/* * SPDX-FileCopyrightText: Copyright 2021-2022 Arm Limited and/or its affiliates * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "UseCaseHandler.hpp" #include "InputFiles.hpp" #include "KwsClassifier.hpp" #include "MicroNetKwsModel.hpp" #include "hal.h" #include "AudioUtils.hpp" #include "ImageUtils.hpp" #include "UseCaseCommonUtils.hpp" #include "KwsResult.hpp" #include "log_macros.h" #include "KwsProcessing.hpp" #include namespace arm { namespace app { /** * @brief Presents KWS inference results. * @param[in] results Vector of KWS classification results to be displayed. * @return true if successful, false otherwise. **/ static bool PresentInferenceResult(const std::vector& results); /* KWS inference handler. */ bool ClassifyAudioHandler(ApplicationContext& ctx, uint32_t clipIndex, bool runAll) { auto& profiler = ctx.Get("profiler"); auto& model = ctx.Get("model"); const auto mfccFrameLength = ctx.Get("frameLength"); const auto mfccFrameStride = ctx.Get("frameStride"); const auto scoreThreshold = ctx.Get("scoreThreshold"); /* If the request has a valid size, set the audio index. */ if (clipIndex < NUMBER_OF_FILES) { if (!SetAppCtxIfmIdx(ctx, clipIndex,"clipIndex")) { return false; } } auto initialClipIdx = ctx.Get("clipIndex"); constexpr uint32_t dataPsnTxtInfStartX = 20; constexpr uint32_t dataPsnTxtInfStartY = 40; constexpr int minTensorDims = static_cast( (MicroNetKwsModel::ms_inputRowsIdx > MicroNetKwsModel::ms_inputColsIdx)? MicroNetKwsModel::ms_inputRowsIdx : MicroNetKwsModel::ms_inputColsIdx); if (!model.IsInited()) { printf_err("Model is not initialised! Terminating processing.\n"); return false; } /* Get Input and Output tensors for pre/post processing. */ TfLiteTensor* inputTensor = model.GetInputTensor(0); TfLiteTensor* outputTensor = model.GetOutputTensor(0); if (!inputTensor->dims) { printf_err("Invalid input tensor dims\n"); return false; } else if (inputTensor->dims->size < minTensorDims) { printf_err("Input tensor dimension should be >= %d\n", minTensorDims); return false; } /* Get input shape for feature extraction. */ TfLiteIntArray* inputShape = model.GetInputShape(0); const uint32_t numMfccFeatures = inputShape->data[MicroNetKwsModel::ms_inputColsIdx]; const uint32_t numMfccFrames = inputShape->data[arm::app::MicroNetKwsModel::ms_inputRowsIdx]; /* We expect to be sampling 1 second worth of data at a time. * NOTE: This is only used for time stamp calculation. */ const float secondsPerSample = 1.0 / audio::MicroNetKwsMFCC::ms_defaultSamplingFreq; /* Set up pre and post-processing. */ KwsPreProcess preProcess = KwsPreProcess(inputTensor, numMfccFeatures, numMfccFrames, mfccFrameLength, mfccFrameStride); std::vector singleInfResult; KwsPostProcess postProcess = KwsPostProcess(outputTensor, ctx.Get("classifier"), ctx.Get&>("labels"), singleInfResult); /* Loop to process audio clips. */ do { hal_lcd_clear(COLOR_BLACK); auto currentIndex = ctx.Get("clipIndex"); /* Creating a sliding window through the whole audio clip. */ auto audioDataSlider = audio::SlidingWindow( get_audio_array(currentIndex), get_audio_array_size(currentIndex), preProcess.m_audioDataWindowSize, preProcess.m_audioDataStride); /* Declare a container to hold results from across the whole audio clip. */ std::vector finalResults; /* Display message on the LCD - inference running. */ std::string str_inf{"Running inference... "}; hal_lcd_display_text(str_inf.c_str(), str_inf.size(), dataPsnTxtInfStartX, dataPsnTxtInfStartY, 0); info("Running inference on audio clip %" PRIu32 " => %s\n", currentIndex, get_filename(currentIndex)); /* Start sliding through audio clip. */ while (audioDataSlider.HasNext()) { const int16_t* inferenceWindow = audioDataSlider.Next(); info("Inference %zu/%zu\n", audioDataSlider.Index() + 1, audioDataSlider.TotalStrides() + 1); /* Run the pre-processing, inference and post-processing. */ if (!preProcess.DoPreProcess(inferenceWindow, audioDataSlider.Index())) { printf_err("Pre-processing failed."); return false; } if (!RunInference(model, profiler)) { printf_err("Inference failed."); return false; } if (!postProcess.DoPostProcess()) { printf_err("Post-processing failed."); return false; } /* Add results from this window to our final results vector. */ finalResults.emplace_back(kws::KwsResult(singleInfResult, audioDataSlider.Index() * secondsPerSample * preProcess.m_audioDataStride, audioDataSlider.Index(), scoreThreshold)); #if VERIFY_TEST_OUTPUT DumpTensor(outputTensor); #endif /* VERIFY_TEST_OUTPUT */ } /* while (audioDataSlider.HasNext()) */ /* Erase. */ str_inf = std::string(str_inf.size(), ' '); hal_lcd_display_text(str_inf.c_str(), str_inf.size(), dataPsnTxtInfStartX, dataPsnTxtInfStartY, false); ctx.Set>("results", finalResults); if (!PresentInferenceResult(finalResults)) { return false; } profiler.PrintProfilingResult(); IncrementAppCtxIfmIdx(ctx,"clipIndex"); } while (runAll && ctx.Get("clipIndex") != initialClipIdx); return true; } static bool PresentInferenceResult(const std::vector& results) { constexpr uint32_t dataPsnTxtStartX1 = 20; constexpr uint32_t dataPsnTxtStartY1 = 30; constexpr uint32_t dataPsnTxtYIncr = 16; /* Row index increment. */ hal_lcd_set_text_color(COLOR_GREEN); info("Final results:\n"); info("Total number of inferences: %zu\n", results.size()); /* Display each result */ uint32_t rowIdx1 = dataPsnTxtStartY1 + 2 * dataPsnTxtYIncr; for (const auto& result : results) { std::string topKeyword{""}; float score = 0.f; if (!result.m_resultVec.empty()) { topKeyword = result.m_resultVec[0].m_label; score = result.m_resultVec[0].m_normalisedVal; } std::string resultStr = std::string{"@"} + std::to_string(result.m_timeStamp) + std::string{"s: "} + topKeyword + std::string{" ("} + std::to_string(static_cast(score * 100)) + std::string{"%)"}; hal_lcd_display_text(resultStr.c_str(), resultStr.size(), dataPsnTxtStartX1, rowIdx1, false); rowIdx1 += dataPsnTxtYIncr; if (result.m_resultVec.empty()) { info("For timestamp: %f (inference #: %" PRIu32 "); label: %s; threshold: %f\n", result.m_timeStamp, result.m_inferenceNumber, topKeyword.c_str(), result.m_threshold); } else { for (uint32_t j = 0; j < result.m_resultVec.size(); ++j) { info("For timestamp: %f (inference #: %" PRIu32 "); label: %s, score: %f; threshold: %f\n", result.m_timeStamp, result.m_inferenceNumber, result.m_resultVec[j].m_label.c_str(), result.m_resultVec[j].m_normalisedVal, result.m_threshold); } } } return true; } } /* namespace app */ } /* namespace arm */