aboutsummaryrefslogtreecommitdiff
path: root/include/float_utils.h
blob: 831ad74b1924b3f3c6c736f0e263501e60dc5928 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Copyright (c) 2024, ARM Limited.
//
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
//
//         http://www.apache.org/licenses/LICENSE-2.0
//
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//    limitations under the License.

#ifndef TOSA_FLOAT_UTILS_H_
#define TOSA_FLOAT_UTILS_H_

#include <algorithm>
#include <cstdint>
#include <limits>
#include <type_traits>
#if defined(__cpp_lib_bit_cast)
#include <bit>
#endif    // defined(__cpp_lib_bit_cast)

namespace tosa
{

namespace float_support
{

struct hidden
{};

#if defined(__cpp_lib_bit_cast)
#define BITCAST_CONSTEXPR constexpr inline

constexpr inline int32_t get_bits(const float& f)
{
    return std::bit_cast<int32_t>(f);
}
constexpr inline float from_bits(const int32_t& i)
{
    return std::bit_cast<float>(i);
}

#else
#define BITCAST_CONSTEXPR inline

union ufloat32
{
    constexpr ufloat32(const float& x)
        : f(x)
    {}
    constexpr ufloat32(const int32_t& x)
        : i(x)
    {}

    float f;
    int32_t i;
};

inline int32_t get_bits(const float& f)
{
    return ufloat32(f).i;
}
inline float from_bits(const int32_t& i)
{
    return ufloat32(i).f;
}
#endif

}    // namespace float_support

template <typename storage_t,
          size_t n_exp_bits,
          bool has_nan,
          bool with_denorm,
          bool with_infinity,
          std::enable_if_t<(n_exp_bits + 1 < sizeof(storage_t) * 8), bool> = true>
class float_t
{
    storage_t m_data = 0;

public:
    static constexpr size_t n_exponent_bits    = n_exp_bits;
    static constexpr size_t n_significand_bits = sizeof(storage_t) * 8 - 1 - n_exp_bits;
    static constexpr int64_t exponent_bias     = (1 << (n_exp_bits - 1)) - 1;

    /// \brief Construct a floating point type with the given bit
    /// representation.
    static constexpr float_t from_bits(storage_t bits)
    {
        return float_t(float_support::hidden(), bits);
    }

    /// \brief Construct a float from the given sign, exponent and significand
    /// bits.
    static constexpr float_t from_bits(bool pm, storage_t e, storage_t s)
    {
        storage_t bits = pm ? 1 : 0;

        bits <<= n_exp_bits;
        bits |= e;

        bits <<= n_significand_bits;
        if (with_denorm || e)
            bits |= s;

        return float_t(float_support::hidden(), bits);
    }

    /// \brief (Hidden) Construct a float type from a given bit pattern
    constexpr float_t(const float_support::hidden&, storage_t bits)
        : m_data(bits)
    {}

    constexpr float_t()
        : m_data(0)
    {}
    constexpr float_t(const float_t& other)
        : m_data(other.m_data)
    {}

    /// \brief Cast to a different floating point representation.
    template <typename other_storage_t,
              size_t other_n_exp_bits,
              bool other_has_nan,
              bool other_has_denorm,
              bool other_has_infinity>
    constexpr inline
        operator float_t<other_storage_t, other_n_exp_bits, other_has_nan, other_has_denorm, other_has_infinity>() const
    {
        using other_float_t =
            float_t<other_storage_t, other_n_exp_bits, other_has_nan, other_has_denorm, other_has_infinity>;

        // Shortcut for types which are fundamentally similar (e.g., bf16 ->
        // fp32)
        if constexpr (n_exp_bits == other_n_exp_bits && sizeof(other_storage_t) >= sizeof(storage_t) &&
                      has_nan == other_has_nan)
        {
            return other_float_t::from_bits(static_cast<other_storage_t>(m_data)
                                            << (sizeof(other_storage_t) - sizeof(storage_t)) * 8);
        }

