# Copyright (c) 2020-2024, ARM Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import serializer.tosa_serializer as ts import json import flatbuffers import numpy as np import struct from enum import IntEnum, unique from tosa import ( TosaGraph, TosaRegion, TosaBasicBlock, TosaTensor, TosaOperator, Version, ) import tosa.DType as TosaDType import tosa.Op as TosaOp # Keep version number in sync with the version default value with schema/tosa.fbs TOSA_VERSION_MAJOR = 1 TOSA_VERSION_MINOR = 1 TOSA_VERSION_PATCH = 0 TOSA_VERSION_DRAFT = True TOSA_VERSION = [ TOSA_VERSION_MAJOR, TOSA_VERSION_MINOR, TOSA_VERSION_PATCH, TOSA_VERSION_DRAFT, ] # File identifier needs to be kept in sync with schema/tosa.fbs TOSA_GRAPH_IDENTIFIER = b"\x54\x4F\x53\x41" # With the way flatc generates its python types, there is no programatic way # to get string names for the integer types. Manually maintain a string table # here. DType = TosaDType.DType() DTypeNames = [ "UNKNOWN", "BOOL", "UINT8", "INT4", "INT8", "INT16", "INT32", "INT48", "FP32", "UINT16", "FP16", "BF16", "SHAPE", "FP8E4M3", "FP8E5M2", ] ByteMask = np.uint64(0xFF) def dtype_str_to_val(name): for i in range(len(DTypeNames)): if name.casefold() == DTypeNames[i].casefold(): return i raise Exception("Unable to parse DType name {}".format(name)) class TosaSerializerUnion: """This class handles encapsulating and serializing union types into flatbuffers""" def __init__(self): # A tuple of the start and end functions. # Set by the options constructors below self.optFcns = None # The type from the tosa.Options enumeration. # Set by the options constructors below. self.utype = None # Each of these lists is a tuple of the add function and the # value being added. Set by the options constructors below. self.ints = [] self.bools = [] self.floats = [] self.strings = [] self.int16vecs = [] self.intvecs = [] self.fpvecs = [] def serialize(self, builder): # We have to build strings and vectors first strList = [] intVecList = [] fpVecList = [] for fcn, val in self.strings: strList.append((fcn, builder.CreateString(val))) for fcn, val in self.intvecs: intVecList.append((fcn, TosaSerializer.serializeInt32Vec(builder, val))) for fcn, val in self.int16vecs: intVecList.append((fcn, TosaSerializer.serializeInt16Vec(builder, val))) for fcn, val in self.fpvecs: fpVecList.append((fcn, TosaSerializer.serializeFpVec(builder, val))) startFcn, endFcn = self.optFcns # Then serialize the options object from the list of primitives and # other serialized values startFcn(builder) for fcn, val in self.ints: fcn(builder, val) for fcn, val in self.bools: fcn(builder, val) for fcn, val in self.floats: fcn(builder, val) for fcn, val in strList: fcn(builder, val) for fcn, val in intVecList: fcn(builder, val) for fcn, val in fpVecList: fcn(builder, val) return endFcn(builder) class TosaSerializerAttribute(TosaSerializerUnion): """This class handles encapsulating all of the enumerated types for attributes""" def __init__(self): super().__init__() def PoolAttribute( self, kernel, stride, pad, input_zp, output_zp, acc_type, ): from tosa import PoolAttribute as a, Attribute self.utype = Attribute.Attribute().PoolAttribute self.optFcns = (a.Start, a.End) self.intvecs.append((a.AddPad, pad)) self.intvecs.append((a.AddKernel, kernel)) self.intvecs.append((a.AddStride, stride)) self.ints.append((a.AddInputZp, input_zp)) self.ints.append((a.AddOutputZp, output_zp)) self.ints.append((a.AddAccType, acc_type)) def ConvAttribute( self, pad, stride, dilation, input_zp, weight_zp, local_bound, acc_type ): from tosa import ConvAttribute as a, Attribute self.utype = Attribute.Attribute().ConvAttribute self.optFcns = (a.Start, a.End) self.intvecs.append((a.AddPad, pad)) self.intvecs.append((a.AddStride, stride)) self.intvecs.append((a.AddDilation, dilation)) self.ints.append((a.AddInputZp, input_zp)) self.ints.append((a.AddWeightZp, weight_zp)) self.bools.append((a.AddLocalBound, local_bound)) self.ints.append((a.AddAccType, acc_type)) def TransposeConvAttribute( self, outpad, stride, input_zp, weight_zp, local_bound, acc_type ): from tosa import TransposeConvAttribute as a, Attribute self.utype = Attribute.Attribute().TransposeConvAttribute self.optFcns = (a.Start, a.End) self.intvecs.append((a.AddOutPad, outpad)) self.intvecs.append((a.AddStride, stride)) self.ints.append((a.AddInputZp, input_zp)) self.ints.append((a.AddWeightZp, weight_zp)) self.bools.append((a.AddLocalBound, local_bound)) self.ints.append((a.AddAccType, acc_type)) def PadAttribute(self, serializer_builder, pad_const_val_as_bytes): from tosa import PadAttribute as a, Attribute self.utype = Attribute.Attribute().PadAttribute self.optFcns = (a.Start, a.End) # serialize pad_const_val_as_bytes as uint8 vector serialized_pad_const_val = ts.TosaSerializer.serializeUint8Vec( serializer_builder, pad_const_val_as_bytes ) self.floats.append((a.AddPadConst, serialized_pad_const_val)) def AxisAttribute(self, axis): from tosa import AxisAttribute as a, Attribute self.utype = Attribute.Attribute().AxisAttribute self.optFcns = (a.Start, a.End) self.ints.append((a.AddAxis, axis)) def ResizeAttribute(self, scale, offset, border, mode): from tosa import ResizeAttribute as a, Attribute self.utype = Attribute.Attribute().ResizeAttribute self.optFcns = (a.Start, a.End) self.int16vecs.append((a.AddScale, scale)) self.int16vecs.append((a.AddOffset, offset)) self.int16vecs.append((a.AddBorder, border)) self.ints.append((a.AddMode, mode)) def ClampAttribute(self, serializer_builder, min_val_as_bytes, max_val_as_bytes): from tosa import ClampAttribute as a, Attribute self.utype = Attribute.Attribute().ClampAttribute self.optFcns = (a.Start, a.End) # min/max float attributes serialized as uint8 vectors serialized_min_val = ts.TosaSerializer.serializeUint8Vec( serializer_builder, min_val_as_bytes ) serialized_max_val = ts.TosaSerializer.serializeUint8Vec( serializer_builder, max_val_as_bytes ) self.floats.append((a.AddMinVal, serialized_min_val)) self.floats.append((a.AddMaxVal, serialized_max_val)) def RescaleAttribute( self, input_zp, output_zp, scale32, double_round, per_channel, input_unsigned, output_unsigned, ): from tosa import RescaleAttribute as a, Attribute self.utype = Attribute.Attribute().RescaleAttribute self.optFcns = (a.Start, a.End) self.ints.append((a.AddInputZp, input_zp)) self.ints.append((a.AddOutputZp, output_zp)) self.bools.append((a.AddScale32, scale32)) self.bools.append((a.AddDoubleRound, double_round)) self.bools.append((a.AddPerChannel, per_channel)) self.bools.append((a.AddInputUnsigned, input_unsigned)) self.bools.append((a.AddOutputUnsigned, output_unsigned)) def MulAttribute(self, shift): from tosa import MulAttribute as a, Attribute self.utype = Attribute.Attribute().MulAttribute self.optFcns = (a.Start, a.End) self.ints.append((a.AddShift, shift)) def ArithmeticRightShiftAttribute(self, round): from tosa import ArithmeticRightShiftAttribute as a, Attribute self.utype = Attribute.Attribute().ArithmeticRightShiftAttribute self.optFcns = ( a.Start, a.End, ) self.bools.append((a.AddRound, round)) def CondIfAttribute(self, then_graph, else_graph): from tosa import CondIfAttribute as a, Attribute self.utype = Attribute.Attribute().CondIfAttribute self.optFcns = (a.Start, a.End) self.strings.append((a.AddThenGraph, then_graph)) self.strings.append((a.AddElseGraph, else_graph)) def WhileLoopAttribute(self, cond_graph, body_graph): from tosa import WhileLoopAttribute as a, Attribute self.utype = Attribute.Attribute().WhileLoopAttribute self.optFcns = (a.Start, a.End) self.strings.append((a.AddCondGraph, cond_graph)) self.strings.append((a.AddBodyGraph, body_graph)) def TransposeAttribute(self, perms): from tosa import TransposeAttribute as a, Attribute self.utype = Attribute.Attribute().TransposeAttribute self.optFcns = (a.Start, a.End) self.intvecs.append((a.AddPerms, perms)) def TableAttribute(self, table): from tosa import TableAttribute as a, Attribute self.utype = Attribute.Attribute().TableAttribute self.optFcns = (a.Start, a.End) self.int16vecs.append((a.AddTable, table)) def MatMulAttribute(self, A_zp, B_zp): from tosa import MatMulAttribute as a, Attribute self.utype = Attribute.Attribute().MatMulAttribute self.optFcns = (a.Start, a.End) self.ints.append((a.AddAZp, A_zp)) self.ints.append((a.AddBZp, B_zp)) def FullyConnectedAttribute(self, input_zp, weight_zp): from tosa import FullyConnectedAttribute as a, Attribute self.utype = Attribute.Attribute().FullyConnectedAttribute self.optFcns = (a.Start, a.End) self.ints.append((a.AddInputZp, input_zp)) self.ints.append((a.AddWeightZp, weight_zp)) def NegateAttribute(self, input1_zp, output_zp): from tosa import NegateAttribute as a, Attribute self.utype = Attribute.Attribute().NegateAttribute self.optFcns = (a.Start, a.End) self.ints.append((a.AddInput1Zp, input1_zp)) self.ints.append((a.AddOutputZp, output_zp)) def FFTAttribute(self, inverse, local_bound): from tosa import FFTAttribute as a, Attribute self.utype = Attribute.Attribute().FFTAttribute self.optFcns = (a.Start, a.End) self.bools.append((a.AddInverse, inverse)) self.bools.append((a.AddLocalBound, local_bound)) def RFFTAttribute(self, local_bound): from tosa import RFFTAttribute as a, Attribute self.utype = Attribute.Attribute().RFFTAttribute self.optFcns = (a.Start, a.End) self.bools.append((a.AddLocalBound, local_bound)) class TosaSerializerTensor: def __init__( self, name, shape, dtype, data=None, placeholderFilename=None, ): self.name = name if isinstance(shape, np.ndarray): shape = shape.astype(int).tolist() shape = list(map(int, shape)) self.shape = shape self.dtype = dtype if ( dtype == DType.FP32 or dtype == DType.BF16 or dtype == DType.FP8E4M3 or dtype == DType.FP8E5M2 ): fntype = np.float32 elif dtype == DType.FP16: fntype = np.float16 else: fntype = int if isinstance(data, np.ndarray): data = data.flatten().astype(fntype).tolist() data = list(map(fntype, data)) elif isinstance(data, list): data = list(map(fntype, data)) elif data is not None: # Assume data is rank 0 data type data = list(map(fntype, [data])) else: data = None self.data = data # Filename for placeholder tensors. These get generated by the test generation # process and are written to disk, but are considered input tensors by the # network so they do not appear in the TOSA serialiazation. However, if we # want to form a unit test around these input tensors, we can get the filename # from here. self.placeholderFilename = placeholderFilename def __str__(self): concatString = "TosaSerializerTensor name: {} shape: {} dtype: {}".format( self.name, self.shape, DTypeNames[self.dtype], ) return concatString def setDtype(self, dtype): self.dtype = dtype def serialize(self, builder): fb_name = builder.CreateString(self.name) fb_shapes = TosaSerializer.serializeInt32Vec(builder, self.shape) if self.data: u8_data = TosaSerializer.convertDataToUint8Vec(self.dtype, self.data) fb_data = TosaSerializer.serializeUint8Vec(builder, u8_data) TosaTensor.Start(builder) TosaTensor.AddName(builder, fb_name) TosaTensor.AddShape(builder, fb_shapes) TosaTensor.AddType(builder, self.dtype) if self.data: TosaTensor.AddData(builder, fb_data) return TosaTensor.End(builder) class TosaSerializerOperator: def __init__(self, op, inputs, outputs, attributes=None): self.op = op self.attributes = attributes self.inputs = TosaSerializer.toList(inputs) self.outputs = TosaSerializer.toList(outputs) def __str__(self): concatString = "Op {}\n----\n".format(self.op) for i in self.inputs: concatString = concatString + " Input: {}\n".format(i) for o in self.outputs: concatString = concatString + " Output: {}\n".format(o) return concatString def serialize(self, builder): fb_inputs = TosaSerializer.serializeStrVec( builder, self.inputs, TosaOperator.StartInputsVector ) fb_outputs = TosaSerializer.serializeStrVec( builder, self.outputs, TosaOperator.StartOutputsVector ) # Need to serialize attributes enums still if self.attributes is not None: fb_attributes = self.attributes.serialize(builder) TosaOperator.Start(builder) TosaOperator.AddOp(builder, self.op) TosaOperator.AddInputs(builder, fb_inputs) TosaOperator.AddOutputs(builder, fb_outputs) if self.attributes is not None: TosaOperator.AddAttributeType(builder, self.attributes.utype) TosaOperator.AddAttribute(builder, fb_attributes) return TosaOperator.End(builder) class TosaSerializerBasicBlock: def __init__(self, name): self.name = name self.operators = [] # Dict assures uniqueness, but allows us to look up by name self.tensors = dict() self.inputs = [] self.outputs = [] def addTensor( self, name, shape, dtype, data=None, placeholderFilename=None, ): if name not in self.tensors: self.tensors[name] = TosaSerializerTensor( name, shape, dtype, data, placeholderFilename ) return self.tensors[name] def addInput(self, name): self.inputs.append(name) def addOutput(self, name): self.outputs.append(name) def addOperator(self, op, inputs, outputs, attributes=None): self.operators.append(TosaSerializerOperator(op, inputs, outputs, attributes)) def serialize(self, builder): fb_name = builder.CreateString(self.name) fbv_inputs = TosaSerializer.serializeStrVec( builder, list(self.inputs), TosaBasicBlock.StartInputsVector ) fbv_outputs = TosaSerializer.serializeStrVec( builder, list(self.outputs), TosaBasicBlock.StartOutputsVector ) fbv_tensors = TosaSerializer.serializeObjVec( builder, list(self.tensors.values()), TosaBasicBlock.StartTensorsVector, ) fbv_operators = TosaSerializer.serializeObjVec( builder, self.operators, TosaBasicBlock.StartOperatorsVector ) TosaBasicBlock.Start(builder) TosaBasicBlock.AddName(builder, fb_name) TosaBasicBlock.AddInputs(builder, fbv_inputs) TosaBasicBlock.AddOutputs(builder, fbv_outputs) TosaBasicBlock.AddTensors(builder, fbv_tensors) TosaBasicBlock.AddOperators(builder, fbv_operators) return TosaBasicBlock.End(builder) # How CONSTs are treated in the flatbuffer @unique class ConstMode(IntEnum): EMBED = 0 EMBED_DUMP = 1 INPUTS = 2 class TosaSerializerRegion: def __init__(self, name, pathPrefix, constMode=ConstMode.EMBED): self.name = name self.basicBlocks = [] self.currInputIdx = 0 self.currConstIdx = 0 self.currLayerIdx = 1 self.currResultIdx = 0 self.pathPrefix = pathPrefix self.constMode = constMode def addBasicBlock(self, name): self.currBasicBlock = TosaSerializerBasicBlock(name) self.basicBlocks.append(self.currBasicBlock) def serialize(self, builder): fb_name = builder.CreateString(self.name) fbv_basicBlocks = TosaSerializer.serializeObjVec( builder, self.basicBlocks, TosaRegion.StartBlocksVector ) TosaRegion.Start(builder) TosaRegion.AddName(builder, fb_name) TosaRegion.AddBlocks(builder, fbv_basicBlocks) return TosaRegion.End(builder) def addPlaceholder(self, shape, dtype, vals): if not self.currBasicBlock: raise Exception("addTensor called without valid basic block") name = "input-{}".format(self.currInputIdx) filename = "{}.npy".format(name) self.currInputIdx = self.currInputIdx + 1 tens = self.currBasicBlock.addTensor(name, shape, dtype, None, filename) # This is always an input to the block self.currBasicBlock.addInput(name) if vals is not None: np.save(os.path.join(self.pathPrefix, filename), vals, False) return tens def addConst(self, shape, dtype, vals, name=None): if not self.currBasicBlock: raise Exception("addTensor called without valid basic block") if name is None: name = "const-{}".format(self.currInputIdx) self.currInputIdx = self.currInputIdx + 1 if self.constMode == ConstMode.INPUTS: # Save const as input file filename = "{}.npy".format(name) tensor_vals = None self.currBasicBlock.addInput(name) else: # Embed const in flatbuffer filename = None tensor_vals = vals tens = self.currBasicBlock.addTensor(name, shape, dtype, tensor_vals, filename) # Add the operator now if dtype == DType.SHAPE: self.currBasicBlock.addOperator(TosaOp.Op().CONST_SHAPE, [], name) else: self.currBasicBlock.addOperator(TosaOp.Op().CONST, [], name) # Save the const data to file for debug or as input files if vals is not None and self.constMode in [ ConstMode.EMBED_DUMP, ConstMode.INPUTS, ]: filename = "{}.npy".format(name) np.save(os.path.join(self.pathPrefix, filename), vals, False) return tens def addIntermediate(self, shape, dtype): if not self.currBasicBlock: raise Exception("addTensor called without valid basic block") name = "layer-{}".format(self.currLayerIdx) self.currLayerIdx = self.currLayerIdx + 1 tens = self.currBasicBlock.addTensor(name, shape, dtype, None) return tens def addInputTensor(self, tensor): self.currBasicBlock.addTensor( tensor.name, tensor.shape, tensor.dtype, tensor.data, tensor.placeholderFilename, ) self.currBasicBlock.addInput(tensor.name) def addOutputTensor(self, tensor): self.currBasicBlock.addOutput(tensor.name) def addOutput(self, shape, dtype): if not self.currBasicBlock: raise Exception("addTensor called without valid basic block") name = "result-{}".format(self.currResultIdx) self.currResultIdx = self.currResultIdx + 1 tens = self.currBasicBlock.addTensor(name, shape, dtype, None) self.currBasicBlock.addOutput(name) return tens def addOperator(self, op, inputs, outputs, attributes=None): if op == TosaOp.Op().CONST: raise Exception("Use addConstTensor() to add CONST ops") return self.currBasicBlock.addOperator( op, inputs, outputs, attributes, ) @unique class TensorDir(IntEnum): PLACEHOLDER = 0 CONST = 1 INTERMEDIATE = 2 RESULT = 3 class TosaSerializer: def __init__(self, pathPrefix, constMode=ConstMode.EMBED): self.builder = flatbuffers.Builder(0) # Enables inspection of constant data outside of graph self.constMode = constMode self.regions = [] self.startRegion("main", pathPrefix) self.currRegion.addBasicBlock("main") # Is this an illegal test that is expected to fail? self.expectedReturnCode = 0 self.expectedFailure = False self.expectedFailureDesc = "" def __str__(self): concatString = "" for region in self.regions: concatString = concatString + str(region) return concatString def addPlaceholder(self, shape, dtype, vals): return self.currRegion.addPlaceholder(shape, dtype, vals) def addConst(self, shape, dtype, vals, name=None): return self.currRegion.addConst(shape, dtype, vals, name) def