31(0xE1868CB7, 7)/x - f31(0x8625E279, 8)/(x+f31(0x80000000, 0)) - f31(0xA03E158F, 2)/(x+f31(0xC0000000, 1));
			int i = (s.exp>=2) + (s.exp>=4) + (s.exp>=8) + (s.exp>=16);
			s = f31((static_cast<uint32>(s.exp)<<(31-i))+(log2(s.m>>1, 28)>>i), i) / lbe;
			if(x.exp != -1 || x.m != 0x80000000)
			{
				i = (t.exp>=2) + (t.exp>=4) + (t.exp>=8);
				f31 l = f31((static_cast<uint32>(t.exp)<<(31-i))+(log2(t.m>>1, 30)>>i), i) / lbe;
				s = (x.exp<-1) ? (s-(f31(0x80000000, -1)-x)*l) : (s+(x-f31(0x80000000, -1))*l);
			}
			s = x.exp ? (s-t) : (t-s);
			if(bsign)
			{
				if(z.exp >= 0)
				{
					sign &= (L|((z.m>>(31-z.exp))&1)) - 1;
					for(z=f31((z.m<<(1+z.exp))&0xFFFFFFFF, -1); z.m<0x80000000; z.m<<=1,--z.exp) ;
				}
				if(z.exp == -1)
					z = f31(0x80000000, 0) - z;
				if(z.exp < -1)
				{
					z = z * pi;
					z.m = sincos(z.m>>(1-z.exp), 30).first;
					for(z.exp=1; z.m<0x80000000; z.m<<=1,--z.exp) ;
				}
				else
					z = f31(0x80000000, 0);
			}
			if(L)
			{
				if(bsign)
				{
					f31 l(0x92868247, 0);
					if(z.exp < 0)
					{
						uint32 m = log2((z.m+1)>>1, 27);
						z = f31(-((static_cast<uint32>(z.exp)<<26)+(m>>5)), 5);
						for(; z.m<0x80000000; z.m<<=1,--z.exp) ;
						l = l + z / lbe;
					}
					sign = static_cast<unsigned>(x.exp&&(l.exp<s.exp||(l.exp==s.exp&&l.m<s.m))) << 15;
					s = sign ? (s-l) : x.exp ? (l-s) : (l+s);
				}
				else
				{
					sign = static_cast<unsigned>(x.exp==0) << 15;
					if(s.exp < -24)
						return underflow<R>(sign);
					if(s.exp > 15)
						return overflow<R>(sign);
				}
			}
			else
			{
				s = s * lbe;
				uint32 m;
				if(s.exp < 0)
				{
					m = s.m >> -s.exp;
					s.exp = 0;
				}
				else
				{
					m = (s.m<<s.exp) & 0x7FFFFFFF;
					s.exp = (s.m>>(31-s.exp));
				}
				s.m = exp2(m, 27);
				if(!x.exp)
					s = f31(0x80000000, 0) / s;
				if(bsign)
				{
					if(z.exp < 0)
						s = s * z;
					s = pi / s;
					if(s.exp < -24)
						return underflow<R>(sign);
				}
				else if(z.exp > 0 && !(z.m&((1<<(31-z.exp))-1)))
					return ((s.exp+14)<<10) + (s.m>>21);
				if(s.exp > 15)
					return overflow<R>(sign);
			}
			return fixed2half<R,31,false,false,true>(s.m, s.exp+14, sign);
		}
		/// \}

		template<typename,typename,std::float_round_style> struct half_caster;
	}

	/// Half-precision floating-point type.
	/// This class implements an IEEE-conformant half-precision floating-point type with the usual arithmetic 
	/// operators and conversions. It is implicitly convertible to single-precision floating-point, which makes artihmetic 
	/// expressions and functions with mixed-type operands to be of the most precise operand type.
	///
	/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and 
	/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which 
	/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the 
	/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of 
	/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most 
	/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit 
	/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if 
	/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on 
	/// nearly any reasonable platform.
	///
	/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable 
	/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.
	class half
	{
	public:
		/// \name Construction and assignment
		/// \{

		/// Default constructor.
		/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics 
		/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.
		HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}

		/// Conversion constructor.
		/// \param rhs float to convert
		/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
		explicit half(float rhs) : data_(static_cast<detail::uint16>(detail::float2half<round_style>(rhs))) {}
	
		/// Conversion to single-precision.
		/// \return single precision value representing expression value
		operator float() const { return detail::half2float<float>(data_); }

		/// Assignment operator.
		/// \param rhs single-precision value to copy from
		/// \return reference to this half
		/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
		half& operator=(float rhs) { data_ = static_cast<detail::uint16>(detail::float2half<round_style>(rhs)); return *this; }

		/// \}
		/// \name Arithmetic updates
		/// \{

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to add
		/// \return reference to this half
		/// \exception FE_... according to operator+(half,half)
		half& operator+=(half rhs) { return *this = *this + rhs; }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to subtract
		/// \return reference to this half
		/// \exception FE_... according to operator-(half,half)
		half& operator-=(half rhs) { return *this = *this - rhs; }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to multiply with
		/// \return reference to this half
		/// \exception FE_... according to operator*(half,half)
		half& operator*=(half rhs) { return *this = *this * rhs; }

		/// Arithmetic assignment.
		/// \tparam T type of concrete half expression
		/// \param rhs half expression to divide by
		/// \return reference to this half
		/// \exception FE_... according to operator/(half,half)
		half& operator/=(half rhs) { return *this = *this / rhs; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to add
		/// \return reference to this half
		/// \exception FE_... according to operator=()
		half& operator+=(float rhs) { return *this = *this + rhs; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to subtract
		/// \return reference to this half
		/// \exception FE_... according to operator=()
		half& operator-=(float rhs) { return *this = *this - rhs; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to multiply with
		/// \return reference to this half
		/// \exception FE_... according to operator=()
		half& operator*=(float rhs) { return *this = *this * rhs; }

		/// Arithmetic assignment.
		/// \param rhs single-precision value to divide by
		/// \return reference to this half
		/// \exception FE_... according to operator=()
		half& operator/=(float rhs) { return *this = *this / rhs; }

		/// \}
		/// \name Increment and decrement
		/// \{

		/// Prefix increment.
		/// \return incremented half value
		/// \exception FE_... according to operator+(half,half)
		half& operator++() { return *this = *this + half(detail::binary, 0x3C00); }

		/// Prefix decrement.
		/// \return decremented half value
		/// \exception FE_... according to operator-(half,half)
		half& operator--() { return *this = *this + half(detail::binary, 0xBC00); }

		/// Postfix increment.
		/// \return non-incremented half value
		/// \exception FE_... according to operator+(half,half)
		half operator++(int) { half out(*this); ++*this; return out; }

		/// Postfix decrement.
		/// \return non-decremented half value
		/// \exception FE_... according to operator-(half,half)
		half operator--(int) { half out(*this); --*this; return out; }
		/// \}
	
	private:
		/// Rounding mode to use
		static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE);

		/// Constructor.
		/// \param bits binary representation to set half to
		HALF_CONSTEXPR half(detail::binary_t, unsigned int bits) HALF_NOEXCEPT : data_(static_cast<detail::uint16>(bits)) {}

		/// Internal binary representation
		detail::uint16 data_;

	#ifndef HALF_DOXYGEN_ONLY
		friend HALF_CONSTEXPR_NOERR bool operator==(half, half);
		friend HALF_CONSTEXPR_NOERR bool operator!=(half, half);
		friend HALF_CONSTEXPR_NOERR bool operator<(half, half);
		friend HALF_CONSTEXPR_NOERR bool operator>(half, half);
		friend HALF_CONSTEXPR_NOERR bool operator<=(half, half);
		friend HALF_CONSTEXPR_NOERR bool operator>=(half, half);
		friend HALF_CONSTEXPR half operator-(half);
		friend half operator+(half, half);
		friend half operator-(half, half);
		friend half operator*(half, half);
		friend half operator/(half, half);
		template<typename charT,typename traits> friend std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits>&, half);
		template<typename charT,typename traits> friend std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits>&, half&);
		friend HALF_CONSTEXPR half fabs(half);
		friend half fmod(half, half);
		friend half remainder(half, half);
		friend half remquo(half, half, int*);
		friend half fma(half, half, half);
		friend HALF_CONSTEXPR_NOERR half fmax(half, half);
		friend HALF_CONSTEXPR_NOERR half fmin(half, half);
		friend half fdim(half, half);
		friend half nanh(const char*);
		friend half exp(half);
		friend half exp2(half);
		friend half expm1(half);
		friend half log(half);
		friend half log10(half);
		friend half log2(half);
		friend half log1p(half);
		friend half sqrt(half);
		friend half rsqrt(half);
		friend half cbrt(half);
		friend half hypot(half, half);
		friend half hypot(half, half, half);
		friend half pow(half, half);
		friend void sincos(half, half*, half*);
		friend half sin(half);
		friend half cos(half);
		friend half tan(half);
		friend half asin(half);
		friend half acos(half);
		friend half atan(half);
		friend half atan2(half, half);
		friend half sinh(half);
		friend half cosh(half);
		friend half tanh(half);
		friend half asinh(half);
		friend half acosh(half);
		friend half atanh(half);
		friend half erf(half);
		friend half erfc(half);
		friend half lgamma(half);
		friend half tgamma(half);
		friend half ceil(half);
		friend half floor(half);
		friend half trunc(half);
		friend half round(half);
		friend long lround(half);
		friend half rint(half);
		friend long lrint(half);
		friend half nearbyint(half);
	#ifdef HALF_ENABLE_CPP11_LONG_LONG
		friend long long llround(half);
		friend long long llrint(half);
	#endif
		friend half frexp(half, int*);
		friend half scalbln(half, long);
		friend half modf(half, half*);
		friend int ilogb(half);
		friend half logb(half);
		friend half nextafter(half, half);
		friend half nexttoward(half, long double);
		friend HALF_CONSTEXPR half copysign(half, half);
		friend HALF_CONSTEXPR int fpclassify(half);
		friend HALF_CONSTEXPR bool isfinite(half);
		friend HALF_CONSTEXPR bool isinf(half);
		friend HALF_CONSTEXPR bool isnan(half);
		friend HALF_CONSTEXPR bool isnormal(half);
		friend HALF_CONSTEXPR bool signbit(half);
		friend HALF_CONSTEXPR bool isgreater(half, half);
		friend HALF_CONSTEXPR bool isgreaterequal(half, half);
		friend HALF_CONSTEXPR bool isless(half, half);
		friend HALF_CONSTEXPR bool islessequal(half, half);
		friend HALF_CONSTEXPR bool islessgreater(half, half);
		template<typename,typename,std::float_round_style> friend struct detail::half_caster;
		friend class std::numeric_limits<half>;
	#if HALF_ENABLE_CPP11_HASH
		friend struct std::hash<half>;
	#endif
	#if HALF_ENABLE_CPP11_USER_LITERALS
		friend half literal::operator "" _h(long double);
	#endif
	#endif
	};

