// Copyright (c) 2023-2024, ARM Limited. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "verify_utils.h" #include #include #include #include namespace tosa { NLOHMANN_JSON_SERIALIZE_ENUM(DType, { { DType::DType_UNKNOWN, "UNKNOWN" }, { DType::DType_BOOL, "BOOL" }, { DType::DType_INT4, "INT4" }, { DType::DType_INT8, "INT8" }, { DType::DType_INT16, "INT16" }, { DType::DType_INT32, "INT32" }, { DType::DType_INT48, "INT48" }, { DType::DType_FP16, "FP16" }, { DType::DType_BF16, "BF16" }, { DType::DType_FP32, "FP32" }, }) } // namespace tosa namespace TosaReference { NLOHMANN_JSON_SERIALIZE_ENUM(VerifyMode, { { VerifyMode::Unknown, "UNKNOWN" }, { VerifyMode::Exact, "EXACT" }, { VerifyMode::Ulp, "ULP" }, { VerifyMode::DotProduct, "DOT_PRODUCT" }, { VerifyMode::FpSpecial, "FP_SPECIAL" }, { VerifyMode::ReduceProduct, "REDUCE_PRODUCT" }, { VerifyMode::AbsError, "ABS_ERROR" }, { VerifyMode::Relative, "RELATIVE" }, }) void from_json(const nlohmann::json& j, UlpVerifyInfo& ulpInfo) { j.at("ulp").get_to(ulpInfo.ulp); } void from_json(const nlohmann::json& j, DotProductVerifyInfo& dotProductInfo) { j.at("s").get_to(dotProductInfo.s); j.at("ks").get_to(dotProductInfo.ks); } void from_json(const nlohmann::json& j, ReduceProductVerifyInfo& reduceProduceInfo) { j.at("n").get_to(reduceProduceInfo.n); } void from_json(const nlohmann::json& j, AbsErrorVerifyInfo& absErrorInfo) { if (j.contains("lower_bound")) { j.at("lower_bound").get_to(absErrorInfo.lowerBound); } } void from_json(const nlohmann::json& j, RelativeVerifyInfo& rInfo) { j.at("max").get_to(rInfo.max); j.at("scale").get_to(rInfo.scale); } void from_json(const nlohmann::json& j, VerifyConfig& cfg) { j.at("mode").get_to(cfg.mode); j.at("data_type").get_to(cfg.dataType); if (j.contains("ulp_info")) { j.at("ulp_info").get_to(cfg.ulpInfo); } if (j.contains("dot_product_info")) { j.at("dot_product_info").get_to(cfg.dotProductInfo); } if (j.contains("reduce_product_info")) { j.at("reduce_product_info").get_to(cfg.reduceProductInfo); } // Set up defaults for optional AbsErrorVerifyInfo cfg.absErrorInfo.lowerBound = 0; if (j.contains("abs_error_info")) { j.at("abs_error_info").get_to(cfg.absErrorInfo); } if (j.contains("relative_info")) { j.at("relative_info").get_to(cfg.relativeInfo); } } std::optional parseVerifyConfig(const char* tensorName, const char* json) { if (!tensorName) return std::nullopt; auto jsonCfg = nlohmann::json::parse(json, nullptr, /* allow exceptions */ false); if (jsonCfg.is_discarded()) { WARNING("[Verifier] Invalid json config."); return std::nullopt; } if (!jsonCfg.contains("tensors")) { WARNING("[Verifier] Missing tensors in json config."); return std::nullopt; } const auto& tensors = jsonCfg["tensors"]; if (!tensors.contains(tensorName)) if (!tensors.contains(tensorName)) { WARNING("[Verifier] Missing tensor %s in json config.", tensorName); return std::nullopt; } const auto& namedTensor = tensors[tensorName]; return namedTensor.get(); } int64_t numElements(const std::vector& shape) { return std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies()); } std::vector indexToPosition(int64_t index, const std::vector& shape) { std::vector pos; for (auto d = shape.end() - 1; d >= shape.begin(); --d) { pos.insert(pos.begin(), index % *d); index /= *d; } ASSERT_MSG(index == 0, "index too large for given shape") return pos; } std::string positionToString(const std::vector& pos) { std::string str = "["; for (auto d = pos.begin(); d < pos.end(); ++d) { str.append(std::to_string(*d)); if (pos.end() - d > 1) { str.append(","); } } str.append("]"); return str; } DType mapToDType(tosa_datatype_t dataType) { static std::map typeMap = { { tosa_datatype_bool_t, DType_BOOL }, { tosa_datatype_int4_t, DType_INT4 }, { tosa_datatype_int8_t, DType_INT8 }, { tosa_datatype_uint16_t, DType_UINT16 }, { tosa_datatype_int16_t, DType_INT16 }, { tosa_datatype_int32_t, DType_INT32 }, { tosa_datatype_int48_t, DType_INT48 }, { tosa_datatype_fp16_t, DType_FP16 }, { tosa_datatype_bf16_t, DType_BF16 }, { tosa_datatype_fp32_t, DType_FP32 }, { tosa_datatype_shape_t, DType_SHAPE }, }; if (typeMap.count(dataType)) { return typeMap[dataType]; } return DType_UNKNOWN; } // Like const_exp2 but for use during runtime double exp2(int32_t n) { if (n < -1075) { return 0.0; // smaller than smallest denormal } TOSA_REF_REQUIRE(n <= 1023, " Invalid exponent value (%d) in exp2", n); return const_exp2(n); } int32_t ilog2(double v) { TOSA_REF_REQUIRE(0.0 < v && v < std::numeric_limits::infinity(), " Value out of range (%g) in ilog2", v); int32_t n = 0; while (v >= 2.0) { v = v / 2.0; n++; } while (v < 1.0) { v = v * 2.0; n--; } return n; } static_assert(std::numeric_limits::is_iec559, "TOSA Reference Model has not been built with standard IEEE 754 32-bit float support; Bounds based " "verification is invalid"); static_assert(std::numeric_limits::is_iec559, "TOSA Reference Model has not been built with standard IEEE 754 64-bit float support; Bounds based " "verification is invalid"); template bool tosaCheckFloatBound(OutType testValue, double referenceValue, double errorBound) { // Both must be NaNs to be correct if (std::isnan(referenceValue) || std::isnan(testValue)) { if (std::isnan(referenceValue) && std::isnan(testValue)) { return true; } WARNING("[Verifier][Bound] Non-matching NaN values - ref (%g) versus test (%g).", referenceValue, testValue); return false; } // Check the errorBound TOSA_REF_REQUIRE(errorBound >= 0.f, " Invalid error bound (%g)", errorBound); // Make the sign of the reference value positive // and adjust the test value appropriately. if (referenceValue < 0) { referenceValue = -referenceValue; testValue = -testValue; } // At this point we are ready to calculate the ULP bounds for the reference value. double referenceMin, referenceMax; // If the reference is infinity e.g. the result of an overflow the test value must // be infinity of an appropriate sign. if (std::isinf(referenceValue)) { // We already canonicalized the input such that the reference value is positive // so no need to check again here. referenceMin = std::numeric_limits::infinity(); referenceMax = std::numeric_limits::infinity(); } else if (referenceValue == 0) { // For zero we require that the results match exactly with the correct sign. referenceMin = 0; referenceMax = 0; } else { // Scale by the number of ULPs requested by the user. referenceMax = referenceValue + errorBound; referenceMin = referenceValue - errorBound; // Handle the overflow cases. if (referenceMax > AccPrecision::normal_max) { referenceMax = std::numeric_limits::infinity(); } if (referenceMin > AccPrecision::normal_max) { referenceMin = std::numeric_limits::infinity(); } // And the underflow cases. if (referenceMax < AccPrecision::normal_min) { referenceMax = AccPrecision::normal_min; } if (referenceMin < AccPrecision::normal_min) { referenceMin = 0.0; } } // And finally... Do the comparison. double testValue64 = static_cast(testValue); bool withinBound = testValue64 >= referenceMin && testValue64 <= referenceMax; if (!withinBound) { WARNING("[Verifier][Bound] value %.*g is not in error bound %.*g range (%.*g <= ref %.*g <= %.*g).", DBL_DIG, testValue64, DBL_DIG, errorBound, DBL_DIG, referenceMin, DBL_DIG, referenceValue, DBL_DIG, referenceMax); } return withinBound; } // Instantiate the needed check functions template bool tosaCheckFloatBound(float testValue, double referenceValue, double errorBound); template bool tosaCheckFloatBound(half_float::half testValue, double referenceValue, double errorBound); } // namespace TosaReference