summaryrefslogtreecommitdiff
path: root/source/use_case/kws/src/UseCaseHandler.cc
blob: 2144c03ac075b810b1ebf660516c520ffe9adf93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/*
 * Copyright (c) 2021 Arm Limited. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "UseCaseHandler.hpp"

#include "InputFiles.hpp"
#include "Classifier.hpp"
#include "DsCnnModel.hpp"
#include "hal.h"
#include "DsCnnMfcc.hpp"
#include "AudioUtils.hpp"
#include "UseCaseCommonUtils.hpp"
#include "KwsResult.hpp"

#include <vector>
#include <functional>

using KwsClassifier = arm::app::Classifier;

namespace arm {
namespace app {

    /**
    * @brief            Helper function to increment current audio clip index.
    * @param[in,out]    ctx   Pointer to the application context object.
    **/
    static void IncrementAppCtxClipIdx(ApplicationContext& ctx);

    /**
     * @brief           Helper function to set the audio clip index.
     * @param[in,out]   ctx   Pointer to the application context object.
     * @param[in]       idx   Value to be set.
     * @return          true if index is set, false otherwise.
     **/
    static bool SetAppCtxClipIdx(ApplicationContext& ctx, uint32_t idx);

    /**
     * @brief           Presents inference results using the data presentation
     *                  object.
     * @param[in]       platform    Reference to the hal platform object.
     * @param[in]       results     Vector of classification results to be displayed.
     * @return          true if successful, false otherwise.
     **/
    static bool PresentInferenceResult(hal_platform& platform,
                                       const std::vector<arm::app::kws::KwsResult>& results);

    /**
     * @brief Returns a function to perform feature calculation and populates input tensor data with
     * MFCC data.
     *
     * Input tensor data type check is performed to choose correct MFCC feature data type.
     * If tensor has an integer data type then original features are quantised.
     *
     * Warning: MFCC calculator provided as input must have the same life scope as returned function.
     *
     * @param[in]       mfcc          MFCC feature calculator.
     * @param[in,out]   inputTensor   Input tensor pointer to store calculated features.
     * @param[in]       cacheSize     Size of the feature vectors cache (number of feature vectors).
     * @return          Function to be called providing audio sample and sliding window index.
     */
    static std::function<void (std::vector<int16_t>&, int, bool, size_t)>
            GetFeatureCalculator(audio::DsCnnMFCC&  mfcc,
                                 TfLiteTensor*      inputTensor,
                                 size_t             cacheSize);

    /* Audio inference handler. */
    bool ClassifyAudioHandler(ApplicationContext& ctx, uint32_t clipIndex, bool runAll)
    {
        auto& platform = ctx.Get<hal_platform&>("platform");
        auto& profiler = ctx.Get<Profiler&>("profiler");

        constexpr uint32_t dataPsnTxtInfStartX = 20;
        constexpr uint32_t dataPsnTxtInfStartY = 40;
        constexpr int minTensorDims = static_cast<int>(
            (arm::app::DsCnnModel::ms_inputRowsIdx > arm::app::DsCnnModel::ms_inputColsIdx)?
             arm::app::DsCnnModel::ms_inputRowsIdx : arm::app::DsCnnModel::ms_inputColsIdx);

        platform.data_psn->clear(COLOR_BLACK);

        auto& model = ctx.Get<Model&>("model");

        /* If the request has a valid size, set the audio index. */
        if (clipIndex < NUMBER_OF_FILES) {
            if (!SetAppCtxClipIdx(ctx, clipIndex)) {
                return false;
            }
        }
        if (!model.IsInited()) {
            printf_err("Model is not initialised! Terminating processing.\n");
            return false;
        }

        const auto frameLength = ctx.Get<int>("frameLength");
        const auto frameStride = ctx.Get<int>("frameStride");
        const auto scoreThreshold = ctx.Get<float>("scoreThreshold");
        auto startClipIdx = ctx.Get<uint32_t>("clipIndex");

        TfLiteTensor* outputTensor = model.GetOutputTensor(0);
        TfLiteTensor* inputTensor = model.GetInputTensor(0);

        if (!inputTensor->dims) {
            printf_err("Invalid input tensor dims\n");
            return false;
        } else if (inputTensor->dims->size < minTensorDims) {
            printf_err("Input tensor dimension should be >= %d\n", minTensorDims);
            return false;
        }