#if HALF_ENABLE_CPP11_USER_LITERALS
	namespace literal
	{
		/// Half literal.
		/// While this returns a properly rounded half-precision value, half literals can unfortunately not be constant 
		/// expressions due to rather involved conversions. So don't expect this to be a literal literal without involving 
		/// conversion operations at runtime. It is a convenience feature, not a performance optimization.
		/// \param value literal value
		/// \return half with of given value (possibly rounded)
		/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
		inline half operator "" _h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); }
	}
#endif

	namespace detail
	{
		/// Helper class for half casts.
		/// This class template has to be specialized for all valid cast arguments to define an appropriate static 
		/// `cast` member function and a corresponding `type` member denoting its return type.
		/// \tparam T destination type
		/// \tparam U source type
		/// \tparam R rounding mode to use
		template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {};
		template<typename U,std::float_round_style R> struct half_caster<half,U,R>
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported");
		#endif

			static half cast(U arg) { return cast_impl(arg, is_float<U>()); };

		private:
			static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); }
			static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); }
		};
		template<typename T,std::float_round_style R> struct half_caster<T,half,R>
		{
		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
			static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
		#endif

			static T cast(half arg) { return cast_impl(arg, is_float<T>()); }

		private:
			static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }
			static T cast_impl(half arg, false_type) { return half2int<R,true,true,T>(arg.data_); }
		};
		template<std::float_round_style R> struct half_caster<half,half,R>
		{
			static half cast(half arg) { return arg; }
		};
	}
}

/// Extensions to the C++ standard library.
namespace std
{
	/// Numeric limits for half-precision floats.
	/// **See also:** Documentation for [std::numeric_limits](https://en.cppreference.com/w/cpp/types/numeric_limits)
	template<> class numeric_limits<half_float::half>
	{
	public:
		/// Is template specialization.
		static HALF_CONSTEXPR_CONST bool is_specialized = true;

		/// Supports signed values.
		static HALF_CONSTEXPR_CONST bool is_signed = true;

		/// Is not an integer type.
		static HALF_CONSTEXPR_CONST bool is_integer = false;

		/// Is not exact.
		static HALF_CONSTEXPR_CONST bool is_exact = false;

		/// Doesn't provide modulo arithmetic.
		static HALF_CONSTEXPR_CONST bool is_modulo = false;

		/// Has a finite set of values.
		static HALF_CONSTEXPR_CONST bool is_bounded = true;

		/// IEEE conformant.
		static HALF_CONSTEXPR_CONST bool is_iec559 = true;

		/// Supports infinity.
		static HALF_CONSTEXPR_CONST bool has_infinity = true;

		/// Supports quiet NaNs.
		static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;

		/// Supports signaling NaNs.
		static HALF_CONSTEXPR_CONST bool has_signaling_NaN = true;

		/// Supports subnormal values.
		static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;

		/// Supports no denormalization detection.
		static HALF_CONSTEXPR_CONST bool has_denorm_loss = false;

	#if HALF_ERRHANDLING_THROWS
		static HALF_CONSTEXPR_CONST bool traps = true;
	#else
		/// Traps only if [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID) is acitvated.
		static HALF_CONSTEXPR_CONST bool traps = false;
	#endif

		/// Does not support no pre-rounding underflow detection.
		static HALF_CONSTEXPR_CONST bool tinyness_before = false;

		/// Rounding mode.
		static HALF_CONSTEXPR_CONST float_round_style round_style = half_float::half::round_style;

		/// Significant digits.
		static HALF_CONSTEXPR_CONST int digits = 11;

		/// Significant decimal digits.
		static HALF_CONSTEXPR_CONST int digits10 = 3;

		/// Required decimal digits to represent all possible values.
		static HALF_CONSTEXPR_CONST int max_digits10 = 5;

		/// Number base.
		static HALF_CONSTEXPR_CONST int radix = 2;

		/// One more than smallest exponent.
		static HALF_CONSTEXPR_CONST int min_exponent = -13;

		/// Smallest normalized representable power of 10.
		static HALF_CONSTEXPR_CONST int min_exponent10 = -4;

		/// One more than largest exponent
		static HALF_CONSTEXPR_CONST int max_exponent = 16;

		/// Largest finitely representable power of 10.
		static HALF_CONSTEXPR_CONST int max_exponent10 = 4;

		/// Smallest positive normal value.
		static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); }

		/// Smallest finite value.
		static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); }

		/// Largest finite value.
		static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); }

		/// Difference between 1 and next representable value.
		static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); }

		/// Maximum rounding error in ULP (units in the last place).
		static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW
			{ return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); }

		/// Positive infinity.
		static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); }

		/// Quiet NaN.
		static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); }

		/// Signaling NaN.
		static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); }

		/// Smallest positive subnormal value.
		static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); }
	};

#if HALF_ENABLE_CPP11_HASH
	/// Hash function for half-precision floats.
	/// This is only defined if C++11 `std::hash` is supported and enabled.
	///
	/// **See also:** Documentation for [std::hash](https://en.cppreference.com/w/cpp/utility/hash)
	template<> struct hash<half_float::half>
	{
		/// Type of function argument.
		typedef half_float::half argument_type;

		/// Function return type.
		typedef size_t result_type;

		/// Compute hash function.
		/// \param arg half to hash
		/// \return hash value
		result_type operator()(argument_type arg) const { return hash<half_float::detail::uint16>()(arg.data_&-static_cast<unsigned>(arg.data_!=0x8000)); }
	};
#endif
}

namespace half_float
{
	/// \anchor compop
	/// \name Comparison operators
	/// \{

	/// Comparison for equality.
	/// \param x first operand
	/// \param y second operand
	/// \retval true if operands equal
	/// \retval false else
	/// \exception FE_INVALID if \a x or \a y is NaN
	inline HALF_CONSTEXPR_NOERR bool operator==(half x, half y)
	{
		return !detail::compsignal(x.data_, y.data_) && (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF));
	}

	/// Comparison for inequality.
	/// \param x first operand
	/// \param y second operand
	/// \retval true if operands not equal
	/// \retval false else
	/// \exception FE_INVALID if \a x or \a y is NaN
	inline HALF_CONSTEXPR_NOERR bool operator!=(half x, half y)
	{
		return detail::compsignal(x.data_, y.data_) || (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF));
	}

	/// Comparison for less than.
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x less than \a y
	/// \retval false else
	/// \exception FE_INVALID if \a x or \a y is NaN
	inline HALF_CONSTEXPR_NOERR bool operator<(half x, half y)
	{
		return !detail::compsignal(x.data_, y.data_) &&
			((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
	}

	/// Comparison for greater than.
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x greater than \a y
	/// \retval false else
	/// \exception FE_INVALID if \a x or \a y is NaN
	inline HALF_CONSTEXPR_NOERR bool operator>(half x, half y)
	{
		return !detail::compsignal(x.data_, y.data_) &&
			((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
	}

	/// Comparison for less equal.
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x less equal \a y
	/// \retval false else
	/// \exception FE_INVALID if \a x or \a y is NaN
	inline HALF_CONSTEXPR_NOERR bool operator<=(half x, half y)
	{
		return !detail::compsignal(x.data_, y.data_) &&
			((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
	}

	/// Comparison for greater equal.
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x greater equal \a y
	/// \retval false else
	/// \exception FE_INVALID if \a x or \a y is NaN
	inline HALF_CONSTEXPR_NOERR bool operator>=(half x, half y)
	{
		return !detail::compsignal(x.data_, y.data_) &&
			((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
	}

	/// \}
	/// \anchor arithmetics
	/// \name Arithmetic operators
	/// \{

	/// Identity.
	/// \param arg operand
	/// \return unchanged operand
	inline HALF_CONSTEXPR half operator+(half arg) { return arg; }

	/// Negation.
	/// \param arg operand
	/// \return negated operand
	inline HALF_CONSTEXPR half operator-(half arg) { return half(detail::binary, arg.data_^0x8000); }

	/// Addition.
	/// This operation is exact to rounding for all rounding modes.
	/// \param x left operand
	/// \param y right operand
	/// \return sum of half expressions
	/// \exception FE_INVALID if \a x and \a y are infinities with different signs or signaling NaNs
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half operator+(half x, half y)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)+detail::half2float<detail::internal_t>(y.data_)));
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF;
		bool sub = ((x.data_^y.data_)&0x8000) != 0;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : (absy!=0x7C00) ? x.data_ :
										(sub && absx==0x7C00) ? detail::invalid() : y.data_);
		if(!absx)
			return absy ? y : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (x.data_|y.data_) : (x.data_&y.data_));
		if(!absy)
			return x;
		unsigned int sign = ((sub && absy>absx) ? y.data_ : x.data_) & 0x8000;
		if(absy > absx)
			std::swap(absx, absy);
		int exp = (absx>>10) + (absx<=0x3FF), d = exp - (absy>>10) - (absy<=0x3FF), mx = ((absx&0x3FF)|((absx>0x3FF)<<10)) << 3, my;
		if(d < 13)
		{
			my = ((absy&0x3FF)|((absy>0x3FF)<<10)) << 3;
			my = (my>>d) | ((my&((1<<d)-1))!=0);
		}
		else
			my = 1;
		if(sub)
		{
			if(!(mx-=my))
				return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15);
			for(; mx<0x2000 && exp>1; mx<<=1,--exp) ;
		}
		else
		{
			mx += my;
			int i = mx >> 14;
			if((exp+=i) > 30)
				return half(detail::binary, detail::overflow<half::round_style>(sign));
			mx = (mx>>i) | (mx&i);
		}
		return half(detail::binary, detail::rounded<half::round_style,false>(sign+((exp-1)<<10)+(mx>>3), (mx>>2)&1, (mx&0x3)!=0));
	#endif
	}

	/// Subtraction.
	/// This operation is exact to rounding for all rounding modes.
	/// \param x left operand
	/// \param y right operand
	/// \return difference of half expressions
	/// \exception FE_INVALID if \a x and \a y are infinities with equal signs or signaling NaNs
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half operator-(half x, half y)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)-detail::half2float<detail::internal_t>(y.data_)));
	#else
		return x + -y;
	#endif
	}

	/// Multiplication.
	/// This operation is exact to rounding for all rounding modes.
	/// \param x left operand
	/// \param y right operand
	/// \return product of half expressions
	/// \exception FE_INVALID if multiplying 0 with infinity or if \a x or \a y is signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half operator*(half x, half y)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)*detail::half2float<detail::internal_t>(y.data_)));
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -16;
		unsigned int sign = (x.data_^y.data_) & 0x8000;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
										((absx==0x7C00 && !absy)||(absy==0x7C00 && !absx)) ? detail::invalid() : (sign|0x7C00));
		if(!absx || !absy)
			return half(detail::binary, sign);
		for(; absx<0x400; absx<<=1,--exp) ;
		for(; absy<0x400; absy<<=1,--exp) ;
		detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400);
		int i = m >> 21, s = m & i;
		exp += (absx>>10) + (absy>>10) + i;
		if(exp > 29)
			return half(detail::binary, detail::overflow<half::round_style>(sign));
		else if(exp < -11)
			return half(detail::binary, detail::underflow<half::round_style>(sign));
		return half(detail::binary, detail::fixed2half<half::round_style,20,false,false,false>(m>>i, exp, sign, s));
	#endif
	}