        // Get initial values for the new floating point type
        const bool sign_bit       = m_data < 0;
        int64_t new_exponent_bits = 0;
        uint64_t new_significand  = 0;

        if (is_nan() || is_infinity())
        {
            new_exponent_bits = (1 << other_n_exp_bits) - 1;

            if (is_nan())
            {
                if constexpr (other_has_infinity)
                {
                    // Copy across the `not_quiet bit`; set the LSB. Don't
                    // attempt to copy across any of the rest of the payload.
                    new_significand =
                        0x1 | (((significand() >> (n_significand_bits - 1)) & 1) << other_float_t::n_significand_bits);
                }
                else
                {
                    new_significand = (1ul << other_float_t::n_significand_bits) - 1;
                }
            }
            else if constexpr (!other_has_infinity)
            {
                new_significand = (1ul << other_float_t::n_significand_bits) - (other_has_nan ? 2 : 1);
            }
        }
        else if (!is_zero())
        {
            const int64_t this_exponent_bits = exponent_bits();
            {
                constexpr int64_t exponent_rebias = other_float_t::exponent_bias - exponent_bias;
                new_exponent_bits                 = std::max(this_exponent_bits + exponent_rebias, exponent_rebias + 1);
            }
            new_significand = this->significand() << (64 - n_significand_bits);

            // Normalise subnormals
            if (this_exponent_bits == 0)
            {
                // Shift the most-significant 1 out of the magnitude to convert
                // it to a significand. Modify the exponent accordingly.
                uint8_t shift = __builtin_clzl(new_significand) + 1;
                new_exponent_bits -= shift;
                new_significand <<= shift;
            }

            // Align the significand for the output type
            uint32_t shift                = 64 - other_float_t::n_significand_bits;
            const bool other_is_subnormal = new_exponent_bits <= 0;
            if (other_is_subnormal)
            {
                shift += 1 - new_exponent_bits;
                new_exponent_bits = 0;
            }

            const uint64_t shift_out = shift == 64 ? new_significand : new_significand & ((1ll << shift) - 1);
            new_significand          = shift == 64 ? 0 : new_significand >> shift;

            // Reinsert the most-significant-one if this is a subnormal in the
            // output type.
            new_significand |= (other_is_subnormal ? 1ll : 0) << (64 - shift);

            // Apply rounding based on the bits shifted out of the significand
            const uint64_t shift_half = 1ll << (shift - 1);
            if (shift_out > shift_half || (shift_out == shift_half && (new_significand & 1)))
            {
                new_significand += 1;

                // Handle the case that the significand overflowed due to
                // rounding
                constexpr uint64_t max_significand = (1ll << other_float_t::n_significand_bits) - 1;
                if (new_significand > max_significand)
                {
                    new_significand = 0;
                    new_exponent_bits++;
                }
            }

            // Saturate to infinity if the exponent is larger than can be
            // represented in the output type. This can only occur if the size
            // of the exponent of the new type is not greater than the exponent
            // of the old type.
            if constexpr (other_n_exp_bits <= n_exp_bits)
            {
                constexpr int64_t inf_exp_bits = (1ll << other_n_exp_bits) - 1;
                if (new_exponent_bits >= inf_exp_bits)
                {
                    new_exponent_bits = inf_exp_bits;
                    new_significand =
                        other_has_infinity ? 0 : (1ul << other_float_t::n_significand_bits) - (other_has_nan ? 2 : 1);
                }
            }
        }

        return other_float_t::from_bits(sign_bit, new_exponent_bits, new_significand);
    }

    /// \brief Convert from a 32-bit floating point value
    BITCAST_CONSTEXPR
    float_t(const float& f)
    {
        // If this format exactly represents the binary32 format then get
        // the bits from the provided float; otherwise get a binary32
        // representation and then convert to this format.
        if constexpr (represents_binary32())
            m_data = float_support::get_bits(f);
        else
            m_data = static_cast<float_t<storage_t, n_exp_bits, has_nan, with_denorm, with_infinity>>(
                         static_cast<float_t<int32_t, 8, true, true, true>>(f))
                         .m_data;
    }