        TfLiteIntArray* inputShape = model.GetInputShape(0);
        const uint32_t kNumCols = inputShape->data[arm::app::DsCnnModel::ms_inputColsIdx];
        const uint32_t kNumRows = inputShape->data[arm::app::DsCnnModel::ms_inputRowsIdx];

        audio::DsCnnMFCC mfcc = audio::DsCnnMFCC(kNumCols, frameLength);
        mfcc.Init();

        /* Deduce the data length required for 1 inference from the network parameters. */
        auto audioDataWindowSize = kNumRows * frameStride + (frameLength - frameStride);
        auto mfccWindowSize = frameLength;
        auto mfccWindowStride = frameStride;

        /* We choose to move by half the window size => for a 1 second window size
         * there is an overlap of 0.5 seconds. */
        auto audioDataStride = audioDataWindowSize / 2;

        /* To have the previously calculated features re-usable, stride must be multiple
         * of MFCC features window stride. */
        if (0 != audioDataStride % mfccWindowStride) {

            /* Reduce the stride. */
            audioDataStride -= audioDataStride % mfccWindowStride;
        }

        auto nMfccVectorsInAudioStride = audioDataStride/mfccWindowStride;

        /* We expect to be sampling 1 second worth of data at a time.
         * NOTE: This is only used for time stamp calculation. */
        const float secondsPerSample = 1.0/audio::DsCnnMFCC::ms_defaultSamplingFreq;

        do {
            auto currentIndex = ctx.Get<uint32_t>("clipIndex");

            /* Creating a mfcc features sliding window for the data required for 1 inference. */
            auto audioMFCCWindowSlider = audio::SlidingWindow<const int16_t>(
                                            get_audio_array(currentIndex),
                                            audioDataWindowSize, mfccWindowSize,
                                            mfccWindowStride);

            /* Creating a sliding window through the whole audio clip. */
            auto audioDataSlider = audio::SlidingWindow<const int16_t>(
                                        get_audio_array(currentIndex),
                                        get_audio_array_size(currentIndex),
                                        audioDataWindowSize, audioDataStride);

            /* Calculate number of the feature vectors in the window overlap region.
             * These feature vectors will be reused.*/
            auto numberOfReusedFeatureVectors = audioMFCCWindowSlider.TotalStrides() + 1
                                                - nMfccVectorsInAudioStride;

            /* Construct feature calculation function. */
            auto mfccFeatureCalc = GetFeatureCalculator(mfcc, inputTensor,
                                                        numberOfReusedFeatureVectors);

            if (!mfccFeatureCalc){
                return false;
            }

            /* Declare a container for results. */
            std::vector<arm::app::kws::KwsResult> results;

            /* Display message on the LCD - inference running. */
            std::string str_inf{"Running inference... "};
            platform.data_psn->present_data_text(
                                str_inf.c_str(), str_inf.size(),
                                dataPsnTxtInfStartX, dataPsnTxtInfStartY, 0);
            info("Running inference on audio clip %" PRIu32 " => %s\n", currentIndex,
                 get_filename(currentIndex));

            /* Start sliding through audio clip. */
            while (audioDataSlider.HasNext()) {
                const int16_t *inferenceWindow = audioDataSlider.Next();

                /* We moved to the next window - set the features sliding to the new address. */
                audioMFCCWindowSlider.Reset(inferenceWindow);

                /* The first window does not have cache ready. */
                bool useCache = audioDataSlider.Index() > 0 && numberOfReusedFeatureVectors > 0;

                /* Start calculating features inside one audio sliding window. */
                while (audioMFCCWindowSlider.HasNext()) {
                    const int16_t *mfccWindow = audioMFCCWindowSlider.Next();
                    std::vector<int16_t> mfccAudioData = std::vector<int16_t>(mfccWindow,
                                                            mfccWindow + mfccWindowSize);
                    /* Compute features for this window and write them to input tensor. */
                    mfccFeatureCalc(mfccAudioData,
                                    audioMFCCWindowSlider.Index(),
                                    useCache,
                                    nMfccVectorsInAudioStride);
                }

                info("Inference %zu/%zu\n", audioDataSlider.Index() + 1,
                     audioDataSlider.TotalStrides() + 1);

                /* Run inference over this audio clip sliding window. */
                if (!RunInference(model, profiler)) {
                    return false;
                }

                std::vector<ClassificationResult> classificationResult;
                auto& classifier = ctx.Get<KwsClassifier&>("classifier");
                classifier.GetClassificationResults(outputTensor, classificationResult,
                                                    ctx.Get<std::vector<std::string>&>("labels"), 1);

                results.emplace_back(kws::KwsResult(classificationResult,
                    audioDataSlider.Index() * secondsPerSample * audioDataStride,
                    audioDataSlider.Index(), scoreThreshold));