	/// Division.
	/// This operation is exact to rounding for all rounding modes.
	/// \param x left operand
	/// \param y right operand
	/// \return quotient of half expressions
	/// \exception FE_INVALID if dividing 0s or infinities with each other or if \a x or \a y is signaling NaN
	/// \exception FE_DIVBYZERO if dividing finite value by 0
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half operator/(half x, half y)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)/detail::half2float<detail::internal_t>(y.data_)));
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = 14;
		unsigned int sign = (x.data_^y.data_) & 0x8000;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
										(absx==absy) ? detail::invalid() : (sign|((absx==0x7C00) ? 0x7C00 : 0)));
		if(!absx)
			return half(detail::binary, absy ? sign : detail::invalid());
		if(!absy)
			return half(detail::binary, detail::pole(sign));
		for(; absx<0x400; absx<<=1,--exp) ;
		for(; absy<0x400; absy<<=1,++exp) ;
		detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
		int i = mx < my;
		exp += (absx>>10) - (absy>>10) - i;
		if(exp > 29)
			return half(detail::binary, detail::overflow<half::round_style>(sign));
		else if(exp < -11)
			return half(detail::binary, detail::underflow<half::round_style>(sign));
		mx <<= 12 + i;
		my <<= 1;
		return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,false>(mx/my, exp, sign, mx%my!=0));
	#endif
	}

	/// \}
	/// \anchor streaming
	/// \name Input and output
	/// \{

	/// Output operator.
	///	This uses the built-in functionality for streaming out floating-point numbers.
	/// \param out output stream to write into
	/// \param arg half expression to write
	/// \return reference to output stream
	template<typename charT,typename traits> std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits> &out, half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return out << detail::half2float<detail::internal_t>(arg.data_);
	#else
		return out << detail::half2float<float>(arg.data_);
	#endif
	}

	/// Input operator.
	///	This uses the built-in functionality for streaming in floating-point numbers, specifically double precision floating 
	/// point numbers (unless overridden with [HALF_ARITHMETIC_TYPE](\ref HALF_ARITHMETIC_TYPE)). So the input string is first 
	/// rounded to double precision using the underlying platform's current floating-point rounding mode before being rounded 
	/// to half-precision using the library's half-precision rounding mode.
	/// \param in input stream to read from
	/// \param arg half to read into
	/// \return reference to input stream
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	template<typename charT,typename traits> std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits> &in, half &arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		detail::internal_t f;
	#else
		double f;
	#endif
		if(in >> f)
			arg.data_ = detail::float2half<half::round_style>(f);
		return in;
	}

	/// \}
	/// \anchor basic
	/// \name Basic mathematical operations
	/// \{

	/// Absolute value.
	/// **See also:** Documentation for [std::fabs](https://en.cppreference.com/w/cpp/numeric/math/fabs).
	/// \param arg operand
	/// \return absolute value of \a arg
	inline HALF_CONSTEXPR half fabs(half arg) { return half(detail::binary, arg.data_&0x7FFF); }

	/// Absolute value.
	/// **See also:** Documentation for [std::abs](https://en.cppreference.com/w/cpp/numeric/math/fabs).
	/// \param arg operand
	/// \return absolute value of \a arg
	inline HALF_CONSTEXPR half abs(half arg) { return fabs(arg); }

	/// Remainder of division.
	/// **See also:** Documentation for [std::fmod](https://en.cppreference.com/w/cpp/numeric/math/fmod).
	/// \param x first operand
	/// \param y second operand
	/// \return remainder of floating-point division.
	/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
	inline half fmod(half x, half y)
	{
		unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
										(absx==0x7C00) ? detail::invalid() : x.data_);
		if(!absy)
			return half(detail::binary, detail::invalid());
		if(!absx)
			return x;
		if(absx == absy)
			return half(detail::binary, sign);
		return half(detail::binary, sign|detail::mod<false,false>(absx, absy));
	}

	/// Remainder of division.
	/// **See also:** Documentation for [std::remainder](https://en.cppreference.com/w/cpp/numeric/math/remainder).
	/// \param x first operand
	/// \param y second operand
	/// \return remainder of floating-point division.
	/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
	inline half remainder(half x, half y)
	{
		unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
										(absx==0x7C00) ? detail::invalid() : x.data_);
		if(!absy)
			return half(detail::binary, detail::invalid());
		if(absx == absy)
			return half(detail::binary, sign);
		return half(detail::binary, sign^detail::mod<false,true>(absx, absy));
	}

	/// Remainder of division.
	/// **See also:** Documentation for [std::remquo](https://en.cppreference.com/w/cpp/numeric/math/remquo).
	/// \param x first operand
	/// \param y second operand
	/// \param quo address to store some bits of quotient at
	/// \return remainder of floating-point division.
	/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
	inline half remquo(half x, half y, int *quo)
	{
		unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, value = x.data_ & 0x8000;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
										(absx==0x7C00) ? detail::invalid() : (*quo = 0, x.data_));
		if(!absy)
			return half(detail::binary, detail::invalid());
		bool qsign = ((value^y.data_)&0x8000) != 0;
		int q = 1;
		if(absx != absy)
			value ^= detail::mod<true, true>(absx, absy, &q);
		return *quo = qsign ? -q : q, half(detail::binary, value);
	}

	/// Fused multiply add.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::fma](https://en.cppreference.com/w/cpp/numeric/math/fma).
	/// \param x first operand
	/// \param y second operand
	/// \param z third operand
	/// \return ( \a x * \a y ) + \a z rounded as one operation.
	/// \exception FE_INVALID according to operator*() and operator+() unless any argument is a quiet NaN and no argument is a signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding the final addition
	inline half fma(half x, half y, half z)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_);
		#if HALF_ENABLE_CPP11_CMATH && FP_FAST_FMA
			return half(detail::binary, detail::float2half<half::round_style>(std::fma(fx, fy, fz)));
		#else
			return half(detail::binary, detail::float2half<half::round_style>(fx*fy+fz));
		#endif
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, exp = -15;
		unsigned int sign = (x.data_^y.data_) & 0x8000;
		bool sub = ((sign^z.data_)&0x8000) != 0;
		if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
			return	(absx>0x7C00 || absy>0x7C00 || absz>0x7C00) ? half(detail::binary, detail::signal(x.data_, y.data_, z.data_)) :
					(absx==0x7C00) ? half(detail::binary, (!absy || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) :
					(absy==0x7C00) ? half(detail::binary, (!absx || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : z;
		if(!absx || !absy)
			return absz ? z : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (z.data_|sign) : (z.data_&sign));
		for(; absx<0x400; absx<<=1,--exp) ;
		for(; absy<0x400; absy<<=1,--exp) ;
		detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400);
		int i = m >> 21;
		exp += (absx>>10) + (absy>>10) + i;
		m <<= 3 - i;
		if(absz)
		{
			int expz = 0;
			for(; absz<0x400; absz<<=1,--expz) ;
			expz += absz >> 10;
			detail::uint32 mz = static_cast<detail::uint32>((absz&0x3FF)|0x400) << 13;
			if(expz > exp || (expz == exp && mz > m))
			{
				std::swap(m, mz);
				std::swap(exp, expz);
				if(sub)
					sign = z.data_ & 0x8000;
			}
			int d = exp - expz;
			mz = (d<23) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
			if(sub)
			{
				m = m - mz;
				if(!m)
					return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15);
				for(; m<0x800000; m<<=1,--exp) ;
			}
			else
			{
				m += mz;
				i = m >> 24;
				m = (m>>i) | (m&i);
				exp += i;
			}
		}
		if(exp > 30)
			return half(detail::binary, detail::overflow<half::round_style>(sign));
		else if(exp < -10)
			return half(detail::binary, detail::underflow<half::round_style>(sign));
		return half(detail::binary, detail::fixed2half<half::round_style,23,false,false,false>(m, exp-1, sign));
	#endif
	}

	/// Maximum of half expressions.
	/// **See also:** Documentation for [std::fmax](https://en.cppreference.com/w/cpp/numeric/math/fmax).
	/// \param x first operand
	/// \param y second operand
	/// \return maximum of operands, ignoring quiet NaNs
	/// \exception FE_INVALID if \a x or \a y is signaling NaN
	inline HALF_CONSTEXPR_NOERR half fmax(half x, half y)
	{
		return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) < 
			(y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_));
	}

	/// Minimum of half expressions.
	/// **See also:** Documentation for [std::fmin](https://en.cppreference.com/w/cpp/numeric/math/fmin).
	/// \param x first operand
	/// \param y second operand
	/// \return minimum of operands, ignoring quiet NaNs
	/// \exception FE_INVALID if \a x or \a y is signaling NaN
	inline HALF_CONSTEXPR_NOERR half fmin(half x, half y)
	{
		return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) >
			(y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_));
	}

	/// Positive difference.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::fdim](https://en.cppreference.com/w/cpp/numeric/math/fdim).
	/// \param x first operand
	/// \param y second operand
	/// \return \a x - \a y or 0 if difference negative
	/// \exception FE_... according to operator-(half,half)
	inline half fdim(half x, half y)
	{
		if(isnan(x) || isnan(y))
			return half(detail::binary, detail::signal(x.data_, y.data_));
		return (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <= (y.data_^(0x8000|(0x8000-(y.data_>>15)))) ? half(detail::binary, 0) : (x-y);
	}

	/// Get NaN value.
	/// **See also:** Documentation for [std::nan](https://en.cppreference.com/w/cpp/numeric/math/nan).
	/// \param arg string code
	/// \return quiet NaN
	inline half nanh(const char *arg)
	{
		unsigned int value = 0x7FFF;
		while(*arg)
			value ^= static_cast<unsigned>(*arg++) & 0xFF;
		return half(detail::binary, value);
	}

	/// \}
	/// \anchor exponential
	/// \name Exponential functions
	/// \{

	/// Exponential function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::exp](https://en.cppreference.com/w/cpp/numeric/math/exp).
	/// \param arg function argument
	/// \return e raised to \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half exp(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::exp(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, e = (abs>>10) + (abs<=0x3FF), exp;
		if(!abs)
			return half(detail::binary, 0x3C00);
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_));
		if(abs >= 0x4C80)
			return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>());
		detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29);
		if(e < 14)
		{
			exp = 0;
			m >>= 14 - e;
		}
		else
		{
			exp = m >> (45-e);
			m = (m<<(e-14)) & 0x7FFFFFFF;
		}
		return half(detail::binary, detail::exp2_post<half::round_style>(m, exp, (arg.data_&0x8000)!=0, 0, 26));
	#endif
	}

	/// Binary exponential.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::exp2](https://en.cppreference.com/w/cpp/numeric/math/exp2).
	/// \param arg function argument
	/// \return 2 raised to \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half exp2(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::exp2(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, e = (abs>>10) + (abs<=0x3FF), exp = (abs&0x3FF) + ((abs>0x3FF)<<10);
		if(!abs)
			return half(detail::binary, 0x3C00);
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_));
		if(abs >= 0x4E40)
			return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>());
		return half(detail::binary, detail::exp2_post<half::round_style>(
			(static_cast<detail::uint32>(exp)<<(6+e))&0x7FFFFFFF, exp>>(25-e), (arg.data_&0x8000)!=0, 0, 28));
	#endif
	}