    /// \brief Cast to a 32-bit floating point value
    BITCAST_CONSTEXPR operator float() const
    {
        // If this format exactly represents the binary32 format then return
        // a float; otherwise get a binary32 representation and then return
        // a float.
        if constexpr (represents_binary32())
            return float_support::from_bits(m_data);
        else
            return static_cast<float>(this->operator float_t<int32_t, 8, true, true, true>());
    }

    /// \brief Return whether this type represents the IEEE754 binary32
    /// format
    constexpr static inline bool represents_binary32()
    {
        return std::is_same_v<storage_t, int32_t> && n_exp_bits == 8 && has_nan && with_denorm && with_infinity;
    }

    constexpr auto operator-() const
    {
        return from_bits(m_data ^ (1ll << (sizeof(storage_t) * 8 - 1)));
    }

    constexpr bool is_subnormal() const
    {
        return exponent_bits() == 0 && significand() != 0;
    }

    constexpr bool is_zero() const
    {
        return exponent_bits() == 0 && significand() == 0;
    }

    constexpr bool is_nan() const
    {
        return has_nan && (exponent_bits() == (1ul << n_exponent_bits) - 1) &&
               ((with_infinity && significand()) ||
                (!with_infinity && significand() == (1ul << n_significand_bits) - 1));
    }

    constexpr bool is_infinity() const
    {
        return with_infinity && ((exponent_bits() == (1ul << n_exponent_bits) - 1) && !significand());
    }

    constexpr inline const storage_t& bits() const
    {
        return m_data;
    }

    /// \brief Get the exponent
    constexpr inline int64_t exponent() const
    {
        return std::max<int64_t>(exponent_bits(), 1ul) - exponent_bias;
    }

    /// \brief Get the bits from the exponent
    constexpr inline uint64_t exponent_bits() const
    {
        constexpr uint64_t mask = (1ul << n_exp_bits) - 1;
        return (m_data >> n_significand_bits) & mask;
    }

    constexpr inline uint64_t significand() const
    {
        return m_data & ((1ul << n_significand_bits) - 1);
    }

    constexpr inline bool operator==(const float_t& other) const
    {
        return !is_nan() && !other.is_nan() && ((is_zero() && other.is_zero()) || bits() == other.bits());
    }

    constexpr inline float_t& operator+=(const float_t& rhs)
    {
        this->m_data = static_cast<float_t>(static_cast<float>(*this) + static_cast<float>(rhs)).bits();
        return *this;
    }
};

// This should probably be exported so we can use it elsewhere
#undef BITCAST_CONSTEXPR

namespace float_support
{

// Pre-C++23 these can't be computed as constexpr, so have to hardcode them

template <int>
struct digits10;    // floor(log10(2) * (digits - 1)
template <int>
struct max_digits10;    // ceil(log10(2) * digits + 1)
template <int>
struct min_exponent10;    // floor(log10(2) * min_exponent)
template <int>
struct max_exponent10;    // floor(log10(2) * max_exponent)

template <>
struct digits10<8>
{
    constexpr static inline int value = 2;
};

template <>
struct max_digits10<8>
{
    constexpr static inline int value = 4;
};

template <>
struct digits10<10>
{
    constexpr static inline int value = 2;
};

template <>
struct max_digits10<10>
{
    constexpr static inline int value = 5;
};

template <>
struct digits10<24>
{
    constexpr static inline int value = 6;
};

template <>
struct max_digits10<24>
{
    constexpr static inline int value = 9;
};

template <>
struct min_exponent10<-13>
{
    constexpr static inline int value = -3;
};

template <>
struct max_exponent10<16>
{
    constexpr static inline int value = 4;
};

template <>
struct min_exponent10<-125>
{
    constexpr static inline int value = -37;
};

template <>
struct max_exponent10<128>
{
    constexpr static inline int value = 38;
};

template <int d>
inline constexpr int digits10_v = digits10<d>::value;
template <int d>
inline constexpr int max_digits10_v = max_digits10<d>::value;

template <int e>
inline constexpr int min_exponent10_v = min_exponent10<e>::value;

template <int e>
inline constexpr int max_exponent10_v = max_exponent10<e>::value;

}    // namespace float_support

}    // namespace tosa

namespace std
{

template <typename storage_t, size_t n_exp_bits, bool has_nan, bool has_denorm, bool has_inf>
struct is_floating_point<tosa::float_t<storage_t, n_exp_bits, has_nan, has_denorm, has_inf>>
    : std::integral_constant<bool, true>
{};

template <typename storage_t, size_t n_exp_bits, bool has_nan, bool with_denorm, bool with_inf>
class numeric_limits<tosa::float_t<storage_t, n_exp_bits, has_nan, with_denorm, with_inf>>
{
    using this_float_t = tosa::float_t<storage_t, n_exp_bits, has_nan, with_denorm, with_inf>;

public:
    static constexpr bool is_specialized = true;

    static constexpr auto min() noexcept
    {
        return this_float_t::from_bits(false, 1, 0);
    }

    static constexpr auto max() noexcept
    {
        return this_float_t::from_bits(false, (1 << this_float_t::n_exponent_bits) - 2,
                                       (1 << this_float_t::n_significand_bits) - 1);
    }

    static constexpr auto lowest() noexcept
    {
        return -max();
    }

    static constexpr int digits       = this_float_t::n_significand_bits + 1;
    static constexpr int digits10     = tosa::float_support::digits10_v<digits>;
    static constexpr int max_digits10 = tosa::float_support::max_digits10_v<digits>;

    static constexpr bool is_signed  = true;
    static constexpr bool is_integer = false;
    static constexpr bool is_exact   = false;
    static constexpr int radix       = 2;

    static constexpr auto epsilon() noexcept
    {
        return this_float_t::from_bits(false, this_float_t::exponent_bias - this_float_t::n_significand_bits, 0);
    }

    static constexpr auto round_error() noexcept
    {
        return this_float_t::from_bits(0, this_float_t::exponent_bias - 1, 0);
    }

    static constexpr int min_exponent   = (1 - this_float_t::exponent_bias) + 1;
    static constexpr int min_exponent10 = tosa::float_support::min_exponent10_v<min_exponent>;
    static constexpr int max_exponent   = this_float_t::exponent_bias + 1;
    static constexpr int max_exponent10 = tosa::float_support::max_exponent10_v<max_exponent>;

    static constexpr bool has_infinity             = with_inf;
    static constexpr bool has_quiet_NaN            = has_nan;
    static constexpr bool has_signaling_NaN        = true;
    static constexpr float_denorm_style has_denorm = with_denorm ? denorm_present : denorm_absent;
    static constexpr bool has_denorm_loss          = false;

    static constexpr auto infinity() noexcept
    {
        if constexpr (with_inf)
        {
            return this_float_t::from_bits(false, (1 << this_float_t::n_exponent_bits) - 1, 0);
        }
        else
        {
            return this_float_t::from_bits(false, 0, 0);
        }
    }

    static constexpr auto quiet_NaN() noexcept
    {
        return this_float_t::from_bits(false, (1 << this_float_t::n_exponent_bits) - 1,
                                       1 << (this_float_t::n_significand_bits - 1) | 1);
    }

    static constexpr auto signaling_NaN() noexcept
    {
        return this_float_t::from_bits(false, (1 << this_float_t::n_exponent_bits) - 1, 1);
    }

    static constexpr auto denorm_min() noexcept
    {
        return this_float_t::from_bits(false, 0, 1);
    }

    static constexpr bool is_iec559  = false;
    static constexpr bool is_bounded = false;
    static constexpr bool is_modulo  = false;

    static constexpr bool traps                    = false;
    static constexpr bool tinyness_before          = false;
    static constexpr float_round_style round_style = round_to_nearest;
};

}    // namespace std

#endif    //  TOSA_FLOAT_UTILS_H_