addIntermediate(self, shape, dtype): return self.currRegion.addIntermediate(shape, dtype) def addInputTensor(self, tensor): self.currRegion.addInputTensor(tensor) def addOutputTensor(self, tensor): self.currRegion.addOutputTensor(tensor) def addOutput(self, shape, dtype): return self.currRegion.addOutput(shape, dtype) def addOperator(self, op, inputs, outputs, attributes=None): return self.currRegion.addOperator(op, inputs, outputs, attributes) def addBasicBlock(self, name): self.currRegion.addBasicBlock(name) def setExpectedReturnCode(self, val, fail, desc=""): self.expectedReturnCode = val self.expectedFailureDesc = desc self.expectedFailure = fail def serialize(self): builder = self.builder Version.Start(builder) Version.Add_Major(builder, TOSA_VERSION[0]) Version.Add_Minor(builder, TOSA_VERSION[1]) Version.Add_Patch(builder, TOSA_VERSION[2]) Version.Add_Draft(builder, TOSA_VERSION[3]) version = Version.End(builder) fbv_region = TosaSerializer.serializeObjVec( builder, self.regions, TosaGraph.StartRegionsVector ) TosaGraph.Start(builder) TosaGraph.AddVersion(builder, version) TosaGraph.AddRegions(builder, fbv_region) graph = TosaGraph.End(builder) self.builder.Finish(graph, TOSA_GRAPH_IDENTIFIER) return self.builder.Output() def writeJson(self, tosa_filename): """Write a json test file so that it is fairly easy to pick up the test and generate commands for third party tool""" test_desc = dict() test_desc["tosa_file"] = tosa_filename ifm_name = [] ifm_file = [] ofm_name = [] ofm_file = [] for region in self.regions: for block in region.basicBlocks: if block and block.name == "main": for i in block.inputs: ifm_name.append(i) ifm_file.append(block.tensors[i].placeholderFilename) for o in block.outputs: ofm_name.append(o) # Make up an OFM filename here. One isn't generated until the # reference tool is run, so any name is a good name ofm_file.append("ref-{}.npy".format(o)) test_desc["ifm_name"] = ifm_name test_desc["ifm_file"] = ifm_file test_desc["ofm_name"] = ofm_name test_desc["ofm_file"] = ofm_file test_desc["expected_return_code"] = self.expectedReturnCode test_desc["expected_failure"] = self.expectedFailure if self.expectedFailureDesc: test_desc["expected_failure_desc"] = self.expectedFailureDesc return json.dumps(test_desc, indent=" ") def startRegion(self, name, pathPrefix): self.currRegion = TosaSerializerRegion(name, pathPrefix, self.constMode) self.regions.append(self.currRegion) @staticmethod def serializeStrVec(builder, vec, start_fcn): fb_strs = [builder.CreateString(i) for i in vec] start_fcn(builder, len(fb_strs)) for s in fb_strs[::-1]: builder.PrependUOffsetTRelative(s) try: return builder.EndVector() except TypeError: return builder.EndVector(len(vec)) @staticmethod def serializeUint8Vec(builder, vec): builder.StartVector(1, len(vec), 8) for v in vec[::-1]: builder.PrependUint8(v) try: return builder.EndVector() except TypeError: return builder.EndVector(len(vec)) @staticmethod def serializeInt16Vec(builder, vec): builder.StartVector(2, len(vec), 4) for v in vec[::-1]: builder.PrependInt16(v) try: return builder.EndVector() except TypeError: return builder.EndVector(len(vec)) @staticmethod def serializeInt32Vec(builder, vec): builder.StartVector(4, len(vec), 4) for v in vec[::-1]: builder.PrependInt32(v) try: return builder.EndVector() except TypeError: return builder.EndVector(len(vec)) @staticmethod def serializeFpVec(builder, vec): builder.StartVector(4, len(vec), 4) for v in vec[::-1]: builder.PrependFloat32(v) try: return builder.EndVector() except TypeError: return builder.EndVector(len(vec)) @staticmethod def serializeObjVec(builder, vec, start_fcn): serialized_vec = [] for v in vec[::-1]: serialized_vec.append(v.serialize(builder)) start_fcn(builder, len(vec)) for v in serialized_vec: builder.PrependUOffsetTRelative(v) try: return builder.EndVector() except TypeError: return builder.EndVector(len(vec)) @staticmethod def toList(val): if isinstance(val, list): return val else: return [val] @staticmethod def convertDataToUint8Vec(dtype, data): u8_data = list() # little endianess if dtype == DType.BOOL: for val in data: val_u8 = np.uint8(val) u8_data.append(val_u8) elif dtype == DType.INT4: in_size = len(data) out_size = (in_size + 1) // 2 for i in range(out_size): val_0 = data[2 * i] if (2 * i + 1) < in_size: val_1 = data[2 * i + 1] else: val_1 = 0 val_i8 = (val_0 & 0xF) | ((val_1 & 0xF) << 4) val_u8 = np.uint8(val_i8) u8_data.append(val_u8) elif dtype == DType.INT8: for val in data: val_u8 = np.array(val).astype(dtype=np.uint8) u8_data.append(val_u8) elif dtype == DType.INT16: for val in data: val_u16 = np.array(val).astype(dtype=np.uint16) b0 = val_u16 & ByteMask b1 = (val_u16 >> np.uint16(8)) & ByteMask u8_data.extend([b0, b1]) elif dtype == DType.INT32: for val in data: val_u32 = np.array(val).astype(dtype=np.uint32) b0 = val_u32 & ByteMask b1 = (val_u32 >> np.uint32(8)) & ByteMask b2 = (val_u32 >> np.uint32(16)) & ByteMask b3 = (val_u32 >> np.uint32(24)) & ByteMask u8_data.extend([b0, b1, b2, b3]) elif dtype == DType.INT48: for val in data: val_u64 = np.uint64(val) b0 = val_u64 & ByteMask b1 = (val_u64 >> np.uint64(8)) & ByteMask b2 = (val_u64 >> np.uint64(16)) & ByteMask b3 = (val_u64 >> np.uint64(24)) & ByteMask b4 = (val_u64 >> np.uint64(32)) & ByteMask b5 = (val_u64 >> np.uint64(40)) & ByteMask u8_data.extend([b0, b1, b2, b3, b4, b5]) elif dtype == DType.SHAPE: for val in data: val_u64 = np.uint64(val) b0 = val_u64 & ByteMask b1 = (val_u64 >> np.uint64(8)) & ByteMask b2 = (val_u64 >> np.uint64(16)) & ByteMask b3 = (val_u64 >> np.uint64(24)) & ByteMask b4 = (val_u64 >> np.uint64(32)) & ByteMask b5 = (val_u64 >> np.uint64(40)) & ByteMask b6 = (val_u64 >> np.uint64(48)) & ByteMask b7 = (val_u64 >> np.uint64(56)) & ByteMask u8_data.extend([b0, b1, b2, b3, b4, b5, b6, b7]) elif dtype == DType.FP16: np_arr = np.array(data, dtype=np.float16) u8_data.extend(np_arr.view(np.uint8)) elif dtype == DType.FP32: # for val in data: # b = struct.pack("!f", val) # u8_data.extend([b[3], b[2], b[1], b[0]]) np_arr = np.array(data, dtype=np.float32) u8_data.extend(np_arr.view(np.uint8)) elif dtype == DType.BF16: for val in data: # convert val to little endian byte arrays b b = struct.pack(" [ b[3], b[2], b[1], b[0] ] # keep only most significant 2 bytes for bf16 # in little endian ordering u8_data.extend([b[2], b[3]]) elif dtype == DType.FP8E4M3: for val in data: # convert val to fp8_bits then to single byte f32_as_int = struct.unpack(">L", struct.pack(">f", val))[0] f32_bits = f"{f32_as_int:032b}" fp8_bits = f32_bits[0] + f32_bits[1:5] + f32_bits[9:12] fp8_bytes = int(fp8_bits, 2).to_bytes(1, byteorder="little") u8_data.extend(fp8_bytes) elif dtype == DType.FP8E5M2: for val in data: # convert val to fp8_bits then to single byte f32_as_int = struct.unpack(">L", struct.pack(">f", val))[0] f32_bits = f"{f32_as_int:032b}" fp8_bits = f32_bits[0] + f32_bits[1:6] + f32_bits[9:11] fp8_bytes = int(fp8_bits, 2).to_bytes(1, byteorder="little") u8_data.extend(fp8_bytes) elif dtype == TosaDType.DType: # Serialize DType enum data as uint8 bytes for val in data: np_arr = np.array(data, dtype=np.uint32) u8_data.extend(np_arr.view(np.uint8)) else: raise Exception("unsupported data type {}".format(DTypeNames[dtype])) return u8_data