	/// Exponential minus one.
	/// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest` 
	/// and in <1% of inputs for any other rounding mode.
	///
	/// **See also:** Documentation for [std::expm1](https://en.cppreference.com/w/cpp/numeric/math/expm1).
	/// \param arg function argument
	/// \return e raised to \a arg and subtracted by 1
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half expm1(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::expm1(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000, e = (abs>>10) + (abs<=0x3FF), exp;
		if(!abs)
			return arg;
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? (0x7C00+(sign>>1)) : detail::signal(arg.data_));
		if(abs >= 0x4A00)
			return half(detail::binary, (arg.data_&0x8000) ? detail::rounded<half::round_style,true>(0xBBFF, 1, 1) : detail::overflow<half::round_style>());
		detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29);
		if(e < 14)
		{
			exp = 0;
			m >>= 14 - e;
		}
		else
		{
			exp = m >> (45-e);
			m = (m<<(e-14)) & 0x7FFFFFFF;
		}
		m = detail::exp2(m);
		if(sign)
		{
			int s = 0;
			if(m > 0x80000000)
			{
				++exp;
				m = detail::divide64(0x80000000, m, s);
			}
			m = 0x80000000 - ((m>>exp)|((m&((static_cast<detail::uint32>(1)<<exp)-1))!=0)|s);
			exp = 0;
		}
		else
			m -= (exp<31) ? (0x80000000>>exp) : 1;
		for(exp+=14; m<0x80000000 && exp; m<<=1,--exp) ;
		if(exp > 29)
			return half(detail::binary, detail::overflow<half::round_style>());
		return half(detail::binary, detail::rounded<half::round_style,true>(sign+(exp<<10)+(m>>21), (m>>20)&1, (m&0xFFFFF)!=0));
	#endif
	}

	/// Natural logarithm.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::log](https://en.cppreference.com/w/cpp/numeric/math/log).
	/// \param arg function argument
	/// \return logarithm of \a arg to base e
	/// \exception FE_INVALID for signaling NaN or negative argument
	/// \exception FE_DIVBYZERO for 0
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half log(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::log(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = -15;
		if(!abs)
			return half(detail::binary, detail::pole(0x8000));
		if(arg.data_ & 0x8000)
			return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs >= 0x7C00)
			return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
		for(; abs<0x400; abs<<=1,--exp) ;
		exp += abs >> 10;
		return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(
			detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 17));
	#endif
	}

	/// Common logarithm.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::log10](https://en.cppreference.com/w/cpp/numeric/math/log10).
	/// \param arg function argument
	/// \return logarithm of \a arg to base 10
	/// \exception FE_INVALID for signaling NaN or negative argument
	/// \exception FE_DIVBYZERO for 0
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half log10(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::log10(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = -15;
		if(!abs)
			return half(detail::binary, detail::pole(0x8000));
		if(arg.data_ & 0x8000)
			return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs >= 0x7C00)
			return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
		switch(abs)
		{
			case 0x4900: return half(detail::binary, 0x3C00);
			case 0x5640: return half(detail::binary, 0x4000);
			case 0x63D0: return half(detail::binary, 0x4200);
			case 0x70E2: return half(detail::binary, 0x4400);
		}
		for(; abs<0x400; abs<<=1,--exp) ;
		exp += abs >> 10;
		return half(detail::binary, detail::log2_post<half::round_style,0xD49A784C>(
			detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 16));
	#endif
	}

	/// Binary logarithm.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::log2](https://en.cppreference.com/w/cpp/numeric/math/log2).
	/// \param arg function argument
	/// \return logarithm of \a arg to base 2
	/// \exception FE_INVALID for signaling NaN or negative argument
	/// \exception FE_DIVBYZERO for 0
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half log2(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::log2(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = -15, s = 0;
		if(!abs)
			return half(detail::binary, detail::pole(0x8000));
		if(arg.data_ & 0x8000)
			return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs >= 0x7C00)
			return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
		if(abs == 0x3C00)
			return half(detail::binary, 0);
		for(; abs<0x400; abs<<=1,--exp) ;
		exp += (abs>>10);
		if(!(abs&0x3FF))
		{
			unsigned int value = static_cast<unsigned>(exp<0) << 15, m = std::abs(exp) << 6;
			for(exp=18; m<0x400; m<<=1,--exp) ;
			return half(detail::binary, value+(exp<<10)+m);
		}
		detail::uint32 ilog = exp, sign = detail::sign_mask(ilog), m = 
			(((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 28)>>4))^sign) - sign;
		if(!m)
			return half(detail::binary, 0);
		for(exp=14; m<0x8000000 && exp; m<<=1,--exp) ;
		for(; m>0xFFFFFFF; m>>=1,++exp)
			s |= m & 1;
		return half(detail::binary, detail::fixed2half<half::round_style,27,false,false,true>(m, exp, sign&0x8000, s));
	#endif
	}

	/// Natural logarithm plus one.
	/// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest` 
	/// and in ~1% of inputs for any other rounding mode.
	///
	/// **See also:** Documentation for [std::log1p](https://en.cppreference.com/w/cpp/numeric/math/log1p).
	/// \param arg function argument
	/// \return logarithm of \a arg plus 1 to base e
	/// \exception FE_INVALID for signaling NaN or argument <-1
	/// \exception FE_DIVBYZERO for -1
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half log1p(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::log1p(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		if(arg.data_ >= 0xBC00)
			return half(detail::binary, (arg.data_==0xBC00) ? detail::pole(0x8000) : (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
		int abs = arg.data_ & 0x7FFF, exp = -15;
		if(!abs || abs >= 0x7C00)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		for(; abs<0x400; abs<<=1,--exp) ;
		exp += abs >> 10;
		detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 20;
		if(arg.data_ & 0x8000)
		{
			m = 0x40000000 - (m>>-exp);
			for(exp=0; m<0x40000000; m<<=1,--exp) ;
		}
		else
		{
			if(exp < 0)
			{
				m = 0x40000000 + (m>>-exp);
				exp = 0;
			}
			else
			{
				m += 0x40000000 >> exp;
				int i = m >> 31;
				m >>= i;
				exp += i;
			}
		}
		return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(m), exp, 17));
	#endif
	}

	/// \}
	/// \anchor power
	/// \name Power functions
	/// \{

	/// Square root.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::sqrt](https://en.cppreference.com/w/cpp/numeric/math/sqrt).
	/// \param arg function argument
	/// \return square root of \a arg
	/// \exception FE_INVALID for signaling NaN and negative arguments
	/// \exception FE_INEXACT according to rounding
	inline half sqrt(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = 15;
		if(!abs || arg.data_ >= 0x7C00)
			return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? detail::invalid() : arg.data_);
		for(; abs<0x400; abs<<=1,--exp) ;
		detail::uint32 r = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 10, m = detail::sqrt<20>(r, exp+=abs>>10);
		return half(detail::binary, detail::rounded<half::round_style,false>((exp<<10)+(m&0x3FF), r>m, r!=0));
	#endif
	}

	/// Inverse square root.
	/// This function is exact to rounding for all rounding modes and thus generally more accurate than directly computing 
	/// 1 / sqrt(\a arg) in half-precision, in addition to also being faster.
	/// \param arg function argument
	/// \return reciprocal of square root of \a arg
	/// \exception FE_INVALID for signaling NaN and negative arguments
	/// \exception FE_INEXACT according to rounding
	inline half rsqrt(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(detail::internal_t(1)/std::sqrt(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF, bias = 0x4000;
		if(!abs || arg.data_ >= 0x7C00)
			return half(detail::binary,	(abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ?
										detail::invalid() : !abs ? detail::pole(arg.data_&0x8000) : 0);
		for(; abs<0x400; abs<<=1,bias-=0x400) ;
		unsigned int frac = (abs+=bias) & 0x7FF;
		if(frac == 0x400)
			return half(detail::binary, 0x7A00-(abs>>1));
		if((half::round_style == std::round_to_nearest && (frac == 0x3FE || frac == 0x76C)) ||
		   (half::round_style != std::round_to_nearest && (frac == 0x15A || frac == 0x3FC || frac == 0x401 || frac == 0x402 || frac == 0x67B)))
			return pow(arg, half(detail::binary, 0xB800));
		detail::uint32 f = 0x17376 - abs, mx = (abs&0x3FF) | 0x400, my = ((f>>1)&0x3FF) | 0x400, mz = my * my;
		int expy = (f>>11) - 31, expx = 32 - (abs>>10), i = mz >> 21;
		for(mz=0x60000000-(((mz>>i)*mx)>>(expx-2*expy-i)); mz<0x40000000; mz<<=1,--expy) ;
		i = (my*=mz>>10) >> 31;
		expy += i;
		my = (my>>(20+i)) + 1;
		i = (mz=my*my) >> 21;
		for(mz=0x60000000-(((mz>>i)*mx)>>(expx-2*expy-i)); mz<0x40000000; mz<<=1,--expy) ;
		i = (my*=(mz>>10)+1) >> 31;
		return half(detail::binary, detail::fixed2half<half::round_style,30,false,false,true>(my>>i, expy+i+14));
	#endif
	}

	/// Cubic root.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::cbrt](https://en.cppreference.com/w/cpp/numeric/math/cbrt).
	/// \param arg function argument
	/// \return cubic root of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_INEXACT according to rounding
	inline half cbrt(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::cbrt(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = -15;
		if(!abs || abs == 0x3C00 || abs >= 0x7C00)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		for(; abs<0x400; abs<<=1, --exp);
		detail::uint32 ilog = exp + (abs>>10), sign = detail::sign_mask(ilog), f, m = 
			(((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 24)>>4))^sign) - sign;
		for(exp=2; m<0x80000000; m<<=1,--exp) ;
		m = detail::multiply64(m, 0xAAAAAAAB);
		int i = m >> 31, s;
		exp += i;
		m <<= 1 - i;
		if(exp < 0)
		{
			f = m >> -exp;
			exp = 0;
		}
		else
		{
			f = (m<<exp) & 0x7FFFFFFF;
			exp = m >> (31-exp);
		}
		m = detail::exp2(f, (half::round_style==std::round_to_nearest) ? 29 : 26);
		if(sign)
		{
			if(m > 0x80000000)
			{
				m = detail::divide64(0x80000000, m, s);
				++exp;
			}
			exp = -exp;
		}
		return half(detail::binary, (half::round_style==std::round_to_nearest) ?
			detail::fixed2half<half::round_style,31,false,false,false>(m, exp+14, arg.data_&0x8000) :
			detail::fixed2half<half::round_style,23,false,false,false>((m+0x80)>>8, exp+14, arg.data_&0x8000));
	#endif
	}