#if VERIFY_TEST_OUTPUT
                arm::app::DumpTensor(outputTensor);
#endif /* VERIFY_TEST_OUTPUT */
            } /* while (audioDataSlider.HasNext()) */

            /* Erase. */
            str_inf = std::string(str_inf.size(), ' ');
            platform.data_psn->present_data_text(
                                str_inf.c_str(), str_inf.size(),
                                dataPsnTxtInfStartX, dataPsnTxtInfStartY, false);

            ctx.Set<std::vector<arm::app::kws::KwsResult>>("results", results);

            if (!PresentInferenceResult(platform, results)) {
                return false;
            }

            profiler.PrintProfilingResult();

            IncrementAppCtxClipIdx(ctx);

        } while (runAll && ctx.Get<uint32_t>("clipIndex") != startClipIdx);

        return true;
    }

    static void IncrementAppCtxClipIdx(ApplicationContext& ctx)
    {
        auto curAudioIdx = ctx.Get<uint32_t>("clipIndex");

        if (curAudioIdx + 1 >= NUMBER_OF_FILES) {
            ctx.Set<uint32_t>("clipIndex", 0);
            return;
        }
        ++curAudioIdx;
        ctx.Set<uint32_t>("clipIndex", curAudioIdx);
    }

    static bool SetAppCtxClipIdx(ApplicationContext& ctx, uint32_t idx)
    {
        if (idx >= NUMBER_OF_FILES) {
            printf_err("Invalid idx %" PRIu32 " (expected less than %u)\n",
                       idx, NUMBER_OF_FILES);
            return false;
        }
        ctx.Set<uint32_t>("clipIndex", idx);
        return true;
    }

    static bool PresentInferenceResult(hal_platform& platform,
                                       const std::vector<arm::app::kws::KwsResult>& results)
    {
        constexpr uint32_t dataPsnTxtStartX1 = 20;
        constexpr uint32_t dataPsnTxtStartY1 = 30;
        constexpr uint32_t dataPsnTxtYIncr   = 16;  /* Row index increment. */

        platform.data_psn->set_text_color(COLOR_GREEN);
        info("Final results:\n");
        info("Total number of inferences: %zu\n", results.size());

        /* Display each result */
        uint32_t rowIdx1 = dataPsnTxtStartY1 + 2 * dataPsnTxtYIncr;

        for (uint32_t i = 0; i < results.size(); ++i) {

            std::string topKeyword{"<none>"};
            float score = 0.f;

            if (!results[i].m_resultVec.empty()) {
                topKeyword = results[i].m_resultVec[0].m_label;
                score = results[i].m_resultVec[0].m_normalisedVal;
            }

            std::string resultStr =
                std::string{"@"} + std::to_string(results[i].m_timeStamp) +
                std::string{"s: "} + topKeyword + std::string{" ("} +
                std::to_string(static_cast<int>(score * 100)) + std::string{"%)"};

            platform.data_psn->present_data_text(
                                    resultStr.c_str(), resultStr.size(),
                                    dataPsnTxtStartX1, rowIdx1, false);
            rowIdx1 += dataPsnTxtYIncr;

            if (results[i].m_resultVec.empty()) {
                info("For timestamp: %f (inference #: %" PRIu32
                     "); label: %s; threshold: %f\n",
                     results[i].m_timeStamp, results[i].m_inferenceNumber,
                     topKeyword.c_str(),
                     results[i].m_threshold);
            } else {
                for (uint32_t j = 0; j < results[i].m_resultVec.size(); ++j) {
                    info("For timestamp: %f (inference #: %" PRIu32
                         "); label: %s, score: %f; threshold: %f\n",
                         results[i].m_timeStamp,
                         results[i].m_inferenceNumber,
                         results[i].m_resultVec[j].m_label.c_str(),
                         results[i].m_resultVec[j].m_normalisedVal,
                         results[i].m_threshold);
                }
            }
        }

        return true;
    }

    /**
     * @brief Generic feature calculator factory.
     *
     * Returns lambda function to compute features using features cache.
     * Real features math is done by a lambda function provided as a parameter.
     * Features are written to input tensor memory.
     *
     * @tparam T                Feature vector type.
     * @param[in] inputTensor   Model input tensor pointer.
     * @param[in] cacheSize     Number of feature vectors to cache. Defined by the sliding window overlap.
     * @param[in] compute       Features calculator function.
     * @return                  Lambda function to compute features.
     */
    template<class T>
    std::function<void (std::vector<int16_t>&, size_t, bool, size_t)>
    FeatureCalc(TfLiteTensor* inputTensor, size_t cacheSize,
                std::function<std::vector<T> (std::vector<int16_t>& )> compute)
    {
        /* Feature cache to be captured by lambda function. */
        static std::vector<std::vector<T>> featureCache = std::vector<std::vector<T>>(cacheSize);

        return [=](std::vector<int16_t>& audioDataWindow,
                                     size_t index,
                                     bool useCache,
                                     size_t featuresOverlapIndex)
        {
            T *tensorData = tflite::GetTensorData<T>(inputTensor);
            std::vector<T> features;