	/// Hypotenuse function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot).
	/// \param x first argument
	/// \param y second argument
	/// \return square root of sum of squares without internal over- or underflows
	/// \exception FE_INVALID if \a x or \a y is signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root
	inline half hypot(half x, half y)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_);
		#if HALF_ENABLE_CPP11_CMATH
			return half(detail::binary, detail::float2half<half::round_style>(std::hypot(fx, fy)));
		#else
			return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy)));
		#endif
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, expx = 0, expy = 0;
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx==0x7C00) ? detail::select(0x7C00, y.data_) :
				(absy==0x7C00) ? detail::select(0x7C00, x.data_) : detail::signal(x.data_, y.data_));
		if(!absx)
			return half(detail::binary, absy ? detail::check_underflow(absy) : 0);
		if(!absy)
			return half(detail::binary, detail::check_underflow(absx));
		if(absy > absx)
			std::swap(absx, absy);
		for(; absx<0x400; absx<<=1,--expx) ;
		for(; absy<0x400; absy<<=1,--expy) ;
		detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
		mx *= mx;
		my *= my;
		int ix = mx >> 21, iy = my >> 21;
		expx = 2*(expx+(absx>>10)) - 15 + ix;
		expy = 2*(expy+(absy>>10)) - 15 + iy;
		mx <<= 10 - ix;
		my <<= 10 - iy;
		int d = expx - expy;
		my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
		return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx));
	#endif
	}

	/// Hypotenuse function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot).
	/// \param x first argument
	/// \param y second argument
	/// \param z third argument
	/// \return square root of sum of squares without internal over- or underflows
	/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root
	inline half hypot(half x, half y, half z)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_);
		return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy+fz*fz)));
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, expx = 0, expy = 0, expz = 0;
		if(!absx)
			return hypot(y, z);
		if(!absy)
			return hypot(x, z);
		if(!absz)
			return hypot(x, y);
		if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
			return half(detail::binary,	(absx==0x7C00) ? detail::select(0x7C00, detail::select(y.data_, z.data_)) :
										(absy==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, z.data_)) :
										(absz==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, y.data_)) :
										detail::signal(x.data_, y.data_, z.data_));
		if(absz > absy)
			std::swap(absy, absz);
		if(absy > absx)
			std::swap(absx, absy);
		if(absz > absy)
			std::swap(absy, absz);
		for(; absx<0x400; absx<<=1,--expx) ;
		for(; absy<0x400; absy<<=1,--expy) ;
		for(; absz<0x400; absz<<=1,--expz) ;
		detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400, mz = (absz&0x3FF) | 0x400;
		mx *= mx;
		my *= my;
		mz *= mz;
		int ix = mx >> 21, iy = my >> 21, iz = mz >> 21;
		expx = 2*(expx+(absx>>10)) - 15 + ix;
		expy = 2*(expy+(absy>>10)) - 15 + iy;
		expz = 2*(expz+(absz>>10)) - 15 + iz;
		mx <<= 10 - ix;
		my <<= 10 - iy;
		mz <<= 10 - iz;
		int d = expy - expz;
		mz = (d<30) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
		my += mz;
		if(my & 0x80000000)
		{
			my = (my>>1) | (my&1);
			if(++expy > expx)
			{
				std::swap(mx, my);
				std::swap(expx, expy);
			}
		}
		d = expx - expy;
		my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
		return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx));
	#endif
	}

	/// Power function.
	/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.00025% of inputs.
	///
	/// **See also:** Documentation for [std::pow](https://en.cppreference.com/w/cpp/numeric/math/pow).
	/// \param x base
	/// \param y exponent
	/// \return \a x raised to \a y
	/// \exception FE_INVALID if \a x or \a y is signaling NaN or if \a x is finite an negative and \a y is finite and not integral
	/// \exception FE_DIVBYZERO if \a x is 0 and \a y is negative
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half pow(half x, half y)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::pow(detail::half2float<detail::internal_t>(x.data_), detail::half2float<detail::internal_t>(y.data_))));
	#else
		int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -15;
		if(!absy || x.data_ == 0x3C00)
			return half(detail::binary, detail::select(0x3C00, (x.data_==0x3C00) ? y.data_ : x.data_));
		bool is_int = absy >= 0x6400 || (absy>=0x3C00 && !(absy&((1<<(25-(absy>>10)))-1)));
		unsigned int sign = x.data_ & (static_cast<unsigned>((absy<0x6800)&&is_int&&((absy>>(25-(absy>>10)))&1))<<15);
		if(absx >= 0x7C00 || absy >= 0x7C00)
			return half(detail::binary,	(absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
										(absy==0x7C00) ? ((absx==0x3C00) ? 0x3C00 : (!absx && y.data_==0xFC00) ? detail::pole() :
										(0x7C00&-((y.data_>>15)^(absx>0x3C00)))) : (sign|(0x7C00&((y.data_>>15)-1U))));
		if(!absx)
			return half(detail::binary, (y.data_&0x8000) ? detail::pole(sign) : sign);
		if((x.data_&0x8000) && !is_int)
			return half(detail::binary, detail::invalid());
		if(x.data_ == 0xBC00)
			return half(detail::binary, sign|0x3C00);
		switch(y.data_)
		{
			case 0x3800: return sqrt(x);
			case 0x3C00: return half(detail::binary, detail::check_underflow(x.data_));
			case 0x4000: return x * x;
			case 0xBC00: return half(detail::binary, 0x3C00) / x;
		}
		for(; absx<0x400; absx<<=1,--exp) ;
		detail::uint32 ilog = exp + (absx>>10), msign = detail::sign_mask(ilog), f, m = 
			(((ilog<<27)+((detail::log2(static_cast<detail::uint32>((absx&0x3FF)|0x400)<<20)+8)>>4))^msign) - msign;
		for(exp=-11; m<0x80000000; m<<=1,--exp) ;
		for(; absy<0x400; absy<<=1,--exp) ;
		m = detail::multiply64(m, static_cast<detail::uint32>((absy&0x3FF)|0x400)<<21);
		int i = m >> 31;
		exp += (absy>>10) + i;
		m <<= 1 - i;
		if(exp < 0)
		{
			f = m >> -exp;
			exp = 0;
		}
		else
		{
			f = (m<<exp) & 0x7FFFFFFF;
			exp = m >> (31-exp);
		}
		return half(detail::binary, detail::exp2_post<half::round_style>(f, exp, ((msign&1)^(y.data_>>15))!=0, sign));
	#endif
	}

	/// \}
	/// \anchor trigonometric
	/// \name Trigonometric functions
	/// \{

	/// Compute sine and cosine simultaneously.
	///	This returns the same results as sin() and cos() but is faster than calling each function individually.
	///
	/// This function is exact to rounding for all rounding modes.
	/// \param arg function argument
	/// \param sin variable to take sine of \a arg
	/// \param cos variable to take cosine of \a arg
	/// \exception FE_INVALID for signaling NaN or infinity
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline void sincos(half arg, half *sin, half *cos)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		detail::internal_t f = detail::half2float<detail::internal_t>(arg.data_);
		*sin = half(detail::binary, detail::float2half<half::round_style>(std::sin(f)));
		*cos = half(detail::binary, detail::float2half<half::round_style>(std::cos(f)));
	#else
		int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15, k;
		if(abs >= 0x7C00)
			*sin = *cos = half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
		else if(!abs)
		{
			*sin = arg;
			*cos = half(detail::binary, 0x3C00);
		}
		else if(abs < 0x2500)
		{
			*sin = half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
			*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
		}
		else
		{
			if(half::round_style != std::round_to_nearest)
			{
				switch(abs)
				{
				case 0x48B7:
					*sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1));
					*cos = half(detail::binary, detail::rounded<half::round_style,true>(0xBBFF, 1, 1));
					return;
				case 0x598C:
					*sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
					*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1));
					return;
				case 0x6A64:
					*sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1));
					*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x27FF, 1, 1));
					return;
				case 0x6D8C:
					*sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1));
					*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
					return;
				}
			}
			std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
			switch(k & 3)
			{
				case 1: sc = std::make_pair(sc.second, -sc.first); break;
				case 2: sc = std::make_pair(-sc.first, -sc.second); break;
				case 3: sc = std::make_pair(-sc.second, sc.first); break;
			}
			*sin = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((sc.first^-static_cast<detail::uint32>(sign))+sign));
			*cos = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>(sc.second));
		}
	#endif
	}

	/// Sine function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::sin](https://en.cppreference.com/w/cpp/numeric/math/sin).
	/// \param arg function argument
	/// \return sine value of \a arg
	/// \exception FE_INVALID for signaling NaN or infinity
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half sin(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::sin(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, k;
		if(!abs)
			return arg;
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs < 0x2900)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
		if(half::round_style != std::round_to_nearest)
			switch(abs)
			{
				case 0x48B7: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1));
				case 0x6A64: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1));
				case 0x6D8C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1));
			}
		std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
		detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)&1)^(arg.data_>>15));
		return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.second : sc.first)^sign) - sign));
	#endif
	}

	/// Cosine function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::cos](https://en.cppreference.com/w/cpp/numeric/math/cos).
	/// \param arg function argument
	/// \return cosine value of \a arg
	/// \exception FE_INVALID for signaling NaN or infinity
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half cos(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::cos(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, k;
		if(!abs)
			return half(detail::binary, 0x3C00);
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs < 0x2500)
			return half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
		if(half::round_style != std::round_to_nearest && abs == 0x598C)
			return half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1));
		std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
		detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)^k)&1);
		return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.first : sc.second)^sign) - sign));
	#endif
	}

	/// Tangent function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::tan](https://en.cppreference.com/w/cpp/numeric/math/tan).
	/// \param arg function argument
	/// \return tangent value of \a arg
	/// \exception FE_INVALID for signaling NaN or infinity
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half tan(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::tan(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = 13, k;
		if(!abs)
			return arg;
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs < 0x2700)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
		if(half::round_style != std::round_to_nearest)
			switch(abs)
			{
				case 0x658C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x07E6, 1, 1));
				case 0x7330: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x4B62, 1, 1));
			}
		std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 30);
		if(k & 1)
			sc = std::make_pair(-sc.second, sc.first);
		detail::uint32 signy = detail::sign_mask(sc.first), signx = detail::sign_mask(sc.second);
		detail::uint32 my = (sc.first^signy) - signy, mx = (sc.second^signx) - signx;
		for(; my<0x80000000; my<<=1,--exp) ;
		for(; mx<0x80000000; mx<<=1,++exp) ;
		return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp, (signy^signx^arg.data_)&0x8000));
	#endif
	}

	/// Arc sine.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::asin](https://en.cppreference.com/w/cpp/numeric/math/asin).
	/// \param arg function argument
	/// \return arc sine value of \a arg
	/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half asin(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::asin(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
		if(!abs)
			return arg;
		if(abs >= 0x3C00)
			return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() :
										detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1));
		if(abs < 0x2900)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
		if(half::round_style != std::round_to_nearest && (abs == 0x2B44 || abs == 0x2DC3))
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_+1, 1, 1));
		std::pair<detail::uint32,detail::uint32> sc = detail::atan2_args(abs);
		detail::uint32 m = detail::atan2(sc.first, sc.second, (half::round_style==std::round_to_nearest) ? 27 : 26);
		return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign));
	#endif
	}

	/// Arc cosine function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::acos](https://en.cppreference.com/w/cpp/numeric/math/acos).
	/// \param arg function argument
	/// \return arc cosine value of \a arg
	/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half acos(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::acos(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15;
		if(!abs)
			return half(detail::binary, detail::rounded<half::round_style,true>(0x3E48, 0, 1));
		if(abs >= 0x3C00)
			return half(detail::binary,	(abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() :
										sign ? detail::rounded<half::round_style,true>(0x4248, 0, 1) : 0);
		std::pair<detail::uint32,detail::uint32> cs = detail::atan2_args(abs);
		detail::uint32 m = detail::atan2(cs.second, cs.first, 28);
		return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(sign ? (0xC90FDAA2-m) : m, 15, 0, sign));
	#endif
	}

	/// Arc tangent function.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::atan](https://en.cppreference.com/w/cpp/numeric/math/atan).
	/// \param arg function argument
	/// \return arc tangent value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half atan(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::atan(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
		if(!abs)
			return arg;
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1) : detail::signal(arg.data_));
		if(abs <= 0x2700)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
		int exp = (abs>>10) + (abs<=0x3FF);
		detail::uint32 my = (abs&0x3FF) | ((abs>0x3FF)<<10);
		detail::uint32 m = (exp>15) ?	detail::atan2(my<<19, 0x20000000>>(exp-15), (half::round_style==std::round_to_nearest) ? 26 : 24) :
										detail::atan2(my<<(exp+4), 0x20000000, (half::round_style==std::round_to_nearest) ? 30 : 28);
		return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign));
	#endif
	}

	/// Arc tangent function.
	/// This function may be 1 ULP off the correctly rounded exact result in ~0.005% of inputs for `std::round_to_nearest`, 
	/// in ~0.1% of inputs for `std::round_toward_zero` and in ~0.02% of inputs for any other rounding mode.
	///
	/// **See also:** Documentation for [std::atan2](https://en.cppreference.com/w/cpp/numeric/math/atan2).
	/// \param y numerator
	/// \param x denominator
	/// \return arc tangent value
	/// \exception FE_INVALID if \a x or \a y is signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half atan2(half y, half x)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::atan2(detail::half2float<detail::internal_t>(y.data_), detail::half2float<detail::internal_t>(x.data_))));
	#else
		unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, signx = x.data_ >> 15, signy = y.data_ & 0x8000;
		if(absx >= 0x7C00 || absy >= 0x7C00)
		{
			if(absx > 0x7C00 || absy > 0x7C00)
				return half(detail::binary, detail::signal(x.data_, y.data_));
			if(absy == 0x7C00)
				return half(detail::binary, (absx<0x7C00) ?	detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1) :
													signx ?	detail::rounded<half::round_style,true>(signy|0x40B6, 0, 1) :
															detail::rounded<half::round_style,true>(signy|0x3A48, 0, 1));
			return (x.data_==0x7C00) ? half(detail::binary, signy) : half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1));
		}
		if(!absy)
			return signx ? half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1)) : y;
		if(!absx)
			return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1));
		int d = (absy>>10) + (absy<=0x3FF) - (absx>>10) - (absx<=0x3FF);
		if(d > (signx ? 18 : 12))
			return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1));
		if(signx && d < -11)
			return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1));
		if(!signx && d < ((half::round_style==std::round_toward_zero) ? -15 : -9))
		{
			for(; absy<0x400; absy<<=1,--d) ;
			detail::uint32 mx = ((absx<<1)&0x7FF) | 0x800, my = ((absy<<1)&0x7FF) | 0x800;
			int i = my < mx;
			d -= i;
			if(d < -25)
				return half(detail::binary, detail::underflow<half::round_style>(signy));
			my <<= 11 + i;
			return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,true>(my/mx, d+14, signy, my%mx!=0));
		}
		detail::uint32 m = detail::atan2(	((absy&0x3FF)|((absy>0x3FF)<<10))<<(19+((d<0) ? d : (d>0) ? 0 : -1)),
											((absx&0x3FF)|((absx>0x3FF)<<10))<<(19-((d>0) ? d : (d<0) ? 0 : 1)));
		return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(signx ? (0xC90FDAA2-m) : m, 15, signy, signx));
	#endif
	}

	/// \}
	/// \anchor hyperbolic
	/// \name Hyperbolic functions
	/// \{

	/// Hyperbolic sine.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::sinh](https://en.cppreference.com/w/cpp/numeric/math/sinh).
	/// \param arg function argument
	/// \return hyperbolic sine value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half sinh(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::sinh(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp;
		if(!abs || abs >= 0x7C00)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		if(abs <= 0x2900)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
		std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 29 : 27);
		detail::uint32 m = mm.first - mm.second;
		for(exp+=13; m<0x80000000 && exp; m<<=1,--exp) ;
		unsigned int sign = arg.data_ & 0x8000;
		if(exp > 29)
			return half(detail::binary, detail::overflow<half::round_style>(sign));
		return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp, sign));
	#endif
	}

	/// Hyperbolic cosine.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::cosh](https://en.cppreference.com/w/cpp/numeric/math/cosh).
	/// \param arg function argument
	/// \return hyperbolic cosine value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half cosh(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::cosh(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp;
		if(!abs)
			return half(detail::binary, 0x3C00);
		if(abs >= 0x7C00)
			return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : 0x7C00);
		std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 23 : 26);
		detail::uint32 m = mm.first + mm.second, i = (~m&0xFFFFFFFF) >> 31;
		m = (m>>i) | (m&i) | 0x80000000;
		if((exp+=13+i) > 29)
			return half(detail::binary, detail::overflow<half::round_style>());
		return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp));
	#endif
	}

	/// Hyperbolic tangent.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::tanh](https://en.cppreference.com/w/cpp/numeric/math/tanh).
	/// \param arg function argument
	/// \return hyperbolic tangent value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half tanh(half arg)
	{
	#ifdef HALF_ARITHMETIC_TYPE
		return half(detail::binary, detail::float2half<half::round_style>(std::tanh(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp;
		if(!abs)
			return arg;
		if(abs >= 0x7C00)
			return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_-0x4000));
		if(abs >= 0x4500)
			return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
		if(abs < 0x2700)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
		if(half::round_style != std::round_to_nearest && abs == 0x2D3F)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-3, 0, 1));
		std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, 27);
		detail::uint32 my = mm.first - mm.second - (half::round_style!=std::round_to_nearest), mx = mm.first + mm.second, i = (~mx&0xFFFFFFFF) >> 31;
		for(exp=13; my<0x80000000; my<<=1,--exp) ;
		mx = (mx>>i) | 0x80000000;
		return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp-i, arg.data_&0x8000));
	#endif
	}

	/// Hyperbolic area sine.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::asinh](https://en.cppreference.com/w/cpp/numeric/math/asinh).
	/// \param arg function argument
	/// \return area sine value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half asinh(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::asinh(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF;
		if(!abs || abs >= 0x7C00)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		if(abs <= 0x2900)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
		if(half::round_style != std::round_to_nearest)
			switch(abs)
			{
				case 0x32D4: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-13, 1, 1));
				case 0x3B5B: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-197, 1, 1));
			}
		return half(detail::binary, detail::area<half::round_style,true>(arg.data_));
	#endif
	}

	/// Hyperbolic area cosine.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::acosh](https://en.cppreference.com/w/cpp/numeric/math/acosh).
	/// \param arg function argument
	/// \return area cosine value of \a arg
	/// \exception FE_INVALID for signaling NaN or arguments <1
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half acosh(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::acosh(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF;
		if((arg.data_&0x8000) || abs < 0x3C00)
			return half(detail::binary, (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs == 0x3C00)
			return half(detail::binary, 0);
		if(arg.data_ >= 0x7C00)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		return half(detail::binary, detail::area<half::round_style,false>(arg.data_));
	#endif
	}

	/// Hyperbolic area tangent.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::atanh](https://en.cppreference.com/w/cpp/numeric/math/atanh).
	/// \param arg function argument
	/// \return area tangent value of \a arg
	/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
	/// \exception FE_DIVBYZERO for +/-1
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half atanh(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::atanh(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF, exp = 0;
		if(!abs)
			return arg;
		if(abs >= 0x3C00)
			return half(detail::binary, (abs==0x3C00) ? detail::pole(arg.data_&0x8000) : (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_));
		if(abs < 0x2700)
			return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
		detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << ((abs>>10)+(abs<=0x3FF)+6), my = 0x80000000 + m, mx = 0x80000000 - m;
		for(; mx<0x80000000; mx<<=1,++exp) ;
		int i = my >= mx, s;
		return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(
			(detail::divide64(my>>i, mx, s)+1)>>1, 27)+0x10, exp+i-1, 16, arg.data_&0x8000));
	#endif
	}

	/// \}
	/// \anchor special
	/// \name Error and gamma functions
	/// \{

	/// Error function.
	/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs.
	///
	/// **See also:** Documentation for [std::erf](https://en.cppreference.com/w/cpp/numeric/math/erf).
	/// \param arg function argument
	/// \return error function value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half erf(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::erf(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF;
		if(!abs || abs >= 0x7C00)
			return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (arg.data_-0x4000) : detail::signal(arg.data_)) : arg;
		if(abs >= 0x4200)
			return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
		return half(detail::binary, detail::erf<half::round_style,false>(arg.data_));
	#endif
	}

	/// Complementary error function.
	/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs.
	///
	/// **See also:** Documentation for [std::erfc](https://en.cppreference.com/w/cpp/numeric/math/erfc).
	/// \param arg function argument
	/// \return 1 minus error function value of \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half erfc(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::erfc(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
		if(abs >= 0x7C00)
			return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (sign>>1) : detail::signal(arg.data_)) : arg;
		if(!abs)
			return half(detail::binary, 0x3C00);
		if(abs >= 0x4400)
			return half(detail::binary, detail::rounded<half::round_style,true>((sign>>1)-(sign>>15), sign>>15, 1));
		return half(detail::binary, detail::erf<half::round_style,true>(arg.data_));
	#endif
	}

	/// Natural logarithm of gamma function.
	/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.025% of inputs.
	///
	/// **See also:** Documentation for [std::lgamma](https://en.cppreference.com/w/cpp/numeric/math/lgamma).
	/// \param arg function argument
	/// \return natural logarith of gamma function for \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_DIVBYZERO for 0 or negative integer arguments
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half lgamma(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::lgamma(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		int abs = arg.data_ & 0x7FFF;
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_));
		if(!abs || arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1))))
			return half(detail::binary, detail::pole());
		if(arg.data_ == 0x3C00 || arg.data_ == 0x4000)
			return half(detail::binary, 0);
		return half(detail::binary, detail::gamma<half::round_style,true>(arg.data_));
	#endif
	}

	/// Gamma function.
	/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.25% of inputs.
	///
	/// **See also:** Documentation for [std::tgamma](https://en.cppreference.com/w/cpp/numeric/math/tgamma).
	/// \param arg function argument
	/// \return gamma function value of \a arg
	/// \exception FE_INVALID for signaling NaN, negative infinity or negative integer arguments
	/// \exception FE_DIVBYZERO for 0
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half tgamma(half arg)
	{
	#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
		return half(detail::binary, detail::float2half<half::round_style>(std::tgamma(detail::half2float<detail::internal_t>(arg.data_))));
	#else
		unsigned int abs = arg.data_ & 0x7FFF;
		if(!abs)
			return half(detail::binary, detail::pole(arg.data_));
		if(abs >= 0x7C00)
			return (arg.data_==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
		if(arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1))))
			return half(detail::binary, detail::invalid());
		if(arg.data_ >= 0xCA80)
			return half(detail::binary, detail::underflow<half::round_style>((1-((abs>>(25-(abs>>10)))&1))<<15));
		if(arg.data_ <= 0x100 || (arg.data_ >= 0x4900 && arg.data_ < 0x8000))
			return half(detail::binary, detail::overflow<half::round_style>());
		if(arg.data_ == 0x3C00)
			return arg;
		return half(detail::binary, detail::gamma<half::round_style,false>(arg.data_));
	#endif
	}

	/// \}
	/// \anchor rounding
	/// \name Rounding
	/// \{

	/// Nearest integer not less than half value.
	/// **See also:** Documentation for [std::ceil](https://en.cppreference.com/w/cpp/numeric/math/ceil).
	/// \param arg half to round
	/// \return nearest integer not less than \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_INEXACT if value had to be rounded
	inline half ceil(half arg) { return half(detail::binary, detail::integral<std::round_toward_infinity,true,true>(arg.data_)); }

	/// Nearest integer not greater than half value.
	/// **See also:** Documentation for [std::floor](https://en.cppreference.com/w/cpp/numeric/math/floor).
	/// \param arg half to round
	/// \return nearest integer not greater than \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_INEXACT if value had to be rounded
	inline half floor(half arg) { return half(detail::binary, detail::integral<std::round_toward_neg_infinity,true,true>(arg.data_)); }

	/// Nearest integer not greater in magnitude than half value.
	/// **See also:** Documentation for [std::trunc](https://en.cppreference.com/w/cpp/numeric/math/trunc).
	/// \param arg half to round
	/// \return nearest integer not greater in magnitude than \a arg
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_INEXACT if value had to be rounded
	inline half trunc(half arg) { return half(detail::binary, detail::integral<std::round_toward_zero,true,true>(arg.data_)); }

	/// Nearest integer.
	/// **See also:** Documentation for [std::round](https://en.cppreference.com/w/cpp/numeric/math/round).
	/// \param arg half to round
	/// \return nearest integer, rounded away from zero in half-way cases
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_INEXACT if value had to be rounded
	inline half round(half arg) { return half(detail::binary, detail::integral<std::round_to_nearest,false,true>(arg.data_)); }

	/// Nearest integer.
	/// **See also:** Documentation for [std::lround](https://en.cppreference.com/w/cpp/numeric/math/round).
	/// \param arg half to round
	/// \return nearest integer, rounded away from zero in half-way cases
	/// \exception FE_INVALID if value is not representable as `long`
	inline long lround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long>(arg.data_); }

	/// Nearest integer using half's internal rounding mode.
	/// **See also:** Documentation for [std::rint](https://en.cppreference.com/w/cpp/numeric/math/rint).
	/// \param arg half expression to round
	/// \return nearest integer using default rounding mode
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_INEXACT if value had to be rounded
	inline half rint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,true>(arg.data_)); }

	/// Nearest integer using half's internal rounding mode.
	/// **See also:** Documentation for [std::lrint](https://en.cppreference.com/w/cpp/numeric/math/rint).
	/// \param arg half expression to round
	/// \return nearest integer using default rounding mode
	/// \exception FE_INVALID if value is not representable as `long`
	/// \exception FE_INEXACT if value had to be rounded
	inline long lrint(half arg) { return detail::half2int<half::round_style,true,true,long>(arg.data_); }

	/// Nearest integer using half's internal rounding mode.
	/// **See also:** Documentation for [std::nearbyint](https://en.cppreference.com/w/cpp/numeric/math/nearbyint).
	/// \param arg half expression to round
	/// \return nearest integer using default rounding mode
	/// \exception FE_INVALID for signaling NaN
	inline half nearbyint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,false>(arg.data_)); }
#if HALF_ENABLE_CPP11_LONG_LONG
	/// Nearest integer.
	/// **See also:** Documentation for [std::llround](https://en.cppreference.com/w/cpp/numeric/math/round).
	/// \param arg half to round
	/// \return nearest integer, rounded away from zero in half-way cases
	/// \exception FE_INVALID if value is not representable as `long long`
	inline long long llround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long long>(arg.data_); }

	/// Nearest integer using half's internal rounding mode.
	/// **See also:** Documentation for [std::llrint](https://en.cppreference.com/w/cpp/numeric/math/rint).
	/// \param arg half expression to round
	/// \return nearest integer using default rounding mode
	/// \exception FE_INVALID if value is not representable as `long long`
	/// \exception FE_INEXACT if value had to be rounded
	inline long long llrint(half arg) { return detail::half2int<half::round_style,true,true,long long>(arg.data_); }
#endif

	/// \}
	/// \anchor float
	/// \name Floating point manipulation
	/// \{

	/// Decompress floating-point number.
	/// **See also:** Documentation for [std::frexp](https://en.cppreference.com/w/cpp/numeric/math/frexp).
	/// \param arg number to decompress
	/// \param exp address to store exponent at
	/// \return significant in range [0.5, 1)
	/// \exception FE_INVALID for signaling NaN
	inline half frexp(half arg, int *exp)
	{
		*exp = 0;
		unsigned int abs = arg.data_ & 0x7FFF;
		if(abs >= 0x7C00 || !abs)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		for(; abs<0x400; abs<<=1,--*exp) ;
		*exp += (abs>>10) - 14;
		return half(detail::binary, (arg.data_&0x8000)|0x3800|(abs&0x3FF));
	}

	/// Multiply by power of two.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::scalbln](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
	/// \param arg number to modify
	/// \param exp power of two to multiply with
	/// \return \a arg multplied by 2 raised to \a exp
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half scalbln(half arg, long exp)
	{
		unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
		if(abs >= 0x7C00 || !abs)
			return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
		for(; abs<0x400; abs<<=1,--exp) ;
		exp += abs >> 10;
		if(exp > 30)
			return half(detail::binary, detail::overflow<half::round_style>(sign));
		else if(exp < -10)
			return half(detail::binary, detail::underflow<half::round_style>(sign));
		else if(exp > 0)
			return half(detail::binary, sign|(exp<<10)|(abs&0x3FF));
		unsigned int m = (abs&0x3FF) | 0x400;
		return half(detail::binary, detail::rounded<half::round_style,false>(sign|(m>>(1-exp)), (m>>-exp)&1, (m&((1<<-exp)-1))!=0));
	}

	/// Multiply by power of two.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::scalbn](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
	/// \param arg number to modify
	/// \param exp power of two to multiply with
	/// \return \a arg multplied by 2 raised to \a exp
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half scalbn(half arg, int exp) { return scalbln(arg, exp); }

	/// Multiply by power of two.
	/// This function is exact to rounding for all rounding modes.
	///
	/// **See also:** Documentation for [std::ldexp](https://en.cppreference.com/w/cpp/numeric/math/ldexp).
	/// \param arg number to modify
	/// \param exp power of two to multiply with
	/// \return \a arg multplied by 2 raised to \a exp
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	inline half ldexp(half arg, int exp) { return scalbln(arg, exp); }

	/// Extract integer and fractional parts.
	/// **See also:** Documentation for [std::modf](https://en.cppreference.com/w/cpp/numeric/math/modf).
	/// \param arg number to decompress
	/// \param iptr address to store integer part at
	/// \return fractional part
	/// \exception FE_INVALID for signaling NaN
	inline half modf(half arg, half *iptr)
	{
		unsigned int abs = arg.data_ & 0x7FFF;
		if(abs > 0x7C00)
		{
			arg = half(detail::binary, detail::signal(arg.data_));
			return *iptr = arg, arg;
		}
		if(abs >= 0x6400)
			return *iptr = arg, half(detail::binary, arg.data_&0x8000);
		if(abs < 0x3C00)
			return iptr->data_ = arg.data_ & 0x8000, arg;
		unsigned int exp = abs >> 10, mask = (1<<(25-exp)) - 1, m = arg.data_ & mask;
		iptr->data_ = arg.data_ & ~mask;
		if(!m)
			return half(detail::binary, arg.data_&0x8000);
		for(; m<0x400; m<<=1,--exp) ;
		return half(detail::binary, (arg.data_&0x8000)|(exp<<10)|(m&0x3FF));
	}

	/// Extract exponent.
	/// **See also:** Documentation for [std::ilogb](https://en.cppreference.com/w/cpp/numeric/math/ilogb).
	/// \param arg number to query
	/// \return floating-point exponent
	/// \retval FP_ILOGB0 for zero
	/// \retval FP_ILOGBNAN for NaN
	/// \retval INT_MAX for infinity
	/// \exception FE_INVALID for 0 or infinite values
	inline int ilogb(half arg)
	{
		int abs = arg.data_ & 0x7FFF, exp;
		if(!abs || abs >= 0x7C00)
		{
			detail::raise(FE_INVALID);
			return !abs ? FP_ILOGB0 : (abs==0x7C00) ? INT_MAX : FP_ILOGBNAN;
		}
		for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ;
		return exp;
	}

	/// Extract exponent.
	/// **See also:** Documentation for [std::logb](https://en.cppreference.com/w/cpp/numeric/math/logb).
	/// \param arg number to query
	/// \return floating-point exponent
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_DIVBYZERO for 0
	inline half logb(half arg)
	{
		int abs = arg.data_ & 0x7FFF, exp;
		if(!abs)
			return half(detail::binary, detail::pole(0x8000));
		if(abs >= 0x7C00)
			return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_));
		for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ;
		unsigned int value = static_cast<unsigned>(exp<0) << 15;
		if(exp)
		{
			unsigned int m = std::abs(exp) << 6;
			for(exp=18; m<0x400; m<<=1,--exp) ;
			value |= (exp<<10) + m;
		}
		return half(detail::binary, value);
	}

	/// Next representable value.
	/// **See also:** Documentation for [std::nextafter](https://en.cppreference.com/w/cpp/numeric/math/nextafter).
	/// \param from value to compute next representable value for
	/// \param to direction towards which to compute next value
	/// \return next representable value after \a from in direction towards \a to
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW for infinite result from finite argument
	/// \exception FE_UNDERFLOW for subnormal result
	inline half nextafter(half from, half to)
	{
		int fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
		if(fabs > 0x7C00 || tabs > 0x7C00)
			return half(detail::binary, detail::signal(from.data_, to.data_));
		if(from.data_ == to.data_ || !(fabs|tabs))
			return to;
		if(!fabs)
		{
			detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
			return half(detail::binary, (to.data_&0x8000)+1);
		}
		unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(
			(from.data_^(0x8000|(0x8000-(from.data_>>15))))<(to.data_^(0x8000|(0x8000-(to.data_>>15))))))<<1) - 1;
		detail::raise(FE_OVERFLOW, fabs<0x7C00 && (out&0x7C00)==0x7C00);
		detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7C00)<0x400);
		return half(detail::binary, out);
	}

	/// Next representable value.
	/// **See also:** Documentation for [std::nexttoward](https://en.cppreference.com/w/cpp/numeric/math/nexttoward).
	/// \param from value to compute next representable value for
	/// \param to direction towards which to compute next value
	/// \return next representable value after \a from in direction towards \a to
	/// \exception FE_INVALID for signaling NaN
	/// \exception FE_OVERFLOW for infinite result from finite argument
	/// \exception FE_UNDERFLOW for subnormal result
	inline half nexttoward(half from, long double to)
	{
		int fabs = from.data_ & 0x7FFF;
		if(fabs > 0x7C00)
			return half(detail::binary, detail::signal(from.data_));
		long double lfrom = static_cast<long double>(from);
		if(detail::builtin_isnan(to) || lfrom == to)
			return half(static_cast<float>(to));
		if(!fabs)
		{
			detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
			return half(detail::binary, (static_cast<unsigned>(detail::builtin_signbit(to))<<15)+1);
		}
		unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1) - 1;
		detail::raise(FE_OVERFLOW, (out&0x7FFF)==0x7C00);
		detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7FFF)<0x400);
		return half(detail::binary, out);
	}

	/// Take sign.
	/// **See also:** Documentation for [std::copysign](https://en.cppreference.com/w/cpp/numeric/math/copysign).
	/// \param x value to change sign for
	/// \param y value to take sign from
	/// \return value equal to \a x in magnitude and to \a y in sign
	inline HALF_CONSTEXPR half copysign(half x, half y) { return half(detail::binary, x.data_^((x.data_^y.data_)&0x8000)); }

	/// \}
	/// \anchor classification
	/// \name Floating point classification
	/// \{

	/// Classify floating-point value.
	/// **See also:** Documentation for [std::fpclassify](https://en.cppreference.com/w/cpp/numeric/math/fpclassify).
	/// \param arg number to classify
	/// \retval FP_ZERO for positive and negative zero
	/// \retval FP_SUBNORMAL for subnormal numbers
	/// \retval FP_INFINITY for positive and negative infinity
	/// \retval FP_NAN for NaNs
	/// \retval FP_NORMAL for all other (normal) values
	inline HALF_CONSTEXPR int fpclassify(half arg)
	{
		return	!(arg.data_&0x7FFF) ? FP_ZERO :
				((arg.data_&0x7FFF)<0x400) ? FP_SUBNORMAL :
				((arg.data_&0x7FFF)<0x7C00) ? FP_NORMAL :
				((arg.data_&0x7FFF)==0x7C00) ? FP_INFINITE :
				FP_NAN;
	}

	/// Check if finite number.
	/// **See also:** Documentation for [std::isfinite](https://en.cppreference.com/w/cpp/numeric/math/isfinite).
	/// \param arg number to check
	/// \retval true if neither infinity nor NaN
	/// \retval false else
	inline HALF_CONSTEXPR bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }

	/// Check for infinity.
	/// **See also:** Documentation for [std::isinf](https://en.cppreference.com/w/cpp/numeric/math/isinf).
	/// \param arg number to check
	/// \retval true for positive or negative infinity
	/// \retval false else
	inline HALF_CONSTEXPR bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }

	/// Check for NaN.
	/// **See also:** Documentation for [std::isnan](https://en.cppreference.com/w/cpp/numeric/math/isnan).
	/// \param arg number to check
	/// \retval true for NaNs
	/// \retval false else
	inline HALF_CONSTEXPR bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }

	/// Check if normal number.
	/// **See also:** Documentation for [std::isnormal](https://en.cppreference.com/w/cpp/numeric/math/isnormal).
	/// \param arg number to check
	/// \retval true if normal number
	/// \retval false if either subnormal, zero, infinity or NaN
	inline HALF_CONSTEXPR bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }

	/// Check sign.
	/// **See also:** Documentation for [std::signbit](https://en.cppreference.com/w/cpp/numeric/math/signbit).
	/// \param arg number to check
	/// \retval true for negative number
	/// \retval false for positive number
	inline HALF_CONSTEXPR bool signbit(half arg) { return (arg.data_&0x8000) != 0; }

	/// \}
	/// \anchor compfunc
	/// \name Comparison
	/// \{

	/// Quiet comparison for greater than.
	/// **See also:** Documentation for [std::isgreater](https://en.cppreference.com/w/cpp/numeric/math/isgreater).
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x greater than \a y
	/// \retval false else
	inline HALF_CONSTEXPR bool isgreater(half x, half y)
	{
		return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
	}

	/// Quiet comparison for greater equal.
	/// **See also:** Documentation for [std::isgreaterequal](https://en.cppreference.com/w/cpp/numeric/math/isgreaterequal).
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x greater equal \a y
	/// \retval false else
	inline HALF_CONSTEXPR bool isgreaterequal(half x, half y)
	{
		return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
	}

	/// Quiet comparison for less than.
	/// **See also:** Documentation for [std::isless](https://en.cppreference.com/w/cpp/numeric/math/isless).
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x less than \a y
	/// \retval false else
	inline HALF_CONSTEXPR bool isless(half x, half y)
	{
		return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
	}

	/// Quiet comparison for less equal.
	/// **See also:** Documentation for [std::islessequal](https://en.cppreference.com/w/cpp/numeric/math/islessequal).
	/// \param x first operand
	/// \param y second operand
	/// \retval true if \a x less equal \a y
	/// \retval false else
	inline HALF_CONSTEXPR bool islessequal(half x, half y)
	{
		return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
	}

	/// Quiet comarison for less or greater.
	/// **See also:** Documentation for [std::islessgreater](https://en.cppreference.com/w/cpp/numeric/math/islessgreater).
	/// \param x first operand
	/// \param y second operand
	/// \retval true if either less or greater
	/// \retval false else
	inline HALF_CONSTEXPR bool islessgreater(half x, half y)
	{
		return x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF) && !isnan(x) && !isnan(y);
	}

	/// Quiet check if unordered.
	/// **See also:** Documentation for [std::isunordered](https://en.cppreference.com/w/cpp/numeric/math/isunordered).
	/// \param x first operand
	/// \param y second operand
	/// \retval true if unordered (one or two NaN operands)
	/// \retval false else
	inline HALF_CONSTEXPR bool isunordered(half x, half y) { return isnan(x) || isnan(y); }

	/// \}
	/// \anchor casting
	/// \name Casting
	/// \{

	/// Cast to or from half-precision floating-point number.
	/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted 
	/// directly using the default rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
	///
	/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types 
	/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler 
	/// error and casting between [half](\ref half_float::half)s returns the argument unmodified.
	/// \tparam T destination type (half or built-in arithmetic type)
	/// \tparam U source type (half or built-in arithmetic type)
	/// \param arg value to cast
	/// \return \a arg converted to destination type
	/// \exception FE_INVALID if \a T is integer type and result is not representable as \a T
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	template<typename T,typename U> T half_cast(U arg) { return detail::half_caster<T,U>::cast(arg); }

	/// Cast to or from half-precision floating-point number.
	/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted 
	/// directly using the specified rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
	///
	/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types 
	/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler 
	/// error and casting between [half](\ref half_float::half)s returns the argument unmodified.
	/// \tparam T destination type (half or built-in arithmetic type)
	/// \tparam R rounding mode to use.
	/// \tparam U source type (half or built-in arithmetic type)
	/// \param arg value to cast
	/// \return \a arg converted to destination type
	/// \exception FE_INVALID if \a T is integer type and result is not representable as \a T
	/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
	template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return detail::half_caster<T,U,R>::cast(arg); }
	/// \}

	/// \}
	/// \anchor errors
	/// \name Error handling
	/// \{

	/// Clear exception flags.
	/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, 
	/// but in that case manual flag management is the only way to raise flags.
	///
	/// **See also:** Documentation for [std::feclearexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feclearexcept).
	/// \param excepts OR of exceptions to clear
	/// \retval 0 all selected flags cleared successfully
	inline int feclearexcept(int excepts) { detail::errflags() &= ~excepts; return 0; }

	/// Test exception flags.
	/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, 
	/// but in that case manual flag management is the only way to raise flags.
	///
	/// **See also:** Documentation for [std::fetestexcept](https://en.cppreference.com/w/cpp/numeric/fenv/fetestexcept).
	/// \param excepts OR of exceptions to test
	/// \return OR of selected exceptions if raised
	inline int fetestexcept(int excepts) { return detail::errflags() & excepts; }

	/// Raise exception flags.
	/// This raises the specified floating point exceptions and also invokes any additional automatic exception handling as 
	/// configured with the [HALF_ERRHANDLIG_...](\ref HALF_ERRHANDLING_ERRNO) preprocessor symbols.
	/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, 
	/// but in that case manual flag management is the only way to raise flags.
	///
	/// **See also:** Documentation for [std::feraiseexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feraiseexcept).
	/// \param excepts OR of exceptions to raise
	/// \retval 0 all selected exceptions raised successfully
	inline int feraiseexcept(int excepts) { detail::errflags() |= excepts; detail::raise(excepts); return 0; }

	/// Save exception flags.
	/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, 
	/// but in that case manual flag management is the only way to raise flags.
	///
	/// **See also:** Documentation for [std::fegetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
	/// \param flagp adress to store flag state at
	/// \param excepts OR of flags to save
	/// \retval 0 for success
	inline int fegetexceptflag(int *flagp, int excepts) { *flagp = detail::errflags() & excepts; return 0; }

	/// Restore exception flags.
	/// This only copies the specified exception state (including unset flags) without incurring any additional exception handling.
	/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, 
	/// but in that case manual flag management is the only way to raise flags.
	///
	/// **See also:** Documentation for [std::fesetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
	/// \param flagp adress to take flag state from
	/// \param excepts OR of flags to restore
	/// \retval 0 for success
	inline int fesetexceptflag(const int *flagp, int excepts) { detail::errflags() = (detail::errflags()|(*flagp&excepts)) & (*flagp|~excepts); return 0; }

	/// Throw C++ exceptions based on set exception flags.
	/// This function manually throws a corresponding C++ exception if one of the specified flags is set, 
	/// no matter if automatic throwing (via [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID)) is enabled or not.
	/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, 
	/// but in that case manual flag management is the only way to raise flags.
	/// \param excepts OR of exceptions to test
	/// \param msg error message to use for exception description
	/// \throw std::domain_error if `FE_INVALID` or `FE_DIVBYZERO` is selected and set
	/// \throw std::overflow_error if `FE_OVERFLOW` is selected and set
	/// \throw std::underflow_error if `FE_UNDERFLOW` is selected and set
	/// \throw std::range_error if `FE_INEXACT` is selected and set

    #if not defined HALF_ENABLE_CPP11_NOEXCEPT
	inline void fethrowexcept(int excepts, const char *msg = "")
	{
		excepts &= detail::errflags();
		if(excepts & (FE_INVALID|FE_DIVBYZERO))
			throw std::domain_error(msg);
		if(excepts & FE_OVERFLOW)
			throw std::overflow_error(msg);
		if(excepts & FE_UNDERFLOW)
			throw std::underflow_error(msg);
		if(excepts & FE_INEXACT)
			throw std::range_error(msg);
	}
    #endif //HALF_ENABLE_CPP11_NOEXCEPT
	/// \}
}


#undef HALF_UNUSED_NOERR
#undef HALF_CONSTEXPR
#undef HALF_CONSTEXPR_CONST
#undef HALF_CONSTEXPR_NOERR
#undef HALF_NOEXCEPT
#undef HALF_NOTHROW
#undef HALF_THREAD_LOCAL
#undef HALF_TWOS_COMPLEMENT_INT
#ifdef HALF_POP_WARNINGS
	#pragma warning(pop)
	#undef HALF_POP_WARNINGS
#endif

#endif