            /* Reuse features from cache if cache is ready and sliding windows overlap.
             * Overlap is in the beginning of sliding window with a size of a feature cache. */
            if (useCache && index < featureCache.size()) {
                features = std::move(featureCache[index]);
            } else {
                features = std::move(compute(audioDataWindow));
            }
            auto size = features.size();
            auto sizeBytes = sizeof(T) * size;
            std::memcpy(tensorData + (index * size), features.data(), sizeBytes);

            /* Start renewing cache as soon iteration goes out of the windows overlap. */
            if (index >= featuresOverlapIndex) {
                featureCache[index - featuresOverlapIndex] = std::move(features);
            }
        };
    }

    template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
        FeatureCalc<int8_t>(TfLiteTensor* inputTensor,
                            size_t cacheSize,
                            std::function<std::vector<int8_t> (std::vector<int16_t>& )> compute);

    template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
        FeatureCalc<uint8_t>(TfLiteTensor* inputTensor,
                             size_t cacheSize,
                             std::function<std::vector<uint8_t> (std::vector<int16_t>& )> compute);

    template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
        FeatureCalc<int16_t>(TfLiteTensor* inputTensor,
                             size_t cacheSize,
                             std::function<std::vector<int16_t> (std::vector<int16_t>& )> compute);

    template std::function<void(std::vector<int16_t>&, size_t, bool, size_t)>
        FeatureCalc<float>(TfLiteTensor* inputTensor,
                           size_t cacheSize,
                           std::function<std::vector<float>(std::vector<int16_t>&)> compute);


    static std::function<void (std::vector<int16_t>&, int, bool, size_t)>
    GetFeatureCalculator(audio::DsCnnMFCC& mfcc, TfLiteTensor* inputTensor, size_t cacheSize)
    {
        std::function<void (std::vector<int16_t>&, size_t, bool, size_t)> mfccFeatureCalc;

        TfLiteQuantization quant = inputTensor->quantization;

        if (kTfLiteAffineQuantization == quant.type) {

            auto *quantParams = (TfLiteAffineQuantization *) quant.params;
            const float quantScale = quantParams->scale->data[0];
            const int quantOffset = quantParams->zero_point->data[0];

            switch (inputTensor->type) {
                case kTfLiteInt8: {
                    mfccFeatureCalc = FeatureCalc<int8_t>(inputTensor,
                                                          cacheSize,
                                                          [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
                                                              return mfcc.MfccComputeQuant<int8_t>(audioDataWindow,
                                                                                                   quantScale,
                                                                                                   quantOffset);
                                                          }
                    );
                    break;
                }
                case kTfLiteUInt8: {
                    mfccFeatureCalc = FeatureCalc<uint8_t>(inputTensor,
                                                           cacheSize,
                                                           [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
                                                               return mfcc.MfccComputeQuant<uint8_t>(audioDataWindow,
                                                                                                     quantScale,
                                                                                                     quantOffset);
                                                           }
                    );
                    break;
                }
                case kTfLiteInt16: {
                    mfccFeatureCalc = FeatureCalc<int16_t>(inputTensor,
                                                           cacheSize,
                                                           [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
                                                               return mfcc.MfccComputeQuant<int16_t>(audioDataWindow,
                                                                                                     quantScale,
                                                                                                     quantOffset);
                                                           }
                    );
                    break;
                }
                default:
                    printf_err("Tensor type %s not supported\n", TfLiteTypeGetName(inputTensor->type));
            }


        } else {
            mfccFeatureCalc = mfccFeatureCalc = FeatureCalc<float>(inputTensor,
                                                                   cacheSize,
                                                                   [&mfcc](std::vector<int16_t>& audioDataWindow) {
                                                                       return mfcc.MfccCompute(audioDataWindow);
                                                                   });
        }
        return mfccFeatureCalc;
    }

} /* namespace app */
} /* namespace